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Abstract —Bayesian networks have been proposed by many authors [1, 2, 3] as the modeling technique of choice for the development of diagnostic systems. This paper describes a procedure for efficient creation of Bayesian networks for diagnostics. We have applied this procedure in diagnostic systems for diesel locomotives, satellite communication systems, and satellite testing equipment [4]. 

We divide the process into several phases: problem decomposition, sub-problem definition, design and testing of a Bayesian networks for subsytems, and finally integration into a complete Bayesian network. 

We describe all of the steps of the network design process, especially details of knowledge acquisition and the integration of information from different sources. We develop the networks starting with the simplest forms of Bayesian networks, increasing their complexity as needed while carefully balancing model accuracy and knowledge acquisition cost. 
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1. Introduction

Most of the diagnostic software tools used in practice are based on conventional decision tree technology. The user of such a tool is assisted with traversing a fault tree from the root-test through other tests until the fault is reached in the leaf of the tree. Another common technology used in newer diagnostic aids is case based reasoning (CBR) or a combination of CBR and decision trees.  Here the tool looks up a best match in a data base of diagnostic cases which contains typical problems and solutions encountered while diagnosing a given system. These technologies are quite mature, but do not offer sufficient flexibility and accuracy often needed in aerospace or communications applications. Bayesian networks constitute a very attractive alternative technology for diagnostic decision tools. They are used to represent the diagnostic domain, i.e. system components and tests available to diagnose them, in the form of graphical statistical models. One of the critical issues in using Bayesian networks for diagnostic tools is the efficient construction of accurate graphical statistical models.

Creation of Bayesian models is a complex task involving participation of a knowledge engineer and domain experts, with additional knowledge coming from such sources as technical manuals, test procedures, and repair data bases.  The modeling task is a combination of art and science. It is our belief that without significant progress in the techniques for Bayesian model creation, this technology may never become widely used in practical diagnostic systems.

The literature on efficient construction of Bayesian networks for complex domains is very limited, [1, 2, 4,15]. Moreover, it often overlooks the fact that in practice it is very desirable to be able to deliver a diagnostic tool of limited performance early in the design process and refine it progressively as more expert time and information becomes available to the knowledge engineers. 

In this paper we describe a systematic technique of construction of Bayesian models for diagnostics. Our methodology is intended primarily for systems of significant complexity, but is also useful for the design of models for simple systems. We propose to decompose the initial system into simple subsystems and model them individually. The submodels are then integrated into a complete model. In our approach we advocate starting the modeling process from the simplest forms of Bayesian networks. These networks are characterized by the simplest graph structure and minimal requirements for probabilistic information. From these simple models we advance to more complex models in an iterative process of construction, testing, and modification. At each step of added complexity we carefully balance the increased cost and expected improvements in performance. 

One critical issue of Bayesian network design which has attracted increasing attention is the elicitation of the probabilistic values for the graphs, [5, 7, 11, 13]. Most of the authors focus on the actual process of obtaining efficiently accurate approximations of the causal probabilities from experts.  However, domain experts often experience difficulty arriving at the conditional probabilities in the causal direction, which are needed for the network design, as opposed to the probabilities in the diagnostic direction, which reflect their natural way of thinking.   Causal probabilities are those of the form: P(TestResult=fail|Component=bad), indicating the likelihood that a particular test outcome is caused by the state of  a certain component. In contrast, diagnostic probabilities are of  the form: P(Component=bad|TestResult=fail), indicating the likelihood that a  particular component is bad based on the fact that a certain system test has failed. We have developed a technique and a tool for the computation of the conditional probabilities of a Bayesian network from those easily available from the experts [5].  

This paper consists of four chapters. In chapter two, following this introduction, we describe the principles of our methodology for Bayesian model construction. In chapter three we present our method of probability elicitation and the computations needed to produce from them the probabilities required for the model. The results are summarized in chapter four. 


2. Model Construction

2.0 Model Construction

In this chapter we are discussing the practical aspects of creating a Bayesian network model for a diagnostic support tool. We assume that the information needed for the model construction comes from various sources such as manuals, test and repair procedures, repair statistics and, most importantly, from experts. These sources provide us with a simplified view of reality, which our model needs to simplify even further. The key problem is to construct the model so that we capture all of the important aspects of system reality from the point of view of the diagnostic process.  The methodology described below aims at balancing the cost of the model development with model fidelity. We have identified several steps in the process, which are discussed in separate sections.

