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Abstract
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1 Introduction

From the standpoint of an active investor, there is a fundamental paradox with respect to
the application of standard portfolio selection models. To model the relation between risk
and expected returns, those models employ restrictive assumptions. The most stringent of
these assumptions, employed by most standard models, is that investors have homogeneous
beliefs defined over investments opportunities whose variations are determined by stationary
stochastic processes.

The paradox is that the reason for being an active investor is the conviction that some
combination of price volatility, non-stationarity, incomplete and asymmetric information,
and heterogeneous information processing capabilities, lead to inefficient pricing that can be
exploited!. The fact that standard models cannot be employed directly has been recognized
in various contexts by numerous professional investors. For example, as reported by Penman
(2007), famed investor Warren Buffett puts the matter this way: “The CAPM says that if
the price of a stock drops more than the market, it has a high beta: It’s high risk. But if the
price goes down because the market is mispricing the stock relative to other stocks, then the
stock is mot necessarily high risk: The chance of making an abnormal return has increased,
and paying attention to fundamentals makes the investor more secure, not less secure.?” In
a similar vein, Morningstar (2004), a leading provider of investment analysis, states that,
“In deciding the rate to discount future cash flows, we ignore stock-price volatility (which
drives most estimates of beta) because we welcome volatility if it offers opportunities to buy
a stock at a discount to its fair value. Instead, we focus on the fundamental risks facing a
company’s business. ”

Both Buffet and Morningstar are making the same basic point. If markets are sometimes
inefficient, and if the active investors believe they can exploit that inefficiency then it makes
little sense to rely on measures of risk derived standard models that ignore the perceived
inefficiency. To be useful to active investors, models must be extended to incorporate what
they believe is their fundamental information. One problem in this regard is that the method
of incorporation depends on the precise nature of the inefficiency that the investor believes
exists.

In this paper, we consider an investor who has beliefs about the range of the possible
values that a particular risky asset can take. These beliefs may stem from some superior
information the investor has, which, in principle, should be updated in a Bayesian way.
However, we abstract from such updating and direct modeling of the information. Instead,

Friedman (1953) argues that security prices reflect fundamental values. Otherwise, if securities are
mispriced, as a result of irrational investors’ behavior, rational investors will take advantage of the mispricing,
and therefore push prices to their fundamentals. Other researchers, on the other hand, argue that security
prices may persistently diverge from their fundamentals. Shiller (1984), De Long et al. (1990) argue that
when the transaction costs exceed potential profits then the prices may not converge to their fundamentals.
Campbell and Shiller (2001) show that deviations from the fundamentals have provided valuable forecasting
information for future stock prices. When the Price/Earnings ratio has been above its historical mean, stock
prices tended to fall. Likewise, when the Dividends/Price ratio has been above its mean, stock prices tended
to rise.

2This is consistent with the Fama and French (1992) observation that Book-to-Market (B/M) ratios are
positively correlated with subsequent stock returns, a relation that is known as the book-to-market effect.
That is, value stocks - the stocks with higher B/M ratios yield higher returns compared to growth stocks -
stocks with lower B/M ratios.



we consider the model in its reduced form, in which the extra information has been trans-
formed into the beliefs on the range of the risky asset. Given such beliefs, the investor is
motivated to be partially exposed to the specific risk of the risky asset, while keeping the
rest of the portfolio diversified.

More specifically, we consider two models, similar in spirit. In the first, the investor
believes that he can determine fundamental bounds on the value of the asset during the
time interval, [0,7]. If the market price penetrates either of those boundaries, it reverts
back toward the boundary®. We refer to this first case as range reversion or RR*.

In the second, related case, the active investor believes that as of time ¢ = 0 he can
place strict bounds on the distribution of the asset price at time 7. As a result, rather than
being lognormal, as in the Black-Scholes framework, the time-T" distribution of the stock
price is truncated at the boundaries. This case is referred to as range distribution, or RD5.
In both cases, it is intuitively clear that the active investor will perceive that both the risk
and expected return of the stock will be a function of the current price.®

The fact that risk and return vary with price, from the standpoint of the active investor,
is an extension of the classical asset pricing models such as CAPM? in which risk and
expected return are not correlated with the price of a security. In our models as the price
approaches a boundary the impact on risk and expected return grows. For example, as
both Morningstar and Mr. Buffett suggest, as the price nears its lower bound risk falls
and expected return increases. Naturally, this affects the optimal portfolio of the active
investor, who would increase his holdings of the security under such circumstances. This is
contrary to stochastic volatility models in which volatility increases as prices drop, causing
the investor to reduce his holdings.

The framework for our analysis is one in which the investor allocates his wealth between
a risky stock (about which the investor has superior information and forms beliefs based on
that information), a market index and a risk-free asset. Within this framework, we consider
two alternative scenarios. The first is a static mean-variance scenario in which the portfolio
holdings are set at time 0 and cannot be altered. The second is a dynamic optimization
scenario in which the portfolio holdings can be adjusted continuously.®

The paper proceeds as follows. First we provide a mathematical discussion of both the

3As Campbell and Shiller (2001) observe, the mean reversion in valuation ratios and the ability of the
ratios to forecast future prices are not new concepts. Mean reversion in fundamentals has been frequently
discussed as a forecasting tool for price movements over the last century.

4This model accommodates the possibility that stock prices can diverge from their fundamentals for
prolonged periods. The evidence in support of this proposition dates at least to Summers (1986).

