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1 Introduction

The financial literature on optimal portfolio allocation starts with Samuelson (1969)
and Merton (1969, 1971). The models of these influential papers, however, are based
on a constant opportunity set and a given initial amount of wealth, but not intertem-
poral endowment or labor income. For the case of CRRA utility, almost standard in
intertemporal problems, the optimal investment allocation is a constant proportion
of wealth in the risky security.

Over the years, the literature on optimal portfolio allocation has expanded in a
number of different directions. Of particular interest is the analysis of optimal port-
folio allocation in the presence of labor income. Most of the work in this literature
focuses on the effect of labor income on the optimal portfolio allocation over the
working lifetime of the investor. On one hand, the empirical literature tries to find
evidence about the age effect of portfolio allocation. Up to recently, most of the lit-
erature used cross-sectional data and found a negative relationship between age and
proportion of wealth invested in stocks (for example, Bodie and Crane, 1997). More
recently, Ameriks and Zeldes (2004), using panel data, do not find evidence of an age
effect on investors allocation; however, as a good part of the empirical literature, they
also document the low holdings of stock by young investors. On the other hand, most
of the theoretical models study optimal allocation in the presence of labor income
risk that cannot be totally hedged, like Svensson and Werner (1993), who solve the
problem explicitly for exponential utility. In another model with exponential utility
and non-hedgeable labor income, Henderson (2005) finds that portfolio weights are
not monotone in time. Koo (1998) shows that when income risk is non-hedgeable,
optimal consumption and allocation in the risky security are lower than what they
would be in the complete markets case. Viceira (2001) shows that if stock returns
and labor income are not correlated, an employed investor will invest more in stocks
than a retired investor. A strand of this literature (for example, Heaton and Lucas
(1997) and Campbell, Cocco, Gomes and Maenhout (2001))argues that low holdings
of stock by young investors can be optimal only if labor income and stock returns are
highly correlated (which is not the case). Another related paper is Cocco, Gomes and
Maenhout (2005), which shows that labor income is an important factor in determin-
ing optimal portfolio allocation, but labor income risk does not have a large negative
effect on utility. An alternative explanation to low holdings of stock by young in-
vestors is provided by Benzoni, Collin-Dufresne and Goldstein (2006), which studies
the portfolio allocation when wages and stock returns are cointegrated (as opposed
to perfectly correlated).

In this paper we are interested in a closely related but different setting, in which
the investor optimally selects the rate of labor income, as opposed to the exogenous
labor income process in the above mentioned theoretical work. There is also an old
literature on endogenous labor/savings decisions, when labor supply is flexible, but
most of that literature focuses on the choice of the optimal level of labor as affected
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by wage uncertainty. A recent paper by Flodén (2006) has an excellent survey of
that literature. He finds that higher wage uncertainty implies higher labor effort.
However, we are interested in the effect of stock returns uncertainty on the labor
decision and, especially, on the investment allocation decision, assuming that the
wages are constant.

The closest paper to the work we present here is Bodie, Merton and Samuelson
(1992). There are two main differences between our model and theirs, motivated by
both tractability and interpretation reasons. In their paper, they model the trade-off
between consumption and leisure (labor is the difference between total available time
and leisure) as a Cobb-Douglas function. Additionally, the analysis of results is limited
to the case of logarithmic (myopic) preferences. In this paper, we model preferences
over wealth and consumption as general (non-myopic) CRRA utility. Additionally,
utility from wealth/consumption and disutility from effort are separable, with the
disutility of effort modeled as a quadratic function. Effort in our model seems more
suitable to be interpreted as extra labor to be supplied on an “exceptional” basis, with
a cost that increases rapidly, and is independent of the level of comfort of the investor.
Other relevant work is Basak (1999), who provides comparative static analysis of the
effects of the labor-leisure choice on equilibrium consumption and stock prices, but
does not provide an explicit portfolio allocation.

We extend and modify the findings of Bodie, Merton and Samuelson (1992). Con-
sistent with their findings, we show that the possibility to work harder in the future,
if necessary, affects the optimal risk-taking strategy of the investor. However, we find
that the optimal strategy depends heavily on whether the investor cares about in-
tertemporal consumption or only about final wealth (Wachter (2002) raises this issue
in a setting without labor income). If the investor maximizes utility from intertempo-
ral consumption, optimal investment allocation (like in Samuelson (1969) and Merton
(1969), (1971)) is a constant proportion of wealth, if we consider total wealth, defined
as the sum of financial wealth and human capital wealth (that is, the value of the
future labor income). When the investor only cares about utility of final wealth, we
show that the optimal portfolio allocation is a non-monotonic function of time. In
particular, optimal allocation starts at a low level (as documented in the empirical
literature we mentioned before) and increases over time, as the investor tries to sub-
stitute financial wealth for human capital wealth, up to a maximum level and then
starts decreasing again for short horizons, since the possibility of future labor income
shrinks.

The reminder of the paper is organized as follows: section 2 introduces the model
and sets up the worker/investor problem. In section 3 we derive the solution to the
problem. In section 4 we present several numerical exercises and present the main
economic implications. We conclude in section 5.
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2 The Problem

We consider the problem of an individual who faces a horizon of T years. We denote
the wealth of this individual at time t by X(t), with X(0) = x. This investor can
allocate wealth between a risky asset and a risk-free security. The price of the risky
asset follows a Geometric Brownian Motion Process:

dS(t) = ξS(t)dt + σS(t)dW (t),

with ξ and σ constant. The riskfree security pays a constant interest rate r, continu-
ously compounded. The investor can either invest or borrow at this rate.

