Weird Dice

Kevin Kreighbaum

Ordinary Dice

- These are the dice we're familiar with
 6 sides
- Labels 1 through 6
- Probabilities of rolling a 2 through 12
- > Are there any other ways of labeling cubes (or any polyhedron) to give us the same probabilities?

- > $(x^{a1} + ... + x^{a6}) (x^{b1} + ... + x^{b6}) = (x^6 + x^5 + x^4 + x^3 + x^2 + x)^2 = x^2(x + 1)^2(x^2 + x + 1)^2(x^2 x + 1)^2$
- > Now, let $P(x) = (x^{a1} + ... + x^{a6})$
- > This means $P(x) = x^q(x + 1)^r(x^2 + x + 1)^t(x^2 x + 1)^u$
- > $P(1) = 1^{a1} + ... + 1^{a6} = 6$ and $P(1) = 1^{q}2^{r}3^{t}1^{u} \rightarrow r = 1, t = 1$

- > $P(0) = 0^{a1} + ... + 0^{a6} = 0$ and $P(0) = 0^{q1r}2^{t}1^{u} = 0$
- But if q = 0, then we would have P(0) = 1(1^r)(2^t)(1^u) which does not equal 0
- > If q = 2, we have another contradiction
- > Therefore q = 1
- Now we must only check the cases when u = 0, 1, or 2

- > If u = 0, P(x) = $x(x + 1)(x^2 + x + 1) = x^4 + 2x^3 + 2x^2 + x$. So the die labels are 4, 3, 3, 2, 2, 1.
- > When u = 1, P(x) = x(x + 1)(x² + x + 1)(x² x + 1) = x⁶ + x⁵ + x⁴ + x³ + x² + x. So the labels are 6, 5, 4, 3, 2, 1 − an ordinary die
 > When u = 2, P(x) = x(x + 1)(x² + x + 1)(x² x + 1)² = x⁸ + x⁶ + x⁵ + x⁴ + x³ + x. Therefore the die labels are 8, 6, 5, 4, 3, 1.

	8	6	5	4	3	1	
4	12	10	9	8	7	5	
3	11	9	8	7	6	4	
3	11	9	8	7	6	4	
2	10	8	7	6	5	3	
2	10	8	7	6	5	3	
1	9	7	6	5	4	2	

- Let's see if we can do the same with an 18-sided die and a 2-sided die
- > $x^{2}(x + 1)^{2}(x^{2} + x + 1)^{2}(x^{2} x + 1)^{2} = (x^{a1} + ... + x^{a18})(x^{b1} + x^{b2})$
- > So, let $P(x) = x^{b1} + x^{b2} = x^q(x + 1)^r(x^2 + x + 1)^t(x^2 x + 1)^u$
- > $P(1) = 1^{b1} + 1^{b2} = 2$ and $P(1) = 1^{q}2^{r}3^{t}1^{u} \rightarrow r = 1, t$ = 0
- Evaluating P(0) two ways just as before we see find that q = 1 again
- > So we only must check when u = 0, 1, or 2

If u = 0, P(x) = x(x + 1) = x² + x. So the die labels are 2, 1.

When u = 1, P(x) = x(x + 1)(x² - x + 1) = x⁴ + x. So the labels are 4, 1

> When u = 2, $P(x) = x(x + 1)(x^2 - x + 1)^2 = x^6$ - $x^5 + x^4 + x^3 - x^2 + x$. Therefore u can not equal 2

- Doing the same analysis for the 18-sided die, we learn q = 1, t = 2, and r = 1
- > We only must check when u = 0, 1, or 2
- > If u = 0, P(x) = $x(x + 1)(x^2 + x + 1)^2 = x^6 + 3x^5 + 5x^4 + 5x^3 + 3x^2 + x$. So the die labels are 6, 5, 4, 3, 2, 1.
- > When u = 1, $P(x) = x(x + 1)(x^2 + x + 1)(x^2 x + 1) = x^8 + 2x^7 + 3x^6 + 3x^5 + 3x^4 + 3x^3 + 2x^2 + x$. So the labels are 8, 7, 6, 5, 4, 3, 2, 1
- When u = 2, P(x) = x(x + 1)(x² + x + 1)² (x² x + 1)² = x¹⁰ + x⁹ + 2x⁸ + 2x⁷ + 3x⁶ + 3x⁵ + 2x⁴ + 2x³ + x² + x. Therefore the die labels are 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

	10	9	8	8	7	7	6	6	6	5	5	5	4	4	3	3	2	1
1	11	10	9	9	8	8	7	7	7	6	6	6	5	5	4	4	3	2
2	12	11	10	10	9	9	8	8	8	7	7	7	6	6	5	5	4	3

	8	7	7	6	6	6	5	5	5	4	4	4	3	3	3	2	2	1
1	9	8	8	7	7	7	6	6	6	5	5	5	4	4	4	3	3	2
4	12	11	11	10	10	10	9	9	9	8	8	8	7	7	7	6	6	5

Work Cited

Sallian, Joseph. <u>Contemporary Abstract</u> <u>Algebra</u>. New York: Houghton Mifflin, 2005.