SLiu and Longstaff (2004) study a related problem. In their setting, an investor has perfect knowledge
about the future value of the security at time 7', and thus faces an arbitrage opportunity related to a security,
which is modeled as a Brownian Bridge process.

6This result is consistent with the 3-factor pricing model of Fama and French (see Fama and French
(1993)) in which the factors HML or SMB are functions of the price of the security.

Tsee Sharpe (1964, 1970), Lintner (1965a, 1965b), and Mossin (1966).

8Black and Litterman (1990) were one of the first to use investors’ subjective views along with CAPM
as a benchmark in portfolio management context. Their model uses a Bayesian approach to combine the
subjective views of an investor regarding the expected returns of assets with the market equilibrium expected
returns (via the prior distribution) to form a new estimate of expected returns. The resulting new set of
returns (the posterior distribution) leads to portfolios with more stable weights and thus results in a better
asset allocation. A continuous-time version of this approach is applied in Cvitanié, Lazrak, Martellini and
Zapatero (2006).



range reversion and range distribution models. Straightforward proofs are omitted, and are
available from the authors. In situations where there are no closed form solutions to the
problems, we provide some results via Monte Carlo simulations. Based on the simulations,
we demonstrate how risk, expected return, and optimal portfolio holdings vary as a function
of the security price for both the range reversion and range distribution models. Second, we
contrast our results with those that emerge from standard models, and compute how much
an investor loses in expected utility when following a wrong model. Finally, we finish with
some conclusions and possible extensions.

2 RR Model: “Range Reversion”

The two models we consider are similar in spirit. In the first model, called range reversion
(RR), the investor’s information regarding the fundamental value of a risky asset leads him
to believe that although the price can go outside of a specific range of values, it will tend to
revert back to that range with certain speed of reversion. In the second model, called range
distribution (RD), the asset price at the final time takes values strictly inside the range with
probability one. Our results are qualitatively the same for both models®, but there are some
important differences:

- in RR, the volatility of the asset is fixed, but the drift varies stochastically depending
on the stock price, and the variation in the risk-premium is driven by the drift; in RD,
the risk premium is fixed, while the drift and the volatility vary stochastically (in a fully
correlated fashion).

- in RR, the distribution of the asset price is not drivable in closed form. Thus, it is
difficult to construct specific equilibrium models in which such a process would arise; in RD
the distribution of the final value of the risky asset is known, and, in an equilibrium model
with no intermediate consumption, it could be interpreted as the exogenously given value
of the final dividend.

Using the RD model it is possible to use a wide range of stock price distributions at a
fixed future time 7', while maintaining a constant risk premium (and it can be extended
to stochastic risk premium). In this paper, we only study the RD model for the case of a
truncated Log-normal distributions.

2.1 Details of the RR model

In the range reversion model the active investor believes he can determine an approximate
lower bound L; and an approximate upper bound U, of a risky asset (sa a stock) with price
S;. The investor believes that the price will revert back into the range [L;, U;] with a certain
speed over a given time interval [0, 7]. We allow L; and U; to vary over time. This type of
modeling is similar to the traditional mean-reversion models of prices, except in those models
the stock prices mean-revert to a single value, whereas in our case the prices mean-revert

9The second model is not a limiting case of the first when the speed of reversion increases, because in
the limit we get a process which reflects back from the boundaries of the range, rather than a process which
never hits the boundaries.



within time-dependent boundaries. Consequently, mean reversion models are a special case
of our model in which L, = U,.

For Monte Carlo computations of the results, it is more convenient to work with log-
values. Thus, we model the range reversion of prices as follows. Denote

-Zt = log Lt s (jt = 10g Ut s Yt = 10g St'

In this framework, the log-asset price Y; is given by the Stochastic Differential Equation
(SDE)

dY, = | — 02/2 + np max{0, L — Y} — ny max{0,Y; — Ut}] dt + 0,dDB;. (2.1)

Here, B; is a one-dimensional standard Brownian Motion process, and n; and ny are the
“speeds of reversion” from the lower and upper bounds respectively. If the stock price S is
below L (log-stock price Y is below j}) the term containing n; pushes the price up towards
L. Similarly if S is above U it reverts back towards U at a speed ny. Setting L = —oo,
U = oo gives the standard generalized Black-Scholes-Merton model, henceforth BSM model.
In the computations, we will take u, o to be deterministic and constant.

2.2 Optimal investing in the RR model

In this section, we compare optimal investments of a passive investor who follows the BSM
model with an active investor who believes in the RR model. Consider a BSM model for

the stock price given by
Svt _ Sfoe(ﬂfﬁ‘Q/Q)t+&Bt.

Also assume that there exists a market index I, the dynamics of which follow a geometric
Brownian Motion process:

It = Ioe(lLI—U?/Q)t-FO'[[th_’_ 1_P2Wt}

where W is a Brownian Motion process, independent of B. Moreover, assume that there is
a risk-free asset with constant interest rate r > 0. We assume that both the BSM investor
and the RR investor have the same beliefs regarding the index I dynamics and the risk-free
asset. They differ in their beliefs about the dynamics of S only. For the given time horizon
T > 0, we assume that in the RR model (2.1) o, = o, iy = p are constants and that

Li=L—-r(T~-t), U=U-rT-t)

where ﬁ, [2 are constants. In other words, the likely range for the final stock price Sr at time
T is [e*, €], and the likely range for the stock prices S, for t < T is [eFe 7Tt eUe=(T=4)],
As the measure of risk we compute the beta of asset S1°, defined by

. COU[IT/]07 ST/S()]
b= Var(Ir/I]

(2.2)

10We only consider here partial equilibrium, in which investors take prices as given and cannot influence
them; thus, it is not a priori clear that beta is the right measure of risk in this model.