In addition, this individual has the option to exert compensated but costly effort,
which can be interpreted as labor income. We assume that the wage is fixed and
constant (we could allow for a time-dependent and deterministic wage, however). We
denote the effort process by u(t). We assume that

K1 ≤ u(t) ≤ K2 .

Here, K1 and K2 represent some physical limits to the amount of extra effort the
investor can exert. In general, we will assume K1 = 0. As we will see, K2 is an
important parameter of the model because it restricts the income the investor can
earn.1

Denote by π the dollar amount invested by this individual in the risky security;
denote by θ = ξ−r

σ
the market price of risk; finally, c(t) represents the rate of con-

sumption of this investor at time t. The wealth process of this investor satisfies the
following dynamics:

dX(t) = δu(t)dt− c(t)dt + rX(t)dt + π(t)σθdt + π(t)σdW (t) .

where δ is a positive constant that represents the skill or human capital of the in-
dividual and, therefore, has a direct effect on the future income prospects of the
individual.

This investor has to choose the optimal processes π(t), u(t) that maximize ex-
pected CRRA utility of terminal wealth and consumption in excess of the labor cost,

E

[
λ

X(T )γ

γ
+ µ

∫ T

0

e−src c(s)α

α
ds− 1

2

∫ T

0

e−sru

u2(s)ds)

]
, (1)

where λ, µ, rc and ru are constants. In particular, λ and µ represent the relative
weights of the maximization of utility from terminal wealth versus the utility from
intertemporal consumption.2 The parameters rc and ru represent subjective discount

1We can think of u(t) as a proxy for the labor time, in which case K2 would be a measure of the
employment limitation: a proxy for the the maximum number of hours the investor can work.

2It is standard to assume that λ = µ = 1. However, as we show later, this does not seem a
reasonable in our model with labor income. Obviously, we could set one of them equal to 1 and only
change the other, but keeping both is more convenient for our numerical computations.
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factors. Note that we do not assume a similar discount factor for final wealth since
it will be implicit in the choice of λ.

We introduce the following notation:3

Z̃t = e−rt−tθ2/2−θWt

T̄ (t) =

{
etru e(θ2−2r+ru)(T−t)−1

θ2−2r+ru if θ2 6= 2r − ru

etru
e−θ2t(T − t) if θ2 = 2r − ru

. (2)

p(α) =
α

α− 1
,

ρα = p(α)(p(α)− 1)θ2/2− p(α)r +
1

α− 1
rc (3)

Q̄α(t) =

{
e

trc

α−1 e(ρα)(T−t)−1
ρα

if ρα 6= 0

e
trc

α−1 e−ραt(T − t) if ρα = 0
. (4)

The following result shows the explicit solution of the previous maximization prob-
lem (1) when there is no upper limit to the amount of effort the investor can exert.
Theorem 1. Consider the maximization problem (1). Assume K1 = 0 and K2 = ∞.
The optimal amount of wealth π̂(t) to be invested in the risky security and optimal
effort û(t) are given by the following expressions:

π̂t =
θ

σ

[
1

1− γ
(
ẑ

λ
)

1
γ−1 eργ(T−t)(Z̃t)

1
γ−1 + δ2ẑZ̃tT̄ (t) +

1

1− α
(
ẑ

µ
)

1
α−1 Q̄α(t)(Z̃t)

1
α−1

]
.

(5)
and

û(t) = δẑetru

Z̃t (6)

The constant ẑ is the solution of the following equation:

x = (
ẑ

λ
)

1
γ−1 e

− γ
γ−1

rT+ γ

2(γ−1)2
θ2T − ẑδ2T̄0 + (

ẑ

µ
)

1
α−1 Q̄α(0) . (7)

The optimal consumption is given by

ĉ(t) = (
ẑ

µ
etrc

Z̃t)
1

α−1 .

Proof. See Appendix A.

3Z̃t is the state-price density process.
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The next result is intuitive and compares the optimal portfolio allocation in this
case with that of the standard “Merton” case, by breaking down the optimal allocation
into two components, one of which is the “Merton” allocation.
Proposition 1. Assume either utility from consumption only (that is, λ = 0), or
from terminal wealth only (that is, µ = 0), or α = γ. Denote by wM

t and ŵt the
optimal proportions of wealth (portfolio weights) to be invested in the risky security
in the standard “Merton” problem and in our problem, respectively. Then ŵt > wM

t .
That is, the individual unambiguously takes on more risk in the presence of the option
to be able to exert costly effort for more wealth in the future.
Proof. See Appendix A.

This result shows that the option to work more in the future gives rise to more
investment in the risky security. That is, the option to vary the labor supply in the
future induces the individual to take on more risk today.