2.1 System Decomposition

Bayesian network construction begins with the evaluation of the diagnostic problem, for which we want to develop the decision support tool.  We need to answer several key questions of which the first is: how complex is the system? We will initially approximate system complexity by the number of replaceable components (or “faults”) that we would like to be able to diagnose, plus the number of available observations such as tests, symptoms, error messages etc. A simple system may consist of up to one hundred faults and observations. A complex system may have up to one thousand faults and observations, and a system of over one thousand faults and observations will be considered to be very complex. Our methodology is aimed mostly at construction of Bayesian networks for complex and very complex systems, but it may also be helpful for simple systems. 

The simplistic measure of system complexity adopted here is a consequence of our limited understanding of the system at this early stage of system modeling. A complexity measure of a complete Bayesian network must also include connections between network nodes. Their number and topology determine the complexity of the knowledge acquisition as well as the complexity of probabilistic computations during network queries.

The complex and very complex systems need to be decomposed into simple subsystems. This too is a very difficult task because of our limited understanding of the system. We employ a few guiding principles. It is often useful to decompose systems along boundaries created in the design or manufacturing process. These boundaries along with “interfaces” across them are intended to reduce the complexity of the system for design and manufacturing, e.g. different subsystems may come from different design groups or even different companies. These subsystems are typically quite coherent and it is easy to consider them separately from the rest of the system. As helpful as this decomposition may be, we must remember that we are interested in the system from the diagnostic point of view. The complexity of failures does not always clearly overlap with such functional complexity. 

Another good principle for system decomposition is the way in which the diagnosis is handled in practice. For example, there may be several different experts used to diagnose different parts of the system. These parts are good candidates for subsystems. After the preliminary decomposition, we may want to evaluate the size of the parts and decompose them further until we get to the level of simple subsystems i.e. systems having at most one hundred faults and observations. The number of faults and tests usually grows during modeling as we inspect the systems much more closely. 

After selecting one of the subsystems for modeling we need to gather technical information on that subsystem. Most of it is shared among several subsystems. This information is typically contained in various manuals (e.g. reference manuals, training manuals), in testing procedures (e.g. fault trees, repair procedures) in statistical information on repairs and testing, and in the heads of experts.  Statistics of testing are unfortunately rarely available, leading to a problem with probability estimations for Bayesian networks.  This topic will be discussed in chapter 3. 

Among the experts, we need to identify the key individuals for each subsystem. In this regard, we would like to have at least one expert from the system design/engineering group and one from the maintenance/repair group, if such a separation exists. The former expert will help us in understanding “how things work”, while the latter will explain “how things fail”. One would expect that communication between these two camps in a given company already exists and that we do not need to look for two sources of information. However this is rarely the case. Had the flow of information between the two groups been really smooth, the system would have failed only sporadically and our services would not be needed. It may turn out that the process of developing our model will become a focal point for the exchange of information between design, manufacturing, and maintenance groups.

2.2 Subsystem Definition

Let us assume that we have selected a subsystem and that preliminary assessment of its complexity resulted in less than one hundred faults and observations.  We now must produce a detailed list of the faults and the observations for the subsystem. The faults are replaceable components. What should we consider as a replaceable component? 

The minimal granularity at which we should consider a replaceable component is governed by repair practice. For example, if during a repair it always happens that an entire rack of circuit boards is replaced, we may not need to consider each individual board in that rack as a fault.  In such a scenario we certainly do not need to worry about modeling individual chips. 

Once the list of faults for the subsystem is ready, we need to rank them by frequency of failure. This information is usually available from repair records. The ranking is helpful in determining an initial cut-off line between faults that need to be modeled individually and those that are so infrequent that they can be considered as a group, e.g. “other faults”.

The second list that we must produce consists of all observations that are pertinent to the faults from the first list, i.e. those observations that are used to determine if the replaceable components are defective. These observations will include: symptoms of failure reported by the user (which are usually available at the beginning of diagnosis), error messages from computerized monitoring systems, results of built-in tests, as well as observations made during the process of fault troubleshooting (such as tests and inspections.) We create the list of observations by going through all the items from the list of faults and identifying for each one of them the pertinent observations of each of the above types.  In this process of compiling the list of observations, we also obtain the record of association of the observations with the faults. 