In order to simplify the calculations and solve the portfolio optimization problem, we assume
that the investors have logarithmic preferences. In this framework, we compute optimal in-
vestment allocations for both static, Markowitz Mean-Variance portfolios, and for dynamic,
Merton Log-optimal portfolios.

More specifically, denote the value of the investor’s portfolio at time T by Xr. For the
Markowitz Mean-Variance setting, we consider the maximization of

XT 1 1( XT _ )2
XOeTT 2 X(]eTT

(2.3)

In particular, with the risk aversion parameter y equal to one, this approximates to log(X7/Xg) =
log(1 + (522 — 1)). For the Merton case, we maximize E[log(Xr)].

XoerT

2.2.1 Optimal mean-variance investment

To compare our results with those of the standard model, we denote by m = (7g,7r) the
optimal weight proportions in assets S and I respectively, in the RR model. The optimal
weights for the BSM investor are denoted by, # = (#s,77). We place a superscript M, 7
for the static, Markowitz case, and no superscript for the dynamic, Merton case. Finally, in
order to simplify notation, we define the quantities representing returns in excess of the risk

free rate, B B
Ip=1Ip — I, Sp=Sp— Spe™t . (2.4)

In this framework, we first derive formulas for optimal investment strategies, and later
compare the numerical results for the two models. The following is a familiar result for
mean-variance optimization that we use in our analysis.

Proposition 2.1 For an investor mazimizing expected value of the expression in (2.3), the
optimal static portfolio proportions are given by the formulas:

M 2—73 .7 E[ST)E[I}] — E[IrSt|E|I7]
0€ =

TS = EIRIESE — (Bl5c L)) (25)
o 2 — VsoerTE[jT]E[g%] — E[SpI7]E[Sy] (2.6)

E[I7]E[S7] — (E[SrI7])?

and similarly for 73" and #Y, which are just like the above expressions with Sy used instead

Of ST.

Proof: This well-known result, that is obtained by the standard mean-variance opti-
mization techniques, implies that the optimal portfolio is proportional to the inverse of the
variance-covariance matrix calculated using excess returns:

E52]  EBeI " a e
{E[gTI]T] ][;[[%] | } (E[ST], E[lIT))



The main reason why the optimal strategies qualitatively differ between the RR and the
BSM model is that in the BSM models the expected relative return is given by

E[Sr/Sy) = €T

which is independent of the current stock price. This is not the case for the RR model, where
the expected return and the beta depend on the stock price relative to the boundaries. In
the Comparative Statics subsection below, we provide numerical results which illustrate the
impact of the stock price on risk and expected return.

2.2.2 Optimal dynamic investment

Next, we consider vectors of proportions m,7 that are optimal for the investor who can
continuously rebalance his portfolio (without transaction costs or other frictions).
For the RR model with constant volatility o,

dS; = s Sydt + a7 S;d B,

where
S _
o, =0,

1y = pty +ny max{0, Ly — log Si} — ny max{0,log S; — (jt}

Introduce the volatility matrix,

> :{Jf 0 }
! por  1—p’or )’

and the vector of expected excess return rates,
s
Ry = {py —rpr =}t

Then, we know from the classical Merton’s problem (see Merton (1969, 1971)), that the
optimal vector of proportions 7 of wealth to be held in S and I, for an investor with
logarithmic utility, is given by
= (52T 'R,. (2.7)
In the same fashion, we can solve for the optimal 7, in the BSM model with p°, o
replaced by fi,6. We use (2.7) to compute optimal dynamic portfolios. Again, the main
difference between the two models is that the parameters entering the computation in (2.7)
are independent of the stock price for the BSM model, while this is not the case for the RR
model.

Remark 2.1 It would be possible also to compute the optimal portfolio holdings in the
case of power utility functions, but it requires using relatively involved numerical methods.
Because the opportunity set (here the drift) is stochastic, there would be a hedging demand
in the portfolio. That is, the portfolio would differ from the myopic holding, which is equal
to the expression in (2.7) divided by the risk aversion coefficient. However, our main goal
is not to measure the hedging demand but to show the qualitative difference between the
RR and BSM models, and that is sufficiently well illustrated by the case of the logarithmic
utility and mean-variance preferences.

HNotice that ¥; does not depend on t.



2.2.3 Comparative Statics

To assess the economic significance of the difference between the RR and BSM models we
use the following benchmark parameters, which approximate the actual return parameters
observed for individual common stocks and a typical market index:

T=1r=001, Ih=1, So=1, Xo=1, p=0.07, 0 =021, pu;=0.06, o7 =0.17, p=0.2,

U:logSO%—,uT—i—Qa\/T, EzlogSo—{—uT—Qa\/T.

The risk-free rate is taken to be the average real risk-free rate over the last 50 years, and
the mean and the variance of the stock and the index returns are also the averages of actual
means and variances over the last 50 years.

We choose [i, 6 so that the mean and the variance of the stock price at time T are the
same in the two models, for Sy = So = 1. That is, we choose i and ¢ so that

E[Sr] = E[Sy] = €,

B[S3] = E[53] = cCit)T.