Now we consider the more realistic case in which there is an upper bound on
the amount of effort, that is K2 < ∞. This is a proxy for physical limitations or
constraints on overtime or multiple jobs.
Theorem 2. Consider the maximization problem (1). Assume K2 < ∞. Then the
optimal effort is given by

û(t) = δẑetru

Z̃t1{K1≤δẑetru Z̃t≤K2} + K11{K1>δẑetru Z̃t} + K21{δẑetru Z̃t>K2} (8)

The optimal consumption is of the same form as in Theorem 1. If we assume in
addition K1 = 0, the constant ẑ is obtained from equation (19) in the Appendix A. The
optimal amount of wealth π̂(t) to be invested in the risky security is given by equation
(20) in the Appendix A. Moreover, if we assume either utility from consumption
only, or from terminal wealth only, or α = γ, then the optimal portfolio is given
by π̂(t) = π(t)M + π(t)L, where

π(t)M =
θ

σ(1− γ)
X̂(t), π(t)L = F (γ, r, T, θ, δ,K2, ẑZ̃t)

where the functional form of F is given explicitly in Appendix A.
Proof. See Appendix A.

In the next section we present numerical exercises of the optimal portfolio alloca-
tion, using different parameter values, and discuss them.

For interpretational purposes, however, it will be useful to consider the optimal
allocation, not only as a proportion of X, the “financial wealth” of the investor, but
as a proportion of “total wealth” as well. The investor, we consider in our model, has
two sources of wealth. First, his/her financial wealth, measured by X. In addition,
this individual has human capital that, through costly effort, generates additional
income. The literature considers this more general notion of wealth for the analysis
of the optimal asset allocation. We consider both, the financial and the total wealth
for the analysis of the optimal allocation.
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Next we compute the human capital component of the investor’s wealth. Since we
have a complete markets setting, the obvious way to measure the human capital is by
considering the future optimal (state-contingent) income as the payoff of a contingent
claim. The price of the contingent claim in a complete markets setting is the present
value of the expected payoff under the risk-neutral probability measure. We present
that result in the following proposition.
Proposition 2. The present value of the optimal future income under the risk-neutral
probability measure is

LW := H(γ, r, T, θ, δ,K2, ẑ) (9)

where the functional form of H is computed explicitly in the Appendix B.
Proof. See Appendix B.

Now we have explicit forms of the financial wealth and human capital of the
investor, and the optimal allocation to the risky security. These enable us to com-
pute and study the optimal risk-taking as a proportion of the financial or the “total
wealth”. We report the results in the next section.

3 Analysis of Results and Empirical implications

In this section we present numerical results for the model discussed in the previous
section, according to the formulas in Theorem 2 and Proposition 2. The formulas
are semi-analytical, but we can compute the results numerically. To simplify our
computations, we assume that the initial financial wealth of the investor is one unit,
that is, X(0) = 1. The optimal dollar investment allocation in the risky security is
computed as explained in Theorem 1. We break this amount in two components, πL

and πM . The term πM is the optimal dollar amount that an investor in the Merton
(1971) setting, with constant coefficients and no labor income, would allocate in the
risky security; this is equal to

πM(0) =
θ

(1− α)σ
X(0).

πL is then π−πM , and represents the part of the allocation in the risky security due to
the future discretionary labor income of the investor. Obviously, πL is always positive,
since the investor can generate extra income, over the Merton (1971) allocation that
we use as benchmark.

In addition, we report the proportion of “total wealth,” not just financial wealth,
invested in the risky security. Total wealth is the sum of financial wealth X and
human capital wealth, LW from Proposition 2.

Our results are presented in tables 1-4. One problem we face is the choice of rea-
sonable parameter values. That is straightforward for such parameters as the degree
of risk-aversion, the market price or risk or interest rates, which are directly observ-
able or have been extensively discussed in the literature. However, we do not have a
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good benchmark for some other parameters in our model, namely δ, which represents
the “quality” of the human capital of the worker, and K2, which represents the upper
limit on the amount of effort (say due to time availability) that the worker/investor
can exert. We have chosen the values for δ, K2 , µ and λ so that the following con-
ditions are satisfied: First, the expected annual income from labor is similar to the
initial financial wealth x of the investor; second, the expected annual consumption
is about half of the expected annual income; third the expected annual increase in
wealth is of the order of 10 %; and fourth, the worker’s wealth increases but may not
more than double in a year.4 Since our objective is to study the sensitivity of the
optimal allocation to different parameters of the model, we perturb the parameters
and study the impact of each on the optimal allocation.

Here are the main conclusions of our comparative statics analysis:

(i) Our main finding is that, in the presence of the flexible labor income, the
optimal investment strategy of an investor who maximizes utility of terminal
wealth is qualitatively different from the one of the investor whose objective is
to maximize utility of intertemporal consumption.

(ii) In particular, when the investor only maximizes utility from terminal wealth,
the proportion of wealth (either just financial wealth or total wealth, including
human capital) changes with respect to the time horizon in a non-monotonic
way; for reasonable parameter values, the proportion of holdings in the stock
initially increases, but then decreases as the time horizon decreases. From our
comparative statics analysis, this relationship between the investment horizon
and optimal allocation seems robust, and not the result of changes in the human
capital wealth.

(iii) When the investor cares about intertemporal consumption exclusively, the op-
timal investment strategy requires to hold a constant proportion of the total
wealth in the stock (which yields a decreasing proportion of financial wealth)
as the investor approaches the end of the horizon. This proportion is identical
to that in the Merton’s benchmark.

(iv) In fact, in order for the utility from final wealth to matter, we have to allocate a
very small weight (close to zero) to the utility from intertemporal consumption.