At this point it is advisable to reevaluate the complexity of the subsystem. If the number of faults and observations has grown much beyond one hundred we may want to decompose the subsystem into two or more simpler subsystems.

2.3  Simple Model of the Subsystem

For this phase of modeling we primarily need the information gathered during subsystem definition (section 2.2.) and the help of diagnostics experts. A block diagram of a system at the level of granularity of replaceable components may be helpful here but is not essential [4]. Bayesian network construction is an iterative process. Therefore, this phase of modeling as well as the phases presented in consecutive sections may need to be repeated several times. The same applies to the entire procedure. 

We will now discuss development of a simple Bayesian network of a subsystem. The lists of faults and observations created in the previous phase, section 2.2., will constitute the starting point. We may decide not to use the lists in their complete form for the first iteration of the development. It may be more appropriate to put several faults or observations into one node on the basis of their similarity and refine the model later.

Simple Bayesian networks require that two assumptions are met: single fault and conditionally independent observations.  We need to determine how realistic these assumptions are for our subsystem. The single fault assumption means that when we approach diagnosis of our subsystem we know that there is one and only one fault present.  The conditional independence of two observations for a given fault is equivalent to their full independence once it is known if the particular fault is present or not.  We may want to pursue development of a simple Bayesian model even if we are not entirely convinced that these assumptions are met. Practice shows that these models can be very useful even if the assumptions are not completely met. The simple models are easy to build and may turn out to be the only type of Bayesian network that we can afford constructing, taking into account the overall complexity of the system and costs involved in knowledge acquisition. 

The simple Bayesian model has one fault node. This node has a separate state for each individual fault from our list (see section 2.2). This node is connected to all of the observation nodes by individual links which are directed from the fault node to each observation node.  See Figure 1. Thus the structure of the model is defined once the faults and the observations have been identified. What remains is the definition of conditional probabilities.






  

Figure 1.  Simple Bayesian model with single fault of four  

  states (F1, F2, F3, F4) and four observations.

The probabilities can be assessed in the causal direction, i.e. the probability of a certain observation being present (e.g. test passed, or error message recorded in an archive) provided that a given component failed, or the probabilities can be assessed in the diagnostic direction, i.e. the probability that a certain component failed given that a specific observation is present. Causal probabilities can sometimes be obtained from a design or functionality expert, whereas diagnostic probabilities are best provided by diagnosis or maintenance experts. If we assume, that each observation has only two states, present and absent, we need two conditional probabilities for each observation and each fault-state. The values of these two probabilities sum to unity, thus only one of them needs to be assessed. Typically a fault is observable by means of only a subset of the observations. The probabilities need to be assessed only for those fault-observation pairs for which this observability is present. The remaining values can be set to close to zero. A more detailed discussion of the probability assessment and computation is provided in Chapter 3.

The simple Bayesian model has a very simple structure and a minimal number of conditional probabilities to assess. It is also very attractive from the computational point of view because all of its probabilistic queries are executed very quickly and with minimal memory needs. Once the Bayesian network is ready it should be thoroughly tested. This is done with diagnostic experts and comprises a complex task worth a separate extended discussion, which is not the subject of this paper. Simple Bayesian networks have an important property that is very helpful in testing the network for correctness:  for a given set of observations the marginal probabilities for faulty components can be easily traced back to the observations and the conditional probabilities. For example, if discrepancies are discovered between the fault predicted by the network relative to what the expert is expecting, it is easy to find which of the probabilities need to be modified to obtain the desirable result  [12]. However, it is often a case that an expert may be  persuaded by looking at individual probabilities that the tool is correct and his or her answers for a given case were incorrect. 

If after testing and modification, the simple Bayesian network provides satisfactory performance, we move to modeling of the next subsystem.  However, if the performance is inadequate we need to consider a multiple-fault network.

2.4  Multiple Faults Model.  

We use this model if the simple model does not work. There are several possible reasons for inadequacy of the simple model. The most common occurs when the subsystem fails because of more than one fault. Another frequently encountered reason is the conditional dependence of the observations. This occurs when one observation causes another to happen under certain circumstances which cannot be explained by the presence or absence of a fault that is common for the two observations. Finally, it may be difficult to assess conditional probabilities for the model in which only the faults and observations are present. In this case additional nodes may need to be introduced into the network to provide adequate representation of the diagnostic reality of the subsystem. In the latter case we need to use a multilevel network,  as discussed in section 2.5.