In the calculations, we keep i and ¢ fixed at the initial level, corresponding to Sy = 1,
but allow Sy to vary. The interpretation of this procedure is as follows. Suppose the stock
price is low today. For the BSM investor (since BSM is a stationary model) this does not
change the long-run mean fi and volatility ¢ (and thus the risk-premium on the stock).
Consequently, the optimal investment weights will not change with the stock price. For the
RR investor, however, if the stock price is close to what the active investor believes is its
approximate lower bound, the risk premium should be higher (because the expected returns
would be higher and beta would be lower) than predicted by BSM model, and the optimal
weight should be greater. Table 1 presents the results of the calculations comparing the RR
model with the BSM model.'? Panel A of Table 1 shows that the investment weights for
the RR investor change markedly as the stock price approaches either of the bounds. When
the stock is near the bottom boundary the RR investor greatly increases his relative holding
in the stock and the reverse is true for the upper boundary!3. In order to compensate for
this behavior, the RR investor also takes more extreme positions in the index than the BSM
investor, but not as extreme as in the stock, because the index has unlimited range in the
model'*. Panel B of Table 1 shows the Merton’s optimal dynamic portfolio weights for the

12The portfolio weights for the RR model are actually expected values of the portfolio weights at time
t = T/2. We do this because at time ¢ = 0 the stock price is inside the believed bounds, and not much
interesting happens.

13This may help explain why fund managers may want to hold less-diversified portfolios. A fund manager
that has superior skills or information which allow him to estimate boundaries, may decide to hold a more
concentrated portfolios. Coval and Moskowitz (1999, 2001) show that mutual funds have strong preferences
for investing in local firms where they might have informational advantages. Our analysis is consistent with
those results.

4These findings may be used to explain the investment strategies of corporate executives. Under the
assumption that executives are more knowledgeable about their company’s future prospects, they can better
assess the“closeness” of their company’s stock price to fundamental bounds and make investment decisions
based on that assessment. For example, if an executive believes his firm’s stock is close to the lower bound (or
is undervalued relative to the assessed fundamentals), he will hold more shares and thus, be under-diversified.



Log-investors of the RR type and the BSM type. The quantitative results are even more
dramatic than those for the mean-variance calculation, but the qualitative behavior is the
same.

3 RD Model: Modeling return distribution at a future
time

We now analyze a class of models in which the active investor believes he has superior
information regarding the future stock price distribution, at a fixed future time 7. For
example, this is consistent with a situation in which the investor believes that the stock
price will be constrained to be in the vicinity of its fundamental value in the long run. We
refer to this scenario as the RD model'®. As mentioned previously, this model is conceptually
similar to the RR model — they both reflect the idea that the investor has strong beliefs
on the fundamental value of the investment asset, which translate into bounds on its price.
Even though the RR and RD models are similar in spirit, both models are studied separately
as one cannot get one model as a limiting or a particular case of the other.

Let St be a random variable which represents the active investor’s beliefs regarding the
distribution of the stock price at time T'. We assume that S7 is of the form

Sr = f(BY)

where f is a deterministic function and B€ is a Brownian Motion process, but under a
probability measure (), which is risk-neutral from the point of view of the active investor.
Thus, the Brownian Motion process B under the actual physical probability is such that

BO(t) = B(t) + 6%t

where the risk premium 6 perceived by the investor is assumed to be constant. From this
investor’s point of view, the stock price is the expected value of its discounted future value
under the probability measure ). That is, we have

Sy = EP[e "0 f(BR)]. (3.1)

Remark 3.1 If the investor believes that Sp = f(B%), then it follows from the Feynman-
Kac theorem that S, = V(t, BY), where the function V is a solution to the P.D.E. 8,V +
0.,V — rV = 0 with the boundary condition V (T, z) = f(z), Vz.

The focus of the next subsection is on the modeling of the stock price at a fixed future time,
and on the calibration of the risk premium 6% to the current stock price using (3.1) with
t = 0. Put differently, because the active investor believes in a different distribution than the
BSM investor, he also believes in a different risk premium, hence in a different risk-neutral
probability.

15Tiu and Longstaff (2004) study investment decisions of an active investor who faces an arbitrage oppor-
tunity regarding the future value of a security about which the investor has perfect foresight.

9



Remark 3.2 This approach provides a flexible way of modeling the distribution of the stock
price at a specific future time, and thereby provides flexibility in modeling the risk premium.
Here, we have chosen the risk premium to be constant, however, the same approach works
with an arbitrary model of the risk premium (under the constraint (3.1) at ¢t = 0).

3.1 BSMCT Model

To make the analysis tractable, we study a special case of RD models, in which the log-
price Yy = log St has a conditionally truncated normal distribution. More precisely, the
distribution of Y = Y7 is the distribution of the normal random variable with mean

m = log So + (n — 0?/2)T (3.2)

and variance
52 = o’T

conditional on taking values in the interval with endpoints
L=1logL, U=logl.

We call this model BSMCT (for Black-Scholes-Merton Conditionally Truncated). It is known
that the distribution function of Y is then given by

N (15m) - N (552)
N (2) - N (Lz)
where N(-) is the standard normal cumulative distribution function. Computing Fy' from

the preceding formula and using the fact that for an arbitrary continuous distribution func-
tion ', Sp = F~'(N(By/+/T)) will have F as its distribution, we find that the corresponding

model for the stock price at time 7" is
N(Ufm>—N<Lfm”}.
o o
(3.3)

Fy(y) =

bg&ﬂ—m+&N*{N<E;m>+N<§i%?2>

Recall that 9 is not a free parameter — it has to be chosen so that
S() == EQ [G_TTST].

Denoting . .
U—-—m U—-—m
U* = —~ , Lt = —~ ,
o o
the formulas needed for computations are based on the following proposition.