(v) When the investor only cares about utility of final wealth, πL, the investment in
the risky security due to the possibility of discretionary labor income, decreases
with risk-aversion, but the rate at which it does depends on the horizon. For
a very long horizon, the proportional decrease is larger than in the Merton’s
benchmark case. For short horizons, the proportional decrease is smaller. As

4We have chosen K2 so that it would be binding (that is, the worker/investor would optimally
generate more labor income for higher K2); in addition, it is such that the value of LW would not
be of a different order of magnitude than in the case of non-binding K2.)
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we have explained before, when the investor cares about intertemporal con-
sumption, the effect of risk aversion on the proportion of total wealth invested
in the risky security is the same as in Merton’s benchmark case.

Some of the results are completely new and striking. In particular, the effect of
the horizon in (i)-(iii). Intertemporal consumption has the effect of effectively “short-
ening” the horizon of the investor and the proportion of wealth allocated in the risky
security is constant (since relative risk-aversion is constant). This is consistent with
the intuition provided in Wachter (2002), which compares the effect of intertemporal
consumption with the idea of the duration of a bond as a measure of actual maturity.
When the investor only cares about utility of final wealth, the horizon affects the
proportion invested in the risky stock. This effect is non-monotonic as a result of
two opposing forces. First, as the investor horizon becomes shorter, the investor allo-
cates a larger proportion of wealth into the risky asset in order to accumulate wealth
faster. The possibility of getting additional labor income later makes the investor less
risk-averse. However, as the horizon shortens, the human capital wealth decreases,
which makes the investor more risk-averse and, at some point, leads to a reduction
in the wealth allocated into the risky security. Result (iv), is due to the different
“measure” (a point versus a continuum) of the intertemporal utility (from consump-
tion) versus the one-period utility (from final wealth). The intuition of (v) is similar
to that of (ii)-(iii): the difference in optimal strategies between two investors with
different degrees of risk-aversion is larger than in the Merton’s benchmark case since
the long-horizon makes both investors feel less risk-averse and scales up the difference
in risk-aversion. When the horizon is short, the value of flexible labor income is small
and the part of the optimal allocation due to it converges to zero for both investors.

Overall, it is clear that the possibility of future extra labor income can affect
investment decisions in a substantial way and cannot be ignored in optimal portfolio
allocation analysis, or in equilibrium considerations, like the equity risk premium
puzzle of Mehra and Prescott (1985): as we have shown, a long-time horizon of the
objective of the investor makes the investor effectively less risk-averse, which actually
would make the puzzle even stronger, and as a result, an even higher degree of risk
aversion would be needed to explain it.

4 Conclusion

We consider a model in which the worker/investor chooses the level of labor income
by exerting costly effort. In our model there is no wage uncertainty (we assume the
real wage is constant and equal to one). The possibility of flexible income has an
important effect on the optimal portfolio allocation of the investor if the investor
only cares about utility from final wealth. In that case, the optimal allocation to the
risky security is age-dependent and is hump-shaped as a function of time.
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However, when the investor maximizes the utility of intertemporal consumption,
optimal allocation to the risky security is a constant proportion of wealth, when
wealth includes both financial wealth and the value of future optimal labor income.

Thus, depending on the investor’s objective, the dependence of the optimal allo-
cation to risky security on the investor’s age could be monotonic or hump-shaped.

Our model can shed light on some of the empirical puzzles documented in the
literature on portfolio allocation. The solutions obtained in our paper are semi-
analytic, which allows us to perform comparative static analysis of the relationship
between various parameters and the optimal portfolio allocation. Our model offers a
good platform for calibration. That exercise, however, is not trivial, and is left for
future research. In our model we assume that the worker/investor has costly but sure
access to labor income (up to the limit K2).

Other interesting, but non-trivial, extensions to our model are the case of wage
uncertainty, which has been widely studied in the literature, but only when the labor
income is exogenous, and the case of mortality risk of the individual (or uncertain
time horizon). These are left for future research.

5 Appendix A

Proof of Theorem 1.
Using the standard duality/martingale techniques, we immediately derive the ex-

pression for the optimal effort (6) and the following expressions for optimal terminal
wealth and consumption:5

X̂(T ) = (
ẑ

λ
Z̃T )

1
γ−1

ĉ(t) = (
ẑ

µ
etrc

Z̃t)
1

α−1

The wealth process at time t < T is obtained from

Z̃tX̂t = Et[Z̃T (
ẑ

λ
Z̃T )

1
γ−1 − δ

∫ T

t

Z̃(s)ûsds +

∫ T

t

Z̃s(
ẑ

µ
etrc

Z̃s)
1

α−1 ds]. (10)

For any given p we have the following property:

Et[Z
p(T )] = Et

[
e−p2θ2T/2−pθW (T )ep(p−1)θ2T/2

]
= e−p2θ2t/2−pθW (t)ep(p−1)θ2T/2 , (11)

Using the property (11) and simplifying (10) we get,

Z̃tX̂t = (
ẑ

λ
)

1
γ−1 eργ(T−t)(Z̃t)

γ
γ−1 − δ2ẑZ̃2

t T̄ (t) + (
ẑ

µ
)

1
α−1 (Z̃t)

α
α−1 Q̄α(t) . (12)

5The proof for these expressions is very similar to the one of Theorem 1 of Cadenillas, Cvitanić
and Zapatero (2005).
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The constant ẑ is obtained by setting t = 0 above, that is,

x = (
ẑ

λ
)

1
γ−1 e

− γ
γ−1

rT+ γ

2(γ−1)2
θ2T − ẑδ2T̄0 + (

ẑ

µ
)

1
α−1 Q̄α(0) . (13)

Applying the Ito’s formula, we get

dX = (· · ·)dt+

[
1

1− γ
θ(

ẑ

λ
)

1
γ−1 eργ(T−t)(Z̃t)

1
γ−1 + θδ2ẑZ̃tT̄ (t) +

1

1− α
θ(

ẑ

µ
)

1
α−1 Q̄α(t)(Z̃t)

1
α−1

]
dW .

