Instructors and Hours

PreLab: Monday 5-6 pm Dr. Joe Fritsch
Laboratory: L.1 Monday 6-9 pm Dr. Tim Dong
 L.2 Thursday 2-5 pm Dr. Tim Dong
 L.3 Friday 9 am -12 pm Dr. Tim Dong

General Chemistry Lab
Office: Dr. Joe Fritsch, RAC 108
Phone: Ext. 6705
e-mail: joseph.fritsch@pepperdine.edu
URL: faculty.pepperdine.edu/jfritsch

Office: Dr. Tim Dong, RAC 132
Phone: Ext. 4478
e-mail: timothy.dong@pepperdine.edu

REQUIRED MATERIALS
Laboratory manual: *Experiments and Investigations in General Chemistry*, Green, Mulford, Ganske.

The Official Laboratory Research Notebook (Jones and Bartlett) – all procedures, data, results, calculations, and solutions to problems will be recorded in the laboratory notebook. The side-bound version is preferred.

Scientific calculator

Approved laboratory safety goggles (available in bookstore or through the SAACS)

Lab coat (available in bookstore)

ALIGNMENT WITH PROGRAM LEARNING OUTCOMES
The specific Learning Outcomes aligned to the Chemistry Program Learning Outcomes include evaluation of every course participant on their technical competence in the laboratory with respect to properly handling apparatus and chemicals and operating the chemical instrumentation.

In addition to technical proficiency, reports of laboratory results and analyses will be presented in a modified scientific format. The effectiveness of presentation and the linguistic quality of the report will be evaluated.
STUDENT LEARNING OUTCOMES

The overall objective of the laboratory course is to provide students with a practical understanding of some of the principles, laws, and theories of chemistry. Each student should gain competence in solving chemical problems of varying difficulty utilizing problem solving strategies such as dimensional analysis, application of standard formulae, and synthesis of new formulae and algorithms from prior knowledge obtained in this and other courses. In addition, every student should increase their competence in the use of basic laboratory equipment, electronic data collection apparatus, manual and spreadsheet analysis of data, and overall comfort in designing and performing laboratory procedures.

While the major foci are on the basic principles of chemistry and the analytical methods necessary to explore these principles, the specific learning outcomes are that every participant will…

✔ recognize that chemistry is an experimental science and, as such, cannot be completely mastered without also experiencing personally the “hands-on” aspects of science.

✔ recognize and appreciate that there may be multiple approaches to the solution of a problem and that there may be a “best” approach which is different from that learned in the past.

✔ understand that success in this course depends, in part, upon a working knowledge of the mathematics of chemistry as well as the chemical concepts underpinning the problem at hand.

✔ understand that success in this course also depends, in part, upon the dedication and commitment of each participant to work cooperatively with their laboratory team.

Upon successful completion of this course every course participant should be able to:

✔ use common and specialized laboratory equipment properly, safely, and efficiently.

✔ demonstrate the skills necessary to solve chemical problems, paying careful attention to achieving adequate and appropriate accuracy and precision.

✔ show mastery of material by confidently demonstrating a solution to a colleague.

✔ recognize, in a list of data given for a problem, information which is required for obtaining a solution to a problem and that which is superfluous.

✔ solve a variety of problems dealing with physical and chemical properties of substances

✔ write in scientific format reports of the theory, experimental method, and results of an analysis.

PHILOSOPHY

Because chemistry is an experimental science, the opportunity for hands-on experience is integral to understanding the material and the way in which chemistry is done. **The laboratory course is independent of the lecture so some divergence from lecture should be anticipated and, indeed, expected.** You will be expected to study for lab just as you would for lecture. Your instructors believe that it is in the laboratory where you learn the practice of chemistry; that is, techniques, methods, observation, etc. The laboratory augments and is augmented by the lecture.
ATTENDANCE
This is a laboratory course and, as such, completion of the experiments, investigations, problem sessions, are required. Arriving late or failing to attend a laboratory session will result in a grade of zero for that lab period and failure to complete 3 or more labs may result in withdrawal from the course and a failing grade. Note that the required pre-laboratory discussion is scheduled for **Monday evening 4-5 PM**. Roll will be taken.