The first natural modification of the simple model is to create separate fault nodes for each fault state. These nodes have links only to the observations that are pertinent for them, as shown in Figure 2. The immediate consequence of this change is a necessity to modify the prior probabilities of faults. The priors for the simple model can be obtained easily from frequency-of-repair data or from expert’s estimations. Since the assumption of one and only one fault does not apply here, more general prior probabilities are needed, but these are rarely available and need to be computed [9]. In addition to new priors, it is likely that additional conditional probabilities will be needed.




Figure 2.  Multiple fault network with two faults (F1, F2)                    and four observations (Ob1, Ob2, Ob3, Ob4).

If we assume that each observation has only two states e.g. present or absent, then in the simple model we need to assess only one probability for each fault-observation pair. For the modified model, we need to assess at least two conditional probabilities, one for the fault node and one for the observation node. This is assuming that both the observation and the fault have only two states and that no other faults affect the given observation. When k faults affect a given single observation (still assuming two states for the observation and each fault) we need 2 k   conditional probabilities for that observation node. This explosion of probabilities results from the need to consider all possible combinations of fault states for a given observation. 

How do we handle the probability assessment problem in this case? First, it turns out that there is usually no benefit from introducing more than two states for fault nodes.  Moreover, the values of probabilities do not need to be determined with a great accuracy [13]. Also, the number of probabilities can be reduced if a noisy OR node can be used for the observation in place of the conventional chance node [2]. Use of this node is justified if the effect of each fault can be considered separately. This way the conditional probabilities for combinations of fault states are not necessary.

The second modification that can be introduced in the multiple fault model is the influence of one observation node onto another, as well as one fault onto another, as depicted in Figure 3. The former results from relaxing the conditional independence assumption present in the simple Bayesian model. These influences are represented as causal links from one fault or observation node to the other fault or observation node. The consequence of introducing such additional links is the need for assessment of new conditional probabilities, which represent the strength of the fault-on-fault and observation-on-observation influences.





Figure 3.  Multiple fault network with two dependent faults 

(F1, F2) and four observations (Ob1, Ob2, Ob3, 

Ob4) of which Ob3 is dependent on Ob2.

2.5 Multiple Level Model

In the previous section we discussed modifications of the simple Bayesian network, resulting from dropping assumptions of the single fault and the conditional independence of the observations. These networks still consisted only of fault and observation nodes. Here we are looking at the introduction of additional levels of nodes to express more accurately and with greater clarity the causal structure of the environment.  See Figure 4. A good understanding of the functional working of the subsystem in addition to the diagnostic experience may be essential for constructing such a model. The user has to combine information coming from written documentation with the knowledge of design and diagnostic engineers. One of the approaches is to create an intermediate representation of the subsystem using block and test flow diagrams. These diagrams contain the information needed to construct a multilevel network and make the construction much easier [4].

The introduction of multiple levels of nodes significantly complicates the modeling process. One obvious manifestation of it may be an increased number of probabilities to be assessed. Moreover, some of these probabilities involve system objects not directly observable and therefore less understood from a diagnostic point of view. This puts greater demand on the expert time and degree of familiarity with the system. We may also need the help of both the design/functionality expert and the diagnosis/maintenance expert. 


Figure 4.  Multiple level network with two faults 

(F1, F2), one auxiliary node (Aux) and 

four observations (Ob1, Ob2, Ob3, 

Ob4) of which Ob3 is dependent on Ob2.

Furthermore, testing of the system becomes much more complicated. In multilevel networks it is very hard to provide any form of explanation of the diagnostic decision. This means that it is hard to point to the observations that had the critical impact on the diagnostic decision. It is therefore very hard to determine which modifications of the Bayesian network are most appropriate to correct wrong diagnostic answers. Moreover, the modifications are often not limited simply to adjustment of probabilities, but involve also the change of network structure [14]. 