The expression in the [ ] brackets has to be equal to σπ, which gives us the optimal
amount in stock π̂ as

π̂t =
θ

σ

[
1

1− γ
(
ẑ

λ
)

1
γ−1 eργ(T−t)(Z̃t)

1
γ−1 + δ2ẑZ̃tT̄ (t) +

1

1− α
(
ẑ

µ
)

1
α−1 Q̄α(t)(Z̃t)

1
α−1

]
.

(14)
¤

Proof of Proposition 1. Under the assumptions of the proposition, we can rewrite
(14) in the following form:

π̂t =
θ

σ

[
1

1− γ
Xt + (

1

1− γ
+ 1)δ2ẑZ̃tT̄ (t)

]
= πM

t + πL
t , (15)

where

πL
t =

θ

σ

[
(

1

1− γ
+ 1)δ2ẑZ̃tT̄ (t)

]
.

We need to show that πL
t is positive. Since γ < 1 we just need to show that ẑ > 0.

It follows from the equation (13) that the right hand side (RHS) of (13) converges to
+∞ as ẑ → 0 (since 1

1−γ
< 0), and the RHS of (13) converges to −∞, as ẑ → +∞.

Since x > 0 and the RHS is a continuous function of ẑ, then there exists a ẑ ∈ (0,∞)
that solves (13). That is there exists a positive solution ẑ of (13) , which implies that
πL

t > 0 and thus, π̂t > πM
t , and also ŵt > wM

t .
¤

Proof of Theorem 2.

Expressions for the optimal terminal wealth and optimal effort are derived as
above, in the proof of Theorem 1. For K1 = 0 we have,

Et[δ

∫ T

t

Z̃(s)usds] = δK2Z̃te
rt

∫ T

t

e−rsN(d1(s− t, ẑetru

Z̃t))ds+

+

δ2ẑZ̃2
t e

2(r−θ2/2)t

∫ T

t

e−2(r−θ2/2)sesru

N(d2(s− t, ẑetru

Z̃t))ds (16)
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where

d1(s− t, ẑ) :=
1

θ
√

s− t
[log(δẑ)− log(K2)− (r − ru − θ2/2)(s− t)] (17)

and

d2(s− t, ẑ) :=
1

θ
√

s− t
[− log(δẑ) + log(K2) + (r − ru − 3θ2/2)(s− t)] . (18)

and N(.) is the cdf of the standard normal distribution. From the equation (16) we
can derive the dynamics of the wealth process, assuming K1 = 0:

X̂t = eργ(T−t)(
ẑ

λ
Z̃t)

1
γ−1 + Q̄α(t)(

ẑ

µ
Z̃t)

1
α−1

− δK2

∫ T

t

e−r(s−t)N(d1(s− t, ẑetru

Z̃t))ds

− δ2ẑZ̃t

∫ T

t

e−2(r−θ2/2)(s−t)esru

N(d2(s− t, ẑetru

Z̃t))ds .

The constant ẑ is obtained by setting t = 0, that is,

x = eργT (
ẑ

λ
)

1
γ−1 + Q̄α(0)(

ẑ

µ
)

1
α−1−

−δK2

∫ T

0

e−rsN(d1(s, ẑ))ds− δ2ẑ

∫ T

0

e−2(r−θ2/2)sesru

N(d2(s, ẑ))ds . (19)

Applying the Ito’s lemma, we observe that the coefficient of the noise term dWt

in the dynamics of dXt is

σπt =
1

1− γ
θeργ(T−t)(

ẑ

λ
Z̃t)

1
γ−1 +

1

1− α
θQ̄α(t)(

ẑ

µ
Z̃t)

1
α−1

+ θδ2ẑZ̃t

∫ T

t

e−2(r−θ2/2)(s−t)esru

N(d2(s− t, ẑetru

Z̃t))ds

+ δK2

∫ T

t

e−r(s−t)

√
s− t

n(d1(s− t, ẑetru

Z̃t))ds

− δ2ẑZ̃t

∫ T

t

e−2(r−θ2/2)(s−t)esru

√
s− t

n(d2(s− t, ẑetru

Z̃t))ds . (20)

If α = γ, or we have utility from terminal wealth only, or we have utility of
consumption only, then using (19) and (20) we can get the following form for πt:
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πt =
θ

σ(1− γ)
X̂t +

θδK2

σ(1− γ)

∫ T

t

e−r(s−t)N(d1(s− t, ẑetru

Z̃t))ds

+
θδ2ẑZ̃t

σ

(
1

1− γ
+ 1

) ∫ T

t

e−(2r−θ2)(s−t)esru

N(d2(s− t, ẑetru

Z̃t))ds

+
δK2

σ

∫ T

t

e−r(s−t)

√
s− t

n(d1(s− t, ẑetru

Z̃t))ds

− δ2ẑZ̃t

σ

∫ T

t

e−(2r−θ2)(s−t)esru

√
s− t

n(d2(s− t, ẑetru

Z̃t))ds , (21)

where n(x) is the standard normal density function. The equation (21) can be written
in the form π̂t = πM

t + πL
t , where

πL
t = F (γ, r, T, θ, δ,K2, ẑZ̃t) =

θδK2

σ(1− γ)