| Failure to attend pre-lab will make you ineligible to attend lab that week and will, therefore, result in a zero for that week!
Tardiness for pre-lab is disruptive and will result in a 25% penalty on your laboratory report. Arriving at 5:30 pm or later is equivalent to failing to attend pre-lab. |

EXCUSED ABSENCES
The following are the only accepted excused absences for missing a quiz, lab experiment or test, or submitting lab reports late without penalty:
- A serious illness requiring medical attention. Confirm of medical attention is required.
- Death of an immediate family member.
- Travel as a part of a recognized University organization. Arrangements must be made PRIOR (at least one week) to the time of travel.

PREPARATION FOR LABORATORY
You are expected to come to pre-lab each week on time and with your textbook, your laboratory notebook, and the laboratory manual. In-class notes may also be useful for theoretical and background information necessary for acquiring and analyzing the necessary data. You are expected to have read the laboratory investigation before coming to pre-lab.

QUIZZES
Each pre-lab or lab meeting will begin and/or end with a short quiz that covers material and information from the laboratory report being turned in that week and, possibly, prior labs. It is your responsibility to ensure that you understand the material and procedures from the each week’s laboratory experience. Your lab reports are submitted as a group, but the quizzes and exams are individual.

LABORATORY REPORTS
A written report of the results of your laboratory work is due at the beginning of the first laboratory period following the completion of the work unless otherwise informed. One report is due from each group. Late reports will receive a penalty of not less than 50% per day. The laboratory manual has complete instructions on writing your laboratory reports. All reports must be typed. Handwritten chemical formulae, chemical structures, and mathematical equations will be accepted. However, we recommend the following software for Microsoft Windows users:

Chemical Structure Drawing:
- ISIS/Draw (MDL Information Systems), ACD/ChemSketch (Advanced Chemistry Development Laboratories), or KnowItAll (KnowItAll Informatics System, BioRad).

Knowing the rules of writing structures, you can convert
C\textsubscript{7}H\textsubscript{6}O\textsubscript{3} into

![Chemical structure]

quickly with a very professional appearance.

The best thing about these three chemical drawing packages is that they are free. Links to ISIS/Draw, ACD/ChemSketch, and KnowItAll are available at the Cool Links area of the course website.

Chemical Formula Formatting:

Christopher King’s *Chemistry Formatter* add-in for MS Word and MS Excel is an excellent macro add-in if you use the Microsoft Office suite. There are no versions of the add-in for other word processor or spreadsheet programs. The intelligent chemistry formatter, when properly installed, eliminates the need to select ‘format|font|subscript’ for the formula stoichiometry in a chemical formula and usually gets the charge placement correct on ions. You can also get excellent looking chemical equations quickly. For example, consider the chemical equation

\[
\text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \rightarrow 6 \text{CO}_2 + 6 \text{H}_2\text{O}
\]

Simply highlight the entire equation, apply the chemistry formatter add-in with one mouse click, and the equation becomes

\[
\text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2 \rightarrow 6 \text{CO}_2 + 6 \text{H}_2\text{O}
\]

Additionally, showing a number in proper exponential notation is easy. Perhaps, because of textual context, a result such as 0.00115 g needs to be presented in exponential notation. Since typing the value in proper exponential notation syntax is time consuming, there is a temptation to simply type 1.115E-3 since, afterall, that’s the way the value is displayed on the calculator. However, with the *Chemistry Formatter*, the unconventional (and incorrect) presentation shown previously is easy to correct. By highlighting the value and applying the formatter, 1.115E-3 g in one mouse click becomes 1.115 \times 10^{-3} g.

King’s *Chemistry Formatter* is free to download and use. A link to the *Chemistry Formatter* can be found in the Cool Links area of the course website.

Equation Writing and Editing:
The Microsoft Office suite comes packaged with a good equation editor (aptly named *Equation Editor*) but it is not activated during a normal installation of the suite. Simply run the install CD, customize the installation, and add the Equation Editor.