Proposition 3.1 In the BSMCT model, the stock price at time T can be written as

BY 109

m+5N-1 {N(L*)JrN( — ) [N(U*)N(L*)]}

STZG

10



and the stock price for t <T is given by Sy = V (t, BtQ) where

~ 2+BR _BR_gQ T—t)
m+aN—1{N(L*)+N< 7By j ( >[N(U*)N(L*)]}
Vit,z)=e"TVEQ |¢ v (3.4)
We also have
;  n(EFR) ) - N @)
V,(0,0) = e TEQ | g, YT (3.5)

JT n (10g53~—m)

o

Proof: We get the expression for Sy from (3.3), we get (3.4) from (3.1), and (3.5) from
differentiating (3.4).
|

Given that
dS; = Si[psdt + o2 dBy],

it follows that in the terminology of CAPM the “instantaneous beta” of asset S is given by

S
po
Bs(t) = —= (3.6)
or
where o7 is the volatility of the index. In order to compute the instantaneous beta of S we
need the following lemma, which follows directly from Ito’s rule.

Lemma 3.1 In BSMCT model, we have

S _ V;?(t’BtQ)
(o _T

3.2 Optimal investing in the BSMCT model

In this section, we compare optimal investments of an investor who uses a BSM model or
an RR model, and an investor who uses a BSMCT model. The BSM model for S is the
same as in the previous section. As before, we also assume that both the BSM investor and
the BSMCT investor have the same beliefs regarding the index I and the risk-free asset,
but they differ in their beliefs about S. Note that since Sy takes values in [L, U], the
stock price values prior to time 7" are contained in the corresponding ”discounted” interval
[Le™" =D Uem(T=D]. We assume again that the investor has a logarithmic utility and we
compute optimal investment weights for a static, Markowitz mean-variance portfolio, and for
a dynamic, Merton Log-optimal portfolio. The qualitative behavior of the static portfolios
are the same as for the dynamic portfolios, but they differ quantitatively - the latter being
more variable than the former.

11



3.2.1 Mean-Variance portfolio

The formulas here are the same as in the RR case. From Proposition 2.1, it follows that

w_ 2=« EIStIEIR) - BlTSr)ElT]
s = EIELSE — (B [7))? (3.7)
w220 o ELE(SE — B S LS
S - TE I AR A)E (3:8)

and similarly for #3 and 7, which are just like the above expressions with S7 used in the
above formulas instead of St.

3.2.2 Dynamic portfolios
We know from Proposition 3.1 (see Remark 3.1) that S; = V (¢, B¥) and also that
dS, = rSydt + V,(t, B*)dB?.
It follows from the above that
dS; = uf Sidt + o} S;dB;

with
p=r+60°,/S, o°=V,/S.

As mentioned earlier, in this model the drift and the volatility of the asset are stochastic,
but perfectly correlated, so that the risk premium is constant. Define the volatility matrix,

5 o 0
poT V1-=pPor [’

and the vector of excess returns,

R={u®—r u—r}.

Then, from the classical Merton problem, we know that the vector of optimal proportions,
7, of wealth to be held in the stock and in the index for an investor with logarithmic utility
is given by

m=(XX)'R. (3.9)

Similarly, the vector of optimal proportion, 7, in the Black-Scholes model is calculated
by replacing p°, 0¥ with 1,5 in the above formula (3.9). We use (3.9) to compute optimal
dynamic portfolios.

12



3.3 Comparative Statics

In the numerical computations, we again use these benchmark parameters as in the previous
section:

T=1r=001, Ip=1, So=1, Xo=1, p=0.07, 0 =021, p;=0.06, o7 =0.17, p=0.2,

L=059, U=197, ~v=1.

We choose fi, 6 so that the mean and the variance of the stock at time T' are the same in
the two models, for 5o = Sy = 1. That is, we choose ji and & so that

E[S7] = E[S7] = €,

E[S2] = E[S2] = @+o)T,

As before, we keep ji and ¢ fixed at the level corresponding to Sy = 1, but vary the initial
stock price Sy by varying the risk premium #€ in this case.

We consider a case of the BSMCT model, in which m changes with Sy. This corresponds
to a case of an active investor whose belief about S changes with the current value of Sj.
This belief about S is close to the one of the BSM investor, except that the distribution of
the log-price for the BSMCT investor is a conditionally truncated normal.®

Figure 1 shows how the risk premium 6 varies with the stock price for the BSMCT
model. As the stock price rises, the risk premium declines, even becoming negative at very
high stock prices. Once again, we have a model in which the risk, the expected return (and
the risk premium) change with the stock price.

Panel A of Table 2 presents expected returns E[Sr/Sp| for both non-standard mod-
els. The expected returns in the RR case are less sensitive to the stock price than in the
BSMCT model because the bounds in that model are soft bounds. The expected returns
are negatively correlated with initial stock prices.

Panel B of Table 2 presents the variances Var[Sr/Sy] of returns. Here too, the variances
are more sensitive to the stock price in the RR model than in the BSMCT model. In both
cases, the variance is lower at the low and high levels of stock prices and higher at mid-levels.
The stock is least risky when the price is close to the boundaries.

Figure 2 presents the results for the static betas as defined in (2.2), which mirror the
results for the variances across the different models.