∫ T

t

e−r(s−t)N(d1(s− t, ẑetru

Z̃t))ds +

+
θδ2ẑZ̃t

σ

(
1

1− γ
+ 1

) ∫ T

t

e−(2r−θ2)(s−t)esru

N(d2(s− t, ẑetru

Z̃t))ds

+
δK2

σ

∫ T

t

e−r(s−t)

√
s− t

n(d1(s−t, ẑetru

Z̃t))ds−δ2ẑZ̃t

σ

∫ T

t

e−(2r−θ2)(s−t)esru

√
s− t

n(d2(s−t, ẑetru

Z̃t))ds

This proves the theorem.6

¤

Remark 4: Taking t = 0 in (21), we have the following expression:

πL
0 =

θδK2

σ(1− γ)

∫ T

0

e−rsN(d1(s, ẑ))ds +

+
θδ2ẑ

σ

(
1

1− γ
+ 1

) ∫ T

0

e−(2r−θ2)sesru

N(d2(s, ẑ))ds

+
δK2

σ

∫ T

0

e−rs

√
s

n(d1(s, ẑ))ds− δ2ẑ

σ

∫ T

0

e−(2r−θ2)sesru

√
s

n(d2(s, ẑ))ds (22)

The details of the calculations of the above integrals are given in the Appendix
B. We use certain properties, given in the next remark.

Remark 5: The calculations of the integrals in (21) are done, by using the following
properties and formulas. Denote

6See the remarks and the properties of this Appendix and of Appendix B for simplifications of
the results and the derivations of the closed-form expressions for the optimal portfolio proportions.
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N(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt, n(x) =
1√
2π

e−
x2

2

and

N(x, y) = N

(√
T − t

θ
y +

x

θ
√

T − t

)
(23)

Then we have the following properties:
Property 1.

∫ T

t

e−rsN

(√
s− t

θ
y +

log(x)

θ
√

s− t

)
ds

= 1{x>1} +
1

2
1{x=1} − e−r(T−t)N

(
x,−r + θ2/2

)

+ (x)
θ2/2−3r

θ2

{−r + θ2/2

r + θ2/2

[
N

(
x, r + θ2/2

)− 1{x>1} − 1

2
1{x=1}

]
(24)

+
1

2

[
1− −r + θ2/2

r + θ2/2

] [
N

(
x, r + θ2/2

)
+ (x)

−2r−θ2

θ2 N
(
x,−r − θ2/2

)

−
[
1 + (x)

−2r−θ2

θ2

]
1{x>1} − 1{x=1}

]}

Property 2.

∫ T

t

e−rs−t

√
s− t

n

(
1

θ
(y
√

s− t +
log(x)√

s− t
)

)
ds

=
2θ

y

[
N

(
1

θ
(y
√

T − t +
log(x)√
T − t

)

)
− 1{x>1} − 1

2
1{x=1}

]
(25)

−2θ

2y

[
N

(
1

θ
(y
√

T − t +
log(x)√
T − t

)

)
+ (x)−

2y

θ2 N

(
1

θ
(−y

√
T − t +

log(x)√
T − t

)

)

−
[
1 + (x)−

2y

θ2

]
1{x>1} − 1{x=1}

]

Property 3.

an

(
a√
(s)

+ b
√

(s)

)

s3/2
= −N

′
(

a√
(s)

+ b
√

(s)

)
− e−2abN

′
(

a√
(s)

− b
√

(s)

)

Property 4.

n

(
a√
(s)

+ b
√

(s)

)

√
s

=
2

b
N

′
(

a√
(s)

+ b
√

(s)

)
+

a

b

n

(
a√
(s)

+ b
√

(s)

)

s3/2

13
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6 Appendix B

Define the following:

I1(r, a, b, T ) =

∫ T

0

e−rsN(
a√
s

+ b
√

s)ds (26)

I2(r, a, b, T ) = a

∫ T

0

e−rs

s3/2
n(

a√
s

+ b
√

s)ds (27)

I3(r, a, b, T ) =

∫ T

0

e−rs

s1/2
n(

a√
s

+ b
√

s)ds (28)

A1(r, a, b, T ) =
1

r

[
1

2
1{a=0} + 1{a>0} − e−rT N(

a√
T

+ b
√

T )

]
(29)

A2(r, a, b, T ) =
2ea(

√
b2+2r−b)

√
b2 + 2r

[
−1

2
1{a=0} − 1{a>0} + N(

a√
T

+
√

b2 + 2r
√

T )

]
(30)

A3(r, a, b, T ) = e−a(
√

b2+2r+b)

[
−1

2
1{a=0} − 1{a>0} + N(

a√
T
−
√

b2 + 2r
√

T )

]
(31)

Then using properties 1-4 and some algebra we get the following simplified for-
mulas:

I2(r, a, b, T ) = −
√

b2 + 2r

2
A2 − A3 (32)

I3(r, a, b, T ) = A2(r, a, b, T ) +
1√

b2 + 2r
I2(r, a, b, T ) (33)

I1(r, a, b, T ) = A1(r, a, b, T )− 1

2r
I2(r, a, b, T ) +

b

2r
I3(r, a, b, T ) (34)

To find ẑ we solve the following equation numerically:

G(x, γ, r, T, θ, δ,K2, ẑ) =

δK2I1

(
r,

ln( δẑ
K2

)

θ
,
θ2/2− r + ru

θ
, T

)
+δ2ẑI1

(
2r − ru − θ2,

ln(K2

δẑ
)

θ
,
r − ru − 3θ2/2

θ
, T

)

14



−(
ẑ

λ
)

1
γ−1 e

− γ
γ−1

rT+ γ

2(γ−1)2
θ2T+ rcT

α−1 − (
ẑ

µ
)

1
α−1 Q̄α(0) + x = 0 . (35)

Then the πL
0 can be found as

πL
0 =

θδK2

σ(1− γ)
I1

(
r,

ln( δẑ
K2

)

θ
,
θ2/2− r + ru

θ
, T

)
+

δK2

σ
I3

(
r,

ln( δẑ
K2

)

θ
,
θ2/2− r + ru

θ
, T

)

+
2− γ

1− γ

δ2ẑθ

σ
I1

(
2r − ru − θ2,

ln(K2

δẑ
)

θ
,
r − ru − 3θ2/2

θ
, T

)

−δ2ẑ

σ
I3

(
2r − ru − θ2,

ln(K2

δẑ
)

θ
,
r − ru − 3θ2/2

θ
, T

)
. (36)

Proof of Proposition 2.

The left side of the equation (16) is exactly the present value of the future labor
income, under the martingale measure. Using that equation, along with Properties
1-4 and definitions of Appendix B, we get that

LW := H(γ, r, T, θ, δ,K2, ẑ) =

δK2I1

(
r,

ln( δẑ
K2

)

θ
,
θ2/2− r + ru

θ
, T

)
+δ2ẑI1

(
2r − ru − θ2,

ln(K2

δẑ
)

θ
,
r − ru − 3θ2/2

θ
, T

)

(37)
¤
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Table 1
Optimal allocation for different ability levels

In the table, T is the time horizon of the investor. LW is the value of the human
capital wealth of the investor. πL is the dollar amount invested in the risky security in
excess of the optimal allocation in Merton’s benchmark. πM is the optimal allocation
in Merton’s benchmark. π = πL + πM is the total allocation in the risky security. X
is financial wealth, so that π/(X + LW ) is the proportion of total wealth (financial
plus human capital) invested in the risky security. δ is the parameter that measures
the ability of the investor. µ is the weight of intertemporal consumption in the utility
function of the investor. Other parameter values of the model in this table are as
follows: γ = −5, so that risk aversion 1 − γ = 6; the upper bound in the effort is
K2 = 0.2; the weight of the utility of final wealth in total utility is λ = 0.7; interest
rate is r = 0.035; market price of risk is θ = 0.3; the discount factor for the cost
of effort is ru = 0.05; the subjective discount factor of the utility of intertemporal
consumption is rc = 0.05; finally, initial liquid wealth is X = 1.

δ = 0.3
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.059 0.0147 0.250 0.250 1 0.040 0.0662 0.250 0.304
5 0.275 0.0688 0.250 0.250 5 0.068 0.1175 0.250 0.344
10 0.506 0.1266 0.250 0.250 10 0.049 0.0854 0.250 0.320
15 0.700 0.1750 0.250 0.250 15 0.028 0.0479 0.250 0.290
20 0.863 0.2157 0.250 0.250 20 0.013 0.0231 0.250 0.273
25 1.000 0.2499 0.250 0.250 25 0.006 0.0102 0.250 0.259

δ = 0.6
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.118 0.0295 0.250 0.250 1 0.104 0.1288 0.250 0.343
5 0.550 0.1376 0.250 0.250 5 0.163 0.2781 0.250 0.454
10 1.013 0.2531 0.250 0.250 10 0.128 0.2193 0.250 0.416
15 1.400 0.3501 0.250 0.250 15 0.081 0.1397 0.250 0.360
20 1.726 0.4315 0.250 0.250 20 0.044 0.0764 0.250 0.313
25 1.999 0.4998 0.250 0.250 25 0.021 0.0368 0.250 0.281
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Table 2
Optimal allocation for different upper bounds to the effort level

In the table, T is the time horizon of the investor. LW is the value of the human
capital wealth of the investor. πL is the dollar amount invested in the risky security in
excess of the optimal allocation in Merton’s benchmark. πM is the optimal allocation
in Merton’s benchmark. π = πL + πM is the total allocation in the risky security. X
is financial wealth, so that π/(X + LW ) is the proportion of total wealth (financial
plus human capital) invested in the risky security. δ is the parameter that measures
the ability of the investor. µ is the weight of intertemporal consumption in the utility
function of the investor. Other parameter values of the model in this table are as
follows: γ = −5, so that risk aversion 1− γ = 6; the ability of the investor is δ = 0.3;
the weight of the utility of final wealth in total utility is λ = 0.7; interest rate is
r = 0.035; market price of risk is θ = 0.3; the discount factor for the cost of effort is
ru = 0.05; the subjective discount factor of the utility of intertemporal consumption
is rc = 0.05; finally, initial liquid wealth is X = 1.