A better equation editor is *MathType* (Design Science, Inc.) for Windows and Mac. It is actually the full version of MS *Equation Editor* and is extremely powerful.

Using the MathType add-in, you can easily make

$$ k = A \ exp\left[\frac{-E_a}{RT}\right] $$

or the handwritten

$$ k = A e^{\frac{-E_a}{RT}} $$

look like a typeset equation:

$$ k = A \cdot e^{\left(\frac{-E_a}{RT}\right)} $$

Equation Editor is included with Microsoft Office Suite if you have the installation CD. *MathType* can be purchased with an academic discount directly from Design Science, Inc.

Preparing and Grading of Laboratory Reports:

The laboratory report should be prepared by the laboratory team working cooperatively. However, the report will be graded in sections and the separate section scores distributed to the individual group members. Each week the individual group members will be responsible for a different section of the laboratory report with, ideally, the team working together and convening prior to the due date of the report to assemble the completed report.

Additionally, each team member will prepare and turn in a handwritten abstract of the completed laboratory investigation. A successful abstract will require each team member to have understood the investigation as well as contributed to and read the completed laboratory report. Some key results of preparing an abstract of the report include 1) each team member contributes to the “quality control” of the completed report and 2) each team member reviews the essential concepts and calculations of the investigation in preparation for quizzes and the laboratory practical exam. Abstract scores will be assigned individually and the proper form of the abstract will be discussed in Pre-Lab.

Finally, when assigned in the investigation, the laboratory group will cooperatively complete and turn in the answers to the “Post-Lab Questions”. The questions will be graded and the team will receive a group grade.
EXAMS
There will be one practical examination at the end of the semester. It will be administered during your normal lab time. The practical examination will be performed individually, not in groups. You should, therefore, make sure that you understand the material covered and procedures used in each lab exercise even if your group has divided the experimental and reporting work. Summarizing the material for each laboratory well in advance of the exam will make review and study for the lab test more productive. The lab exam must be taken seriously — it counts for an appreciable amount of the laboratory grade.

NOTEBOOKS
You are required to maintain a scientific notebook throughout the semester. Specific guidelines for the notebook can be found in the laboratory manual. Your notebook is a legally-binding document, admissible in courts of law, of the work you have performed in the laboratory. Notebooks will be graded rigorously.

COURSE GRADING
You are naturally concerned how you will be graded in this course. There are many ways to accrue points; thus, a poor performance one time in a single category will not have a devastating effect on your lab grade. However, you should strive to excel in all aspects of your lab scores, thereby insuring the highest possible lab grade. By virtue of the nature of chemistry lab investigations, reports, and problem sessions it is impossible to successfully “cram” or otherwise condense the overall laboratory process into the day before or day of which assignments are due.

The semester laboratory grade will be weighted as follows:
- Laboratory Reports 35%
- Laboratory Notebook 15%
- Quizzes 15%
- Problem Sessions 10%
- Practical 15%
- Data Accuracy 10%

Absence from a laboratory period will result in a grade of zero. Material turned in late will receive a penalty of not less than 50% per day. The laboratory grade is independent of the Chemistry 120 lecture grade.

Your grade will be based on your final course average and determined by a fixed scale:

<table>
<thead>
<tr>
<th>Course Average</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-94%</td>
<td>A</td>
</tr>
<tr>
<td>90-93%</td>
<td>A-</td>
</tr>
<tr>
<td>87-89%</td>
<td>B+</td>
</tr>
<tr>
<td>84-86%</td>
<td>B</td>
</tr>
<tr>
<td>80-83%</td>
<td>B-</td>
</tr>
<tr>
<td>77-79%</td>
<td>C+</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
</tr>
</tbody>
</table>
SCIENTIFIC ETHICS AND CARBON COPY SHEETS

As a scientist you have certain ethical responsibilities with respect to data collection, recording, and analysis. Data that has been collected in the laboratory can never be changed to suit your expected outcomes. To help train you in the inviolate nature of your recorded data, a copy of your data and procedures will be collected at the end of lab each week. Changes that are found in your original data to artificially improve results are considered a serious breech of scientific ethics and will be dealt with accordingly.