On the other hand, the instantaneous betas in Figure 3, as defined in (3.6), are quite
different from the static betas. In the BSCT model: the instantaneous betas are low when
the stock price is close to the lower and upper bounds, and higher in the middle, but they
are always lower than the stationary beta in the BSM model. This shows that because of
his perceived fundamental information the active investor will always interpret stocks about
which he has information as less risky. The greater variation in beta as a function of the

16We also considered two other cases but do not report the results here: 1) a case in which m was a
constant, fixed at So = 1. This would be the case of fixed beliefs about the distribution of the stock price
at time T; 2) a case in which m is fixed, but corresponds to the case L = 0 and U = oo. That is, there
are no bounds on the distribution of S, as in the BSM model, but the investor does not adapt his beliefs
about St as the value of Sy changes, unlike in the BSM model. In both models the results are qualitatively
similar to the model we study here.
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stock price is due to the fact that this is a local beta, which does not take into account
possible future changes of the stock price dynamics, and the fact that the local volatility is
lower when closer to the bounds. The instantaneous beta of the RR model is not presented,
but it is the same as the stationary BSM beta, since the volatility is fixed in the RR model.

Table 3 presents optimal Markowitz weights in the stock and the index for the BSMCT
model. The investment weights vary with the stock price in a fashion similar to the RR
model. As the stock price approaches the upper boundary, the investor sells the stock short
in large amounts (-471 percent) and invests almost 100 percent of the wealth in the index.
At the lower levels of the stock price, the investor puts 280 percent of the wealth in the
stock as it is perceived to offer high expected return and less risk as shown in Table 2 and
Figures 2 and 3.

4 Utility Gains and Losses across models

In this section we compare the performance of static Markowitz investment strategies that
follow from the two proposed models. The benchmark for comparison in the first case is
a situation in which the true model of stock price movements is the RR model, and the
investor follows the RR model. The benchmark for comparison in the second case is the
situation in which the true model of the stock price movements is the BSM model, and the
investor follows the BSM model. In both cases, we compare the certainty equivalents of
the utility of terminal wealth of an investor that follows a “wrong” model (the perceived
stock price dynamics are different from the true dynamics), with an investor that follows
the benchmark.
The wealth-process of the investor at time 7' is given by

X7(8,6s,01) = 6117 + 65Sr + (Xo — 0rly — 65S0)e’™" (4.1)
where d; and g are computed using (2.4):
BISy)EIT) — Bl S,
E[I7]E[S7] — (E[STIr])?

2- 220 et E(I7]|E[S7] — E[IrS7] E[S7]

E(IF|E[S?] — (E[STIr])?
Using the dynamics of S and I, and the above formulas with v = 1, we can compute the
expected utility of the investor

2
5SSQ/X0 = » 7506TT (42)

5I[O/X0

(4.3)

. XT(S755751) 1 XT(S75Sa51) 2
u(S.3s.07) = B | SEZER00 1 - S(RE2R00 )2 (4.4)

In this context, we study the performances of our models by examining the certainty equiv-
alents (CE) of the models and comparing them to the benchmark case. We do this analysis
for the case of Markowitz’ static portfolios. Define the following ratios in the Markowitz’
case:
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)

( CE(SRR, §BSM 5BSM)

CE(SEE, G GRR)

Here, the denominator represents the CE of an investor who believes the stock price follows
the RR model and the stock price does follow the RR model. The numerator is the CE of the
investor, who believes the stock price follows the BSM model, whereas the stock follows the
RR model. Thus, this ratio measures the relative gain/loss in CE of a BSM investor in case

he is wrong about the model. We study the welfare gain/loss of an investor by computing
this ratio in the RR-model, and in the BSMCT model:

(i)

CE(SPSM, 6§", o7'")
CE(SBSM §BSM 5BSMY-

In this case, in the denominator we have the CE of an investor who believes the stock follows
the BSM model and the stock does follow the BSM model. In the numerator we have the
CE of the investor who believes that the stock price follows the RR model, whereas, in
reality, the stock price follows the BSM model. Thus, the above ratio measures the relative
gain/loss in CE of an RR investor in case he is wrong about the model. We do a similar
exercise replacing RR model with BSMCT model.

As in previous sections, we normalize the parameters so that the means and the variances
are the same at Sp = 1 for the models under consideration. We see from Table 4 that if the
non-BSM investor is wrong, the relative loss in CE gets larger as we move away from Sy = 1,
and it is far bigger for values of S that are higher than one. In other words, if the BSM
model is correct, the non-BSM investor will bear a loss for using a wrong model, especially
if the stock price is high and he believes it cannot go much higher, so that it is optimal for
him to take a short position in the stock. The losses on the low end of the stock price are
also not insignificant — when the stock price is at about 75% of the starting value of $1.00,
the CE of the non-BSM investor can take values from a quarter of the BSM investor’s gain,
to a loss of multiple times that as the BSM investor’s gain, depending on the model.

On the other hand, CE losses for the BSM investor who is wrong about the model are
less extreme for most values of the stock prices, and don’t vary as dramatically with those
values. Nevertheless, they can be very large, and sometimes of the same order as the relative
CE losses of the non-BSM investor when he is wrong. In particular, this happens in a range
of moderately high values of S.

In terms of the absolute size, the relative loss is again the largest for very high values
of the stock, which does not have much room to move up, and it is optimal to sell it short,
which the investor who incorrectly believes in the BSM model does not do.