K2 = 0.2
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.059 0.0147 0.250 0.250 1 0.040 0.0662 0.250 0.304
5 0.275 0.0688 0.250 0.250 5 0.068 0.1175 0.250 0.344
10 0.506 0.1266 0.250 0.250 10 0.049 0.0854 0.250 0.320
15 0.700 0.1750 0.250 0.250 15 0.028 0.0479 0.250 0.290
20 0.863 0.2157 0.250 0.250 20 0.013 0.0231 0.250 0.273
25 1.000 0.2499 0.250 0.250 25 0.006 0.0102 0.250 0.259

K2 = 0.8
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.236 0.0638 0.250 0.250 1 0.040 0.0695 0.250 0.307
5 1.101 0.2752 0.250 0.250 5 0.068 0.1195 0.250 0.346
10 2.025 0.5063 0.250 0.250 10 0.050 0.0866 0.250 0.337
15 2.801 0.7002 0.250 0.250 15 0.028 0.0484 0.250 0.298
20 3.452 0.8631 0.250 0.250 20 0.013 0.0233 0.250 0.270
25 3.999 0.9999 0.250 0.250 25 0.006 0.0102 0.250 0.260
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Table 3
Optimal allocation for different degrees of risk aversion (1− γ)

In the table, T is the time horizon of the investor. LW is the value of the human
capital wealth of the investor. πL is the dollar amount invested in the risky security in
excess of the optimal allocation in Merton’s benchmark. πM is the optimal allocation
in Merton’s benchmark. π = πL + πM is the total allocation in the risky security. X
is financial wealth, so that π/(X + LW ) is the proportion of total wealth (financial
plus human capital) invested in the risky security. δ is the parameter that measures
the ability of the investor. µ is the weight of intertemporal consumption in the
utility function of the investor. Other parameter values of the model in this table
are as follows: the ability of the investor is δ = 0.3; the upper bound in the effort is
K2 = 0.2; the weight of the utility of final wealth in total utility is λ = 0.7; interest
rate is r = 0.035; market price of risk is θ = 0.3; the discount factor for the cost
of effort is ru = 0.05; the subjective discount factor of the utility of intertemporal
consumption is rc = 0.05; finally, initial liquid wealth is X = 1.

γ = −5
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.059 0.0147 0.250 0.250 1 0.040 0.0662 0.250 0.304
5 0.275 0.0688 0.250 0.250 5 0.068 0.1175 0.250 0.344
10 0.506 0.1266 0.250 0.250 10 0.049 0.0854 0.250 0.320
15 0.700 0.1750 0.250 0.250 15 0.028 0.0479 0.250 0.290
20 0.863 0.2157 0.250 0.250 20 0.013 0.0231 0.250 0.273
25 1.000 0.2499 0.250 0.250 25 0.006 0.0102 0.250 0.259

γ = −1
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.059 0.0451 0.750 0.750 1 0.051 0.0928 0.750 0.802
5 0.275 0.2070 0.750 0.750 5 0.155 0.3086 0.750 0.917
10 0.506 0.3807 0.750 0.750 10 0.197 0.3943 0.750 0.956
15 0.700 0.5267 0.750 0.750 15 0.201 0.4011 0.750 0.958
20 0.862 0.6494 0.750 0.750 20 0.189 0.3741 0.750 0.945
25 0.999 0.7525 0.750 0.750 25 0.170 0.3332 0.750 0.926
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Table 4
Optimal allocation for different market prices of risk

In the table, T is the time horizon of the investor. LW is the value of the human
capital wealth of the investor. πL is the dollar amount invested in the risky security in
excess of the optimal allocation in Merton’s benchmark. πM is the optimal allocation
in Merton’s benchmark. π = πL + πM is the total allocation in the risky security. X
is financial wealth, so that π/(X + LW ) is the proportion of total wealth (financial
plus human capital) invested in the risky security. δ is the parameter that measures
the ability of the investor. µ is the weight of intertemporal consumption in the utility
function of the investor. Other parameter values of the model in this table are as
follows: γ = −5, so that risk aversion 1 − γ = 6; the upper bound in the effort is
K2 = 0.2; the weight of the utility of final wealth in total utility is λ = 0.7; interest
rate is r = 0.035; the ability of the investor is δ = 0.3; the discount factor for the cost
of effort is ru = 0.05; the subjective discount factor of the utility of intertemporal
consumption is rc = 0.05; finally, initial liquid wealth is X = 1.

θ = 0.3
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.059 0.0147 0.250 0.250 1 0.040 0.0662 0.250 0.304
5 0.275 0.0688 0.250 0.250 5 0.068 0.1175 0.250 0.344
10 0.506 0.1266 0.250 0.250 10 0.049 0.0854 0.250 0.320
15 0.700 0.1750 0.250 0.250 15 0.028 0.0479 0.250 0.290
20 0.863 0.2157 0.250 0.250 20 0.013 0.0231 0.250 0.273
25 1.000 0.2499 0.250 0.250 25 0.006 0.0102 0.250 0.259

θ = 0.2
µ = 0.1 µ = 0

T LW πL πM π
X+LW

T LW πL πM π
X+LW

1 0.059 0.0098 0.167 0.167 1 0.040 0.0458 0.167 0.204
5 0.275 0.0459 0.167 0.167 5 0.067 0.0782 0.167 0.229
10 0.506 0.0844 0.167 0.167 10 0.047 0.0550 0.167 0.222
15 0.700 0.1167 0.167 0.167 15 0.025 0.0295 0.167 0.196
20 0.863 0.1438 0.167 0.167 20 0.011 0.0134 0.167 0.180
25 1.000 0.167 0.167 0.167 25 0.005 0.0055 0.167 0.171
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