You are expected to conduct yourselves per the terms of the Seaver College Code of Academic Ethics. Any cheating (including plagiarism) will be punished as severely as allowed under University guidelines. Please see the laboratory instructor or the Seaver College Student Handbook for any questions about this policy. For assignments in which collaboration with your peers and other faculty is considered acceptable, you are encouraged, perhaps even expected, to do so provided you include a list of collaborators when submitting your assignments.

SAFETY IN THE LABORATORY

Safety Goggles
Safety goggles (not safety glasses) must be worn in the laboratory at all times when any chemical procedures are underway. Safety goggles may be purchased at the bookstore or through SAACS. Any student who is not wearing safety goggles will be asked to leave the laboratory, will not be allowed to make up the laboratory, and will receive a grade of zero for that experiment. The use of safety goggles in the laboratory is a zero-tolerance policy and is governed by university regulations and local, state, and federal laws.

Appropriate Dress
Students must dress appropriately for laboratory work. This means wearing a lab coat at all times. Open-toed shoes and sandals are unacceptable in lab (this includes clogs). You will be asked to leave and change clothes or shoes, if needed. Make sure you come prepared, especially if you live off campus. Appropriate laboratory attire is a zero-tolerance policy and is governed by university regulations and local, state, and federal laws.

Contact Lenses
Contact lens wearers are encouraged, but not required, to wear glasses in the laboratory. Chemicals and vapors can lodge behind the contact lens and cause severe damage to the eyes. Contact lenses also make the use of an eyewash fountain less effective. If you insist on wearing contact lenses in the lab, please inform the instructor of this at the beginning of the semester.

Hair
If your hair is longer than shoulder length you should tie it behind your head in order to avoid accidental contact with open flames or chemicals that might be on the lab bench.

Electronic Equipment
Tablets, iPods, MP3 players, and other audiovisual or electronic equipment (except for calculators) are not allowed in the laboratory unless the instructor is using such equipment for educational purposes.
Food and Beverages
You may not eat, drink, or bring food in the laboratory.

SAVING GRADED MATERIAL
It is your responsibility to save all graded materials (exams, homework, etc.) for this class. As per university policies, all grade disputes must be settled by the midpoint of the next non-summer semester which immediately follows this course.

CELLULAR PHONES
If you bring cellular phone to lab, please TURN IT OFF. It is very impolite and unsafe to have incoming calls or pages during lab.

WITHDRAW POLICY
Despite the independent nature and course number of the chemistry lecture and lab, except under extreme and unusual circumstances, you may not withdraw from lab and remain in lecture, or vice versa.

A WORD ON SORORITY, FRATERNITY, SPORTS, ETC.
Extracurricular activities such as debate, volunteering, community service, sororities, fraternities, athletics, drama and other artistic endeavors, etc. are important parts of your total education at Pepperdine. However, these activities require a very significant time commitment. It is your responsibility to keep up in class while involved in extracurricular activities.

ONE LAST NOTE
If you are having any troubles with this class, or have any questions (in-class or out-of class problems) please come by and talk with the laboratory instructor. We are here for you. Even though it is a terrible cliché, there are no stupid questions. Please feel free to ask anything and we will do our best to assist you.

Important Student Dates

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, January 16</td>
<td>Last day of Add/Drop period</td>
</tr>
<tr>
<td>Monday, January 19</td>
<td>Martin Luther King Day - No class and Lab is affected.</td>
</tr>
<tr>
<td>Monday, January 26</td>
<td>Last day to change CR/NC status</td>
</tr>
<tr>
<td>Monday, March 16</td>
<td>Last day to withdraw with a grade of W</td>
</tr>
<tr>
<td>Friday, April 17</td>
<td>Last day to withdraw with a grade of WP/WF</td>
</tr>
</tbody>
</table>

Disclosure Statement Required by the State of California
Warning: Natural Science's laboratories contain and certain class experiments or procedures will expose you to chemicals known to the state of California to cause cancer, birth defects, and other reproductive harm at levels which require a warning. For more information, contact your instructor or the Office of Insurance and Risk Management at extension 4410.