Overall, the most important message of this section is that in most cases the non-standard
investor is exposed to a relatively higher mean-variance loss if he is wrong about the model
than the loss of the standard investor when he is wrong, so the non-standard investor should
make sure he indeed has superior information.
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5 Conclusions and Extensions

From the standpoint of active investors, standard asset pricing models do not provide a full
picture of price dynamics. As Warren Buffett notes, the very reason for being an active
investor is the belief that certain securities are not valued appropriately. If that is the case,
active investors cannot rely on the risk and expected return results derived from standard
models. This leads to the question of how an active investor should assess the risk and
expected return of an individual security. There is no general answer to that question. It
depends on the type of misvaluation that the active investor believes exists. In this paper,
we analyze models which account for mispricing in a reduced form. In particular, we assume
that, perhaps via the application of fundamental analysis, an active investor can estimate
bounds on the stock price. In this context, the risk, expected return, and the optimal
investment policy of the active investor depend on the current price of the stock relative to
the bounds. We consider two types of models, one with reversion from the boundaries, and
another in which the investor, in addition to the boundaries, has a belief regarding the risk
premium of the stock. We derive optimal investment strategies for both classes of models,
when the active investor chooses between investment in a single stock, a market index and
a risk-free asset. Our results show how an investor who places fundamental boundaries
on a stock price will alter his investment strategy. We also demonstrate how the risk and
expected return perceived by such an active investor depend on the current stock price, in
distinction from standard models, in which they are independent of the price level.

One extension of our analysis would be to consider multiple stocks. More precisely, in
the case of d stocks, we can replace o B in stock ¢ with

d
Y oyBY  i=1,....d (5.1)
j=1

for a given d—dimensional Brownian Motion B = (B, ... B@). Appropriately choosing
0;;’s produces various correlation structures on the stocks. We can also replace o2 for stock
1 with

and since we can write

d
Z%'Bg) = u,Wy"
j=1

for some one-dimensional Brownian Motion W®, we can use the RD model derived for
individual stocks. To model a multi-dimensional distribution of the vector (Si.,...,S%),
a copula approach could be employed. From the theoretical standpoint, it would also be
of interest to analyze full equilibrium models in the presence of investors with RR or RD
beliefs. In addition, it would be more realistic to assume that the investor does not have full
information on the price bounds, and that he updates their values in a Bayesian fashion.
This would require specifying the factors and the estimation procedure used for determining
the bounds.
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Table 1

Optimal allocation in the Range Reversion (RR) case

The column 7°

measures the optimal proportion of wealth to be invested in the risky security,
7! measures the optimal proportion of wealth to be invested in the index, in the Range
Reversion Model (RR). The column #° measures the optimal proportion of wealth to be
invested in the risky security, 47 measures the optimal proportion of wealth to be invested
in the index, in the Black-Scholes Model (BSM). Sy is the initial price of the security, the
range reversion parameters are taken to be np, = ny = 1. We take T' = 1,2 = 1,u =

0.07,0 =021,k =2,r = 0.01, u; = 0.06,07 = 0.17, p = 0.2,7 = 1.

PANEL A - Markowitz PANEL B - Dynamic
So 7o ! 7o 7l So 7o ! 7 #l
0.705 1.580 0.927 0.897 1.167 0.705 1.955 1.247 1.146 1.449
0.751 1.272 1.054 0.897 1.167 0.751 1.588 1.338 1.146 1.449
0.797 1.096 1.122 0.897 1.167 0.797 1.361 1.394 1.146 1.449
0.844 0.939 1.146 0.897 1.167 0.844 1.236 1.425 1.146 1.449
0.890 0.947 1.165 0.897 1.167 0.890 1.174 1.440 1.146 1.449
0.937 0.920 1.171 0.897 1.167 0.937 1.145 1.447 1.146 1.449
0.983 0911 1.177 0.897 1.167 0.983 1.133 1.450 1.146 1.449
1.000 0.909 1.180 0.897 1.167 1.000 1.130 1.451 1.146 1.449
1.029 0.908 1.182 0.897 1.167 1.029 1.127 1.452 1.146 1.449
1.076  0.907 1.185 0.897 1.167 1.076 1.122 1.453 1.146 1.449
1.122 0.903 1.182 0.897 1.167 1.122  1.115 1.455 1.146 1.449
1.169 0.908 1.190 0.897 1.167 1.169 1.102 1.458 1.146 1.449
1.215 0.904 1.192 0.897 1.167 1.215 1.079 1.463 1.146 1.449
1.261 0.894 1.202 0.897 1.167 1.261 1.042 1473 1.146 1.449
1.308 0.868 1.210 0.897 1.167 1.308 0.985 1.487 1.146 1.449
1.354 0.836 1.233 0.897 1.167 1.354 0.901 1.508 1.146 1.449
1.400 0.780 1.260 0.897 1.167 1.400 0.789 1.535 1.146 1.449
1.447 0.681 1.293 0.897 1.167 1.447 0.643 1.571 1.146 1.449
1.493  0.553 1.339 0.897 1.167 1.493 0.470 1.614 1.146 1.449
1.540 0.339 1.392 0.897 1.167 1.540 0.263 1.665 1.146 1.449
1.586 0.054 1.453 0.897 1.167 1.586 0.037 1.721 1.146 1.449
1.632 -0.315 1.515 0.897 1.167 1.632 -0.205 1.781 1.146 1.449
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Table 2
Expected Returns and Variances of Returns for RR and BSMCT models.
The columns in Panel A represent the Expected Returns and in Panel B they represent the

Variances of Returns corresponding to the two models. We take T'= 1,2 =1,u = 0.07,0 =
021, k=2,r=0.01,u;y =0.06,0; =017, p=02,ny =ny =1,7y=1.