Multilayer networks are often very sensitive to conditional probabilities. These probabilities have to be defined with greater accuracy because small perturbations in their values may result in radically different diagnostic conclusions.  It is a good practice in the construction of the multilevel networks to perform systematic sensitivity analysis [15] .
In the choice between simple Bayesian networks or two-level Bayesian networks and a multilevel network one needs to carefully consider the expected diagnostic benefits versus the increased cost of the knowledge engineering, testing, and real-time execution.  In some diagnostic applications there is no benefit from using multiple levels of nodes [16]. 
2.6  Model Integration

The Bayesian networks for subsystems are not built in complete isolation from each other. A good practice is to keep track during subsystem modeling of the influences that may come from outside of it as well as its influences onto other subsystems. The simplest form of these influences is a shared observation. For example, a given test may point to faults in more than one subsystem.  To capture this dependence in a model of a given subsystem we may include a fault which represents all the faults from another subsystem that are related through shared observations. This way integration of the subsystem networks into a single system network becomes much easier. 

Sometimes it is more expedient to integrate subsystems by means of a hierarchical approach. In this approach we create an additional top-level integration network. The network uses selected observations to identify one of the subsystems as the likely source of fault. Then the diagnosis is continued inside of the subsystem model. The choice of integration approach is very much application-dependent.  


3.  Probability Elicitation
Once the topology of a Bayesian network has been determined, we must rely on domain experts to provide probabilistic information about connections between nodes. We need sufficient information to be able to calculate the joint probability distribution for collections of mutually connected nodes. From such a distribution we can compute conditional probabilities in both directions between any two nodes as well as determine marginal probabilities for each node.

In order to simplify notation, we adopt the following notational convention: C will represent the event “Component = defective”, C’ the complementary event “Component = ok”; T will represent the event “Test = fail”, T’ the complementary event that “Test = pass”.  Thus, we purposely identify C and T as the primary events of interest in diagnostic decision making, corresponding, respectively to defectiveness and test failure.

Bayesian network knowledge engineers start to model the problem by encoding faults and observations and conditional independence relationships among them into Bayesian network structure.  Then they often start to elicit conditional probabilities in the causal direction [1].

“Causal” probabilities are conditional probabilities of the form P(T|C),  indicating the likelihood of a particular test outcome given information about a component failure.

So called “diagnostic” probabilities in the Bayesian network context refer to conditional probabilities of the form P(C|T), indicating the likelihood of a particular component failing given that a particular test or sensor returned a failure condition.   Both kinds of probabilities can be used to compute joint probability distributions.

Diagnostics experts think in the “diagnostic” form rather than the “causal” form.  This is due to the fact that they are primarily interested in determining component failure given test results.   For example, if an electrical system indicator light is illuminated on an automobile dashboard, an automotive diagnosis expert will have little difficulty determining the probability that the car has, say, an alternator malfunction.  However, to determine the likelihood that a particular dashboard light is on or off given alternator failure may be hard to answer, because it is equivalent to asking the expert to pass judgment on the effectiveness of the light to capture various forms of alternator failures. This is a question on test design relative to functional modes of the observed component, which may fall outside of the expert’s domain of knowledge.

Many authors have examined the issue of probability elicitation [7,11], focusing largely on how to phrase questions to experts so as to efficiently and reliably determine pertinent conditional and prior probability information.  Information that is elicited in this way includes prior probabilities of faults and causal conditional probabilities.

Others assume that prior probability distributions on the tests are available and elicit diagnostic conditional probabilities, employing a so called arc reversal approach, [6]. In our opinion, determining  the prior probability of each test is impossible in many applications. Prior probabilities of component failures, i.e. P(C), are, by comparison, more easily obtained from repair log databases, or from manufacturer data on meantime between failures, [9]. 

This brings us to the following question: given ONLY the prior component probabilities {P(C), P(C’)}, and the diagnostic conditional probabilities {P(C|T), P(C’|T)}, is it possible to uniquely determine the causal probabilities: {P(T|C’), P(T’|C’} or {P(T|C), P(T’|C)} ?

The answer is no, as the following example illustrates.

Example 1: Consider the following two statistically distinct joint probability distributions, representing two different network models.

Case a)

	
	T
	T’

	C
	2/12
	1/12

	C’
	4/12
	5/12

	Marginal T
	6/12
	6/12


(Here, for example, P(C,T’) = 1/12.)

Case b)

	
	T
	T’

	C
	2/36
	7/36

	C’
	4/36
	23/36

	Marginal T
	6/36
	30/36


It is a routine matter to check that the marginal probabilities P(C) = ¼, P(C’) = ¾ are identical in both cases.  Moreover, the diagnostic conditional probabilities P(C|T) = 1/3, P(C’|T) = 2/3 are also the same for both cases.  (Recall that P(C|T) = P(C,T)/P(T).) 