PANEL A-Expected Returns PANEL B-Variances
So RR BSMCT So RR  BSMCT
0.705 1.114 1.216 0.705 0.043  0.031
0.751 1.108 1.178 0.751 0.046  0.034
0.797 1.103 1.148 0.797 0.048  0.036
0.844 1.096 1.125 0.844 0.050  0.038
0.890 1.085 1.107 0.890 0.051  0.040
0.937 1.078 1.092 0.937 0.051  0.041
0.983 1.071 1.073 0.983 0.051  0.040
1.000 1.069 1.069 1.000 0.051  0.039
1.029 1.068 1.059 1.029 0.051  0.038
1.076  1.066 1.048 1.076  0.050  0.035
1.122 1.063 1.036 1.122  0.050 0.032
1.169 1.059 1.024 1.169 0.049 0.030
1.215 1.052 1.010 1.215 0.047 0.027
1.261 1.047 0.996 1.261 0.046 0.024
1.308 1.041 0.981 1.308 0.044  0.021
1.354 1.033 0.965 1.354 0.042  0.019
1.400 1.024 0.949 1.400 0.039  0.017
1.447 1.013 0.932 1.447 0.037  0.015
1.493 1.000 0.915 1.493 0.034  0.013
1.540 0.983 0.899 1.540 0.032  0.012
1.586 0.961 0.882 1.586 0.030  0.010
1.632 0.933 0.865 1.632 0.028  0.009
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Table 3

Markowitz Portfolios in the BSMCT model.

The columns represent investment weights on the stock and on the index in the case of
BSMCT and BSM models. Weuse "= 1,2 = 1,4 = 0.07,0 = 0.21,k = 2,r = 0.0, pu; =
0.06,0;7 =0.17,p = 0.2.

Markowitz portfolios

So T ! s T

0.705 2808 0.150 1.072 0.947
0.751 2.659 0.341 1.072 0.947
0.797 2383 0.540 1.072 0.947
0.844 2.065 0.722 1.072 0.947
0.890 1.769 0.865 1.072 0.947
0.937 1515 0.980 1.072 0.947
0.983 1.180 1.120 1.072 0.947
1.000 1.122 1.144 1.072 0.947
1.029 0.939 1.215 1.072 0.947
1.076  0.735 1.285 1.072 0.947
1.122  0.474 1.360 1.072 0.947
1.169 0.130 1.439 1.072 0.947
1.215 -0.324 1.517 1.072 0.947
1.261 -0.907 1.585 1.072 0.947
1.308 -1.600 1.629 1.072 0.947
1.354 -2.362 1.633 1.072 0.947
1.400 -3.113 1.588 1.072 0.947
1.447 -3.763 1.494 1.072 0.947
1.493 -4.254 1.361 1.072 0.947
1.540 -4.559 1.212 1.072 0.947
1.586 -4.701 1.060 1.072 0.947
1.632 -4.714 0918 1.072 0.947
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Table 4

The Certainty Equivalents (CE) for RR and BSMCT models.

The columns represent the Certainty Equivalents for all models in both Markowitz cases: RR
model and BSMCT model. We take T'=1,2 = 1,u = 0.07,0 = 021,k = 2,r = 0.01, uy =
0.06,0; =0.17,p = 0.2,n, = ny = 1,7 = 1. In cases (i) we compute the following Certainty

CE(SRR,JgSJW 75}35]%)
CE(SER TR §RR)

. . CE(SBSM §RR sRR)
Equivalence ratios: CE(SPSN 3ES §poiT) -

Equivalence ratios: , and in cases (ii) we compute the following Certainty

So RR-i  RR-ii BSMCT-i BSMCT-ii

0.705 0.659  0.009 0.545 -1.689
0.751 0.784 0.241 0.588 -1.017
0.797 0.845 0.648 0.623 -0.656
0.844 0901 0.901 0.669 -0.215
0.890 0.957 0.921 0.781 0.128
0.937 0.998 0.970 0.906 0.610
0.983 1.000 1.000 0.967 0.921
1.000  1.000  1.000 0.983 0.952
1.029 0.999  0.999 0.981 0.903
1.076  0.999  0.998 0.921 0.689
1.122 0.997  0.997 0.622 0.548
1.169 0.994 0.995 0.319 0.342
1.215 0.981 0.961 0.019 0.125
1.261 0.952 0.802 -0.116 -0.106
1.308 0.906 0.651 -0.186 -0.368
1.354 0.874  0.509 -0.211 -0.569
1.400 0.655 0.255 -0.254 -0.894
1.447 0.485 0.108 -0.294 -1.256
1.493 0.364 -0.007  -0.315 -2.125
1.540 0.189 -0.214  -0.359 -6.122
1.586 0.025 -0.368  -0.446 -8.002
1.632 -0.199 -1.125 -0.482 -9.657
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Figure 1

Risk premia for the BSMCT model. We use the following parameters:
T=1,x=1Lx=0070=02Lk=2,r=0.0%, 1 =0.06,0, =017, p=02,n_ =n, =Ly =1.
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Figure 2

Betas for the RR and BSMCT models. We use the following parameters:
T=1,x=1Lx=0070=02Lk=2,r=0.0%, 4 =0.06,0, =017, p=02,n_ =n, =1Ly =1.
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Figure 3

Instantaneous Betas for the RR and BSMCT models. We use the following parameters:
T=1,x=1Lx=0070=02Lk=2,r=0.0%, 1 =0.06,0, =017, p=02,n_ =n, =Ly =1.
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