However, the marginal probabilities for T are different for these two cases.  In addition, it is easy to check that the conditional causal probabilities are different between the two cases.  That is, in the first case we have:   P(T|C) = 2/3, P(T’|C) = 1/3; whereas the second case has: P(T|C) = 8/36, P(T’|C) = 28/36.

This trivial example illustrates that knowledge of the prior component probability and conditional diagnostic probabilities (i.e. conditioned on T) DOES NOT sufficiently determine the conditional causal probabilities of the network.  Indeed, this knowledge is insufficient to determine the joint distribution of C and T. Thus, we must elicit additional diagnostic or prior probability information to sufficiently and uniquely specify the network. The theorem below shows that we need to elicit the additional diagnostic probability P(C|T’). The probability of the form P(C|T’) can be obtained but is less intuitive for an expert, because it asks how likely it is that a component is defective despite a given test passing muster.  

Theorem 1:

Suppose we have the Bayesian network depicted in Figure 5. Given the complete diagnostic conditional joint distribution of “component defectiveness given T” (i.e. the complete set of probabilities of the form {P(C1, C2, …, Cn|T)}, over all complemented and uncomplemented value combinations of the Ci.), the single probability P(C1, C2, …, Cn), and the single probability P(C1, C2, …, Cn|T’), it is possible to calculate the complete joint probability distribution of the Ci and T, and thus, all probabilities pertaining to these variables.  In particular, it is possible to calculate all causal probabilities.


   .  .  .


Figure 5.

Proof:  See Appendix.

We have created a collection of Matlab algorithms to calculate all causal probabilities given the minimal and sufficient probability information described in Theorem 1, [5].  In this way, it is possible to build a complete diagnostic Bayesian model, capable of forward and backward reasoning with reduced burden for the domain expert.

4.  Conclusions

Bayesian networks provide a very powerful tool for diagnostic decision support tools. The practice of using Bayesian networks in diagnostics shows that the main problem is construction of the network models for the target domain. 

We have presented a systematic method of model construction. Our method is based on decomposition of the problem into simple subproblems and construction of the models for the subproblems beginning with the simplest forms of Bayesian networks. We have explained how to balance model simplicity with its accuracy. 

We have provided a computational method of deriving probabilities needed for the Bayesian model from the probabilities that are easily obtained by elicitation from domain experts and statistical repair data.

We have tested our methodology on many examples of diagnostic problems in diesel locomotives, satellite communication systems, and  satellite testing equipment. Most of the systems we have modeled are very complex. Our methodology makes it possible to construct the Bayesian networks in reasonable time and with minimal burden for the domain experts. The performance of the diagnostic tools based on the networks has been very good. 

We are working at present toward a software tool for Bayesian network construction. The tool will support our methodology and assist the knowledge engineer in rapid creation, testing and modification of Bayesian networks.
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Appendix

Proof of Theorem 1:

The proof follows inductively on the number of components.  The root case of one component follows.

First of all, it is clear that from our given information we may calculate P(C’), P(C’|T), and P(C’|T’):  P(C’) = 1 – 

P( C), P(C’|T) = 1- P(C|T), and P(C’|T’) = 1-P(C|T’).  Next, using the laws of probability we have: 

P(C|T) = P(C,T)/P(T) = P(C,T)/(P(C,T) + P(C’,T)) and  P(C|T’) = P(C,T’)/P(T’) =  (P(C) - P(C,T))/(1- P(C,T) - P(C’,T)).  Solving for P(C,T), and P(C’,T) we see that are led to the matrix system:
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The determinant of the coefficient matrix of this system reduces to:

P(C|T)P(C’|T’) – P(C’|T)P(C|T’)

= P(C,T)P(C’,T’)-P(C’,T)P(C,T’)/(P(T)P(T’)),

which has a vanishing numerator only if P(C,T)/P(C’,T) = P(C,T’)/P(C’,T’), which is equivalent to C and T being independent events.  We assume that this is not the case, else our conditional probabilities all collapse to prior probabilities, an uninteresting case.

Upon solving the above matrix system, we get P(C,T) and P(C’,T); hence also P(C,T’) = P( C) – P(C,T) and P(C’,T’) = P(C’) – P(C’,T).  Thus, we can complete determine the joint distribution of C and T.  This will uniquely determine all pertinent probabilities in this two-node network, including the causal probabilities.

The general case follows in a similar manner.
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