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Abstract

We investigate how TV regularization naturally recognizes scale of individual image features� and we

show how perception of scale depends on the amount of regularization applied to the image� We give

an automatic method for �nding the minimum value of the regularization parameter needed to remove

all features below a user�chosen threshold� We explain the relation of Meyer�s G norm to the perception

of scale� which provides a more intuitive understanding of this norm� We consider other applications of

this ability to recognize scale� including the multiscale e�ects of TV regularization and the rate of loss of

image features of various scales as a function of increasing amounts of regularization� Several numerical

results are given�

� Introduction

Consider the problem of restoring a noise�contaminated or otherwise degraded image inRn� given a measured
image u���x�� �nd an approximation u��x� to the true image utrue��x�� where u� � Kutrue� � and where ���x�
is the noise or other degradation in the image� The work in this paper results from the case in which
the blurring operator K is the identity� in which case the problem could be considered one of �ltering or
denoising� u� � utrue��� Typically our goal is to recover the true image utrue as exactly as possible and	or
to �nd a new image u in which the information of interest is more obvious and	or more easily extracted�

��� Total variation regularization in image processing

Just over a decade ago� Rudin� Osher and Fatemi 
��� proposed to modify the given image by decreasing the
total variation

TV �u� �

Z
jru��x�j d�x ��

in the image while preserving some �t to the original data u�� Equation �� is typically referred to as the
total variation or bounded variation seminorm of u� There are two common formulations of this problem�
the unconstrained or Tikhonov formulation 
����

min
u

�

�
ku� u�k

� � �TV �u� � ���

and the noise�constrained problem�

min
u

TV �u� subject to ku� u�k
� � ��� ���
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where the error or noise variance �� is assumed to be known� As shown in 
��� solving ��� is equivalent to
solving ���� In this paper we consider primarily the unconstrained formulation ���� We note that throughout
this paper k � k � k � kL� �

In ���� � � � is the regularization parameter that determines the balance between goodness of �t to
the original image and the amount of regularization done to the original image u� in order to produce the
approximation u� TV regularization produces a new image u which has less total variation than u�� but
with no particular bias toward a sharp �discontinuous� or smooth solution� When solving ���� the original
image u� and the regularization parameter � determine the sharpness or smoothness of the new� regularized
function u� Larger values of � result in more regularization and less goodness to �t of u of the original data
u�� This is illustrated in Figure � Although TV regularization was originally introduced for deblurring
and denoising grayscale images� it has subsequently been employed in a variety of other image processing
tasks such as denoising color or other vector�valued images 
��� blind deconvolution 
��� segmentation 
����
inpainting 
��� image decomposition 
���� and upsampling 
���

Figure � Results of TV regularization of a simple noisy R� function �top row� and the standard Mandrill
image �bottom row� when using di�erent values of � in solving ���� For the R� function� the �rst plot shows
the true and noisy images� For the Mandrill image� the �rst image is the original �noise�free� image� For
both� the subsequent �gures are the results of solving ��� using � � ������ ����� ��� and �� �and � � ��
for the R� function�� respectively�

��� Scale recognition and choice of regularization parameter

Scale is inherently important both in understanding and in manipulating an image� At present the e�ects of
TV regularization�in particular� how these e�ects relate to the scale of the various image features�are only
partially understood� Additionally� how to choose the regularization parameter � when solving ��� is often
done haphazardly or experimentally� In contrast� many researchers from a variety of perspectives have more
thoroughly investigated other aspects of TV regularization� such as existence and uniqueness of solutions�
development and convergence analysis of numerical schemes� and the basic e�ects of TV regularization on
an image� A representative sampling of the literature includes 
�� 
��� 
��� 
��� 
�� 
��� 
��� 
��� 
��� 
����

��� and 
����

If there is some regularity to the noise and if the noise level is known� then we can use ��� to solve the
TV regularization problem �and the choice of � in ��� would be inherent�� If noise is irregular and	or noise
level is unknown� we must in some intelligent way choose a value for �� In the past� this has been done more
by trial and error rather than by any well understood theory� While this might result in �indeed� the choice
of � is still often driven by� an image which �looks nice�� it is generally unclear precisely how the image
itself has been a�ected� which leaves us wondering just how accurately the image produced by regularization
represents the true image� Even in the case of known noise level and type� we may want to choose � based
on criteria other than trying to match a noise constraint� Additionally� we may want to apply regularization
to a noise�free image in order to more easily extract the desired information from the image�
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It is clear that it would be helpful to have a more automatic� reliable and theory�based approach for
choosing �� Also� applying TV regularization would be an even more mathematically sound and predictable
approach to image processing if we better understood how the original image u� has been changed� particu�
larly with respect to scale� in order to produce the regularized image u�

��� How � depends on the size of the image domain

In this paper� the image domains in R� and R� will be 
�� � and 
�� �� � 
�� � x 
�� �� respectively� We
choose these unit domains because we prefer to have the scale of image features be consistent� regardless of
the discretization �resolution� of the image� Because some readers may be more familiar with values of � in
solving ��� for a discrete n x n image when the domain is taken to be 
�� n�� rather than 
�� ��� we give the
following lemma as part of this introductory section�

Lemma � If � is the regularization parameter used in solving ��� when the domain is 
�� �k� k � Z�� then
n� is the value needed in solving ��� when the domain is 
�� n�k in order to produce the same regularized
image u�

Proof Let 
�� �k be the unit hypercube in Rk� and similarly for 
�� n�k� Let �t � n�x� that is� �t�� t�� ���� tk� �
n�x�� x�� ���� xk�� Then d�t � nk d�x� Let u� and U� be the original image� if de�ned on 
�� �k and 
�� n�k�
respectively� Similarly� let u and U be the regularized image �the solution to ���� if de�ned on 
�� �k and

�� n�k� respectively� That is� for �t � 
�� n�k� U���t� � u��

�t
n
� � u���x� and U ��t� � u� �t

n
� � u��x�� Since

�u��x�
�xi

� �U��t�
�xi

� �U��t�
�ti

�ti
�xi

� n
�U��t�
�ti

� then

ru��x� � �
�u��x�

�x�
�
�u��x�

�x�
� ����

�u��x�

�xk
� � �n

�U ��t�

�t�
� n

�U ��t�

�t�
� ���� n

�U ��t�

�tk
� � nrU ��t��

Then ��� on 
�� �k can be related to ��� on 
�� n�k as follows�

�

�
ku� u�k

� � �TV �u� � �

�

Z
�x������k


u��x� � u���x��
� d�x� �

Z
�x������k

jru��x�j d�x

� �

�

Z
�t����n�k


U ��t� � U���t��
� �

nk
d�t� �

Z
�t����n�k

n jrU ��t�j �

nk
d�t

� �

nk

�
�

�
kU � U�k

� � n�TV �U �
�

And� of course�

arg min
U

�

nk

�
�

�
kU � U�k

� � n�TV �U �
�
� arg min

U

�

�
kU � U�k

� � n�TV �U ��

�

Remark Changing the domain from 
�� �k to 
�� n�k requires us to change � to n� in order to produce
the same results�this is true for any k� For example� for a ��� x ��� image� if our domain is 
�� �� and
� � ����� then we would need � � ����� if our domain were instead 
�� n�� in order to produce the same
regularized image�

Finally� in addition to choosing the unit hypercube as our domain� we note that all images in R� are
grayscale and� again for consistency� have been normalized so that the minimum and maximum image
intensity values are � and � respectively�

��� Outline

In Section � we discuss how TV regularization naturally perceives scale in an image� including how this
perception changes with increasing amounts of regularization �larger values of �� applied to the image� The
main contributions of this paper are given in Sections � � �� In Section �� we motivate and give an algorithm
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for determining the minimum value of � in ��� that will result in the removal of all features of scale at
or below �smaller than� any given threshold� Section � is devoted to relating Meyer�s G norm to scale�
to some degree a consequence of the algorithm given in the previous section� which gives us new insight
and a more intuitive understanding of this norm� In Section � we give several numerical results of this
algorithm� Finally� in Section �� we begin to explore additional ways to employ TV regularization�s ability
to recognize scale� including to better understand both the multiscale e�ects of TV regularization and the
rate at which features of any given scale disappear from an image as a function of �� Section � contains
additional numerical results� Conclusions and other �nal remarks are given in Section ��

� Scale� as perceived by TV regularization

In this section we further develop the notion of scale introduced in 
���� We show how TV regularization
naturally recognizes scale� how the notion of scale in TV regularization can be quanti�ed on a pixel�by�pixel
basis� and how perception of scale varies with ��

��� Scale and intensity change

As shown by Strong and Chan in 
���� there are two fundamental properties of TV regularization�

� Edge locations of image features tend to be preserved� and under certain conditions� are preserved
exactly�

�� The intensity change � experienced by an individual image feature � is inversely proportional to the
scale of that feature�

���x� �
�

scale��x�
� ���

where we de�ne

scale �
j�j

j��j
� ���

Remark This notion of scale arises naturally in TV regularization� as described in 
���� rather than simply
being arbitrarily de�ned� At present there is discussion about other� more general�and also more math�
ematically abstract�ways of de�ning scale as it is perceived by TV regularization� For instance� one may
de�ne the scale of an object as being the radius of the largest ball which can be contained in the object� See
also 
��� for notions related to scale� as well as further discussions in 
���� The de�nition of scale in ��� is
essentially a special case of these more general de�nitions� This de�nition ��� is intuitively simpler and is
practically �as opposed to theoretically� more useful� and ultimately this particular de�nition of scale makes
possible the results that we give in this paper�

Remark Property  is quite signi�cant and is a primary reason TV regularization is used in a variety of
image processing applications� such as those listed at the end of Section �� not to mention its potential use
in applications other than image processing� Property � explains in a very basic way how TV regularization
works� smaller�scaled features �including noise� experience large reduction in intensity� thus removing or
greatly reducing them by �attening them� while larger�scaled features experience relatively little intensity
reduction and are consequently left more intact� This was seen in Figure � As Figure  also illustrates� a
less than precise understanding of Property � can lead to undesirable results when using TV regularization�

Remark As described in 
���� TV regularization can be viewed as a model or unbiased case of anisotropic
di�usion� and consequently Property � is also one way of explaining how anisotropic di�usion works� We
also note that Bellettini� Caselles and Novaga did a related analysis of TV regularization by considering the
eigenvalue problem of �r � � rvjrvj� � v� Details can be found in 
���
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Equation ��� describes how change in intensity is a function of scale� When rewritten as

scale��x� �
�

���x�
� ���

we see that scale can be viewed as a function of change in image intensity� Although simple�indeed� in part
because it is so simple�this relationship is potentially very useful� Essentially what it means is that we can
determine what the scales of the various image features are throughout the image by looking at how much
intensity changes as a result of applying TV regularization to the image� Understanding how to measure
scale as perceived by TV regularization potentially has many uses� including four that we will investigate in
this paper�

� We can �nd the smallest � needed to remove all features whose scale is less than any scale threshold�

�� We can give an intuitive explanation of Meyer�s G norm by relating it to the above notion of scale�

�� We can better develop our understanding of how TV regularization can be used to produce multiscale
representations of images�

�� We can begin to understand how quickly the various scales present in the image disappear for increasing
values of ��

In this paper we will investigate the �rst application in detail� We will also consider the three other
applications� but we expect that our results will be the beginning of more analysis of these ideas� In other
words� we expect that more work can and will be done both by ourselves and others to further develop our
understanding of these other aspects of TV regularization� A �fth promising application is that once TV
regularization has been applied� we can determine the scales of the remaining features and using ��� and ���
we can determine how much intensity was lost due to TV regularization� and add back this lost intensity to
the regularized image to get a more accurate approximation u of the true image utrue� This �fth application
turns out to be a bit more complicated than it might �rst seem� and consequently it is being investigated in
a separate paper�

��� Scale of piecewise constant features

The notion of scale de�ned in ��� may at �rst be unclear or even confusing to the reader to whom it is
new� To make it easier to understand� we explain it for two simple examples� A circle of radius r would
have scale � 	r� 
 �	r � r
� that is linearly proportional to radius r� The scale of a sphere would also be
increasing linearly in r� Second� a rectangle of k� x k� pixels on an n x n discretized grid of the unit square

��� x 
��� would have scale � k�k� 
 �n�k� � k��� Consequently� a k x k square has the same scale as
a rectangle of width k
� and in�nite length� In general� large� blocky features have relatively large scale�
while thin features�even those that are very long�have relatively small scale� This fact was one of the
main results of 
��� in which Dobson and Santosa use a Fourier analysis to show that TV regularization is
particularly suited to denoising images comprised of large� blocky features�

��� Determining scale using the scale recognition probe

Using ���� we can compute the scale� as perceived by TV regularization� in an image� We accomplish this
by performing what we refer to as a scale recognition probe for determining scaleu��x� in image u�

Scale Recognition Probe Algorithm

� Choose �probe

�� Find uprobe � arg min
�u

�

�
k�u� uk� � �probe TV ��u�

�� Compute ���x� � juprobe��x� � u��x�j

�� Compute scaleu��x� �
�probe
���x�
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To illustrate the scale recognition probe� we apply the above algorithm to the simple image shown in
Figure �� In �a� is the noise�free image in which to �nd scale� In �b� is the image showing scales computed
using the scale recognition probe� and in �c� is the image showing scales as predicted by ���� In �b� and �c�
we assign the background a value of �� to more easily see the scales of the shapes�

Remark As seen in the image in �c�� the corners of the squares and the corners and ends of the rectangles
experience a slightly greater change in intensity� and thus are interpreted as having smaller scale� The
de�nition of scale and the change in intensity ��� is exact for radially symmetric features� From this point of
view� the corners of each square� for example� are like smaller�scaled features attached to a larger one� like
four small circles connected at each �corner� of a larger circle�

0.02

0.04

0.02

0.04

Figure �� The scales of individual features as perceived by TV regularization� found by applying the scale
recognition probe� The �rst image is the noise�free image in which to recognize scale� The second image
is the image showing computed scales found using the scale recognition probe� and the third image is the
image showing theoretically predicted scales found using ����

��� Perception of scale dependent on amount of regularization done

When using TV regularization� there are two natural ways to recognize the various levels of scale in an
image� �rst is by simple inspection� second� and more interestingly and usefully� is how TV regularization
will perceive scale� We consider how this perception is a�ected by the choice of �� The value of � chosen in
solving ��� determines how much regularization of u� occurs in producing u� and thus what scales remain in
the regularized function� More precisely� it is well known that for increasing values of � there is increasing
loss of smaller scale in the image� We look at this in more detail in the following section�

����� A simple example of evolution of scale perception

Consider the function labeled as �� extrema� in Figure ��a�� There are three levels of scale at which this
function could be viewed� at the �nest level is the actual function� at the next level is the �� extrema�
function� and at the coursest level is the � extremum� function� At successively courser levels� the value
of the function in each region is simply the mean of the values over the subregions found in the �ner levels�
Let �	�
 be the value of � at which the ��extrema function transitions into the ��extrema function� as seen
in �b�� It turns out that for � � �	�
� TV regularization perceives the function as the ��extrema function�
This is illustrated by the fact that the function produced using � � ����� in �b�� in which u� was the �true�
��extrema function� is identical to the function produced using � � ����� in �c�� when using the ��extrema
version of u� to solve ���� Similarly� the function produced using � � ���� in �c� in which u� was the
��extrema function �or equivalently� if the u� used were the original ��extrema function itself�� is identical
to the function produced using � � ���� in �d�� when using the �extremum version of u� to solve ���� This
illustrates that for � � �
��� TV regularization perceives this function as the �extremum function seen in
�c�� For � � ����� the resulting regularized image will simply be the constant image shown in �d�� It is not
di�cult to analytically predict what these transitional values of � should be� as well as the behavior of this
simple function for other values of �� Indeed� we found analytically� rather than empirically� the values for
�	�
� �
�� and ���� given in Figure �� For brevity we omit the details�
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Figure �� In R�� the scale present throughout the function� as perceived by TV regularization� increases as
� increases� In �a� is the original function� when perceived as having �� � or  extrema� For � � � � �������
the function is perceived as the original ��extrema function� as seen in �b�� For ������ � � � ������� the
function is perceived as the ��extrema function� as seen in �b� and �c�� For ������ � � � ������ the function
is perceived as the �extrema function� as seen in �c� and �d�� For ����� � �� the function is perceived as
the constant�valued function in �d��

����� Generalization

The above example helps explain the well known fact that� in general� any image in Rn will gradually evolve
into an image with larger scales�that is� with less detail� as smaller�scaled features are lost�as the value
of the regularization parameter � increases� Of course� in general the transition from one scale to another
does not occur at a few distinct values of �� Indeed� these transitions are more continuous� for most images�
at various locations and for various values of � this transition is continually occuring as � increases� Also�
images are not comprised only of piecewise constant features� although in the discrete case an n x n image
has n� pixels� each with a particular value� so in this sense the image could be thought of as being piecewise
constant� albeit on a very �ne scale� Consequently� the notion of scale is more complicated than thus far
discussed� The analysis in this paper helps �but does not exhaustively� develop a precise understanding of
how TV regularization perceives scale in an image and how TV regularization resolves an image into its
various scales� It turns out that this relatively simple notion of scale is su�cient �and� indeed� necessary� to
obtain the results we give later�

Our goal in the next section will be to determine the value of � needed to remove all features at or below
a certain scale� In order to best preserve the other wanted features� we want to �nd the minimum such value
of �� and we would like to �nd it quickly and accurately�

� Selection of regularization parameter

We now consider applications of our understanding of TV regularization�s recognization of scale in an image�
The �rst application is the speci�c task of removing from an image all features whose scales are at or
below �smaller than� a speci�c threshold� while leaving all other features as intact as possible� That is� we
would like to �nd the value of � in solving ��� that is just large enough to result in removing all features
below scalethresh� but no larger� We denote this particular value as  �� Where scaleu��x� is the scale of
u � arg min

u

�

�
ku� u�k

� � �TV �u�� we de�ne

 � � minf� � min
�x

scaleu��x� � scalethreshg� ���
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��� An example of what we want to accomplish

As a simple example of what we want to accomplish� we apply TV regularization to the image shown in
Figure �� This image contains checkboard �texture� of two smaller scales and shapes of four larger scales�
The �rst image is the original image� while the next six are the images in which we have removed all features
at or below six di�erent scale thresholds� corresponding to the six di�erent scales present in the image� The
values of  � corresponding to each of the six scale thresholds are given in the caption of Figure �� These
values were found using the algorithm that we subsequently give in Section ����

Remark To be clear� the values of  � and the corresponding images given in Figure � were not found
experimentally� i�e� by choosing a sequence of � values and looking at the resulting images in order to see
where the di�erent features of varying scales are completely removed� This process� given in Section ���� was
automatic and was accomplished as a result of our ability to recognize scale�

Figure �� Results of solving ��� using values of � that are just large enough to remove all features at or below
speci�c scale thresholds� The �rst image is the original image� and the subsequent images are regularized
images found by solving ��� using ��values of �������� �������� �������� �������� ������� and ������� These
are the value of  � resulting from using six scale thresholds corresponding to the six distinct scales present in
the image� respectively� ������� �������� �������� ������� ������� and �������� These  � values were found
automatically� using the  � Algorithm given subsequently in Section ���� The �rst two images are larger in
order to better see the e�ects of regularization on the arti�cial texture� The intensities of the objects are
the actual intensities� no rescaling has been done to enhance contrast�
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��� Basic strategy for �nding ��

����� Bisection method

The strategy we use to �nd  � is essentially the bisection method� where the desired �root� is  �� as de�ned in
���� We will describe why this approach to �nding  � is a natural one� In using the bisection method� there
are two questions� First is the question of how to choose the initial lower and upper bounds on our estimate
for  �� which we denote �min and �max� The simplest choice for �min is �� since by de�nition � � �� In
choosing �max� it is of course necessary that  � � �max� The choice of �max will depend on scalethresh and
on the image itself� We revisit how to choose �max when we consider our �rst numerical example in Section
���

For each iteration i� we �nd ui � arg min
u

�

�
ku � u�k

� � �i TV �u� where �i � ��min � �max�
�� The

second question then is what criteria to use in deciding which of the two subintervals 
�min� �i� or 
�i� �max�
to move to after iteration i� That is� we need to determine whether  � � �i or  � � �i� Our task is to
determine if there are any features or portions of features in ui with scale at or below scalethresh � To do
this we perform a scale recognition probe� as described in Section ���� to �nd the scale in ui� Once we �nd
scaleui ��x�� we want to determine whether scaleui ��x� � scalethresh anywhere �x in the image� If so� then our
choice �i is too small and we should move to the upper half of the interval 
�i� �max�� If not� our choice was
su�ciently large� and since  � is the smallest of all such values of �� we know that  � � �i� in which case we
move to the lower half of the interval 
�min� �i��

Conceptually� we want to compare scaleui ��x� to scalethresh� Unfortunately� if ���x� � � anywhere in
the image� we end up dividing by �� We avoid this by instead simply comparing ���x� to �thresh where
�thresh � �probe
scalethresh� Since scaleui ��x� � scalethresh �� ���x� � �thresh� if ���x� � �thresh anywhere
�x in the image� then there are still features at or below scalethresh� in which case we need to increase the
value of � by moving to 
�i� �max�� otherwise we move to 
�min� �i��

����� A simple illustration of this approach

In this subsection we illustrate our approach on a simple example� as seen in Figure �� Each of �a� � �d�
includes a plot of the original function u�� the regularized function ui for a given value of �i� and the second
regularized function uprobe� found by applying regularization to ui using �probe when performing the scale
recognition probe� To be clear� these images are not the results of the �rst three steps of the bisection
procedure just described above�they are simply the results of three possible choices of �i� The second plot
in each sub�gure is a plot of ���x� � juprobe��x� � ui��x�j� the change in intensity due to the scale recognition
probe� We remind the reader that larger � means smaller scale� and inversely� For more clarity� the example
involves a noise�free� mostly piecewise constant function in R��

Observation For smaller values of �� the smaller features are still present and their scales are recognized�
Notice in the top plot in �a� the ��extrema feature at x � ����� For small �i� the feature is recognized �by
comparing ���x� to �thresh� as having three small extrema� while for larger � this feature is perceived as being
one larger extrema� as we see in �b� � �d�� Next consider the non�piecewise constant features� the triangular
and the semicircular features located at approximately x � ���� and ����� Notice that for smaller values of
�� as in �a�� these are perceived as having smaller scale �larger ��� corresponding to the top of each feature�
while for larger � each feature is more �attened and thus each feature is perceived as having larger scale
corresponding to the lower part of the feature� as is seen in �b� � �d��

Observation Consider the extremum located at ����� In �a� and �b� this feature is recognized as having
scale � scalethresh �� � �thresh�� Notice that � for this feature is the same in both cases� In �c�� clearly there
is some of this feature still remaining� but it turns out there is not enough of it �that is� its intensity relative
to the intensity on either side of it is not large enough� to result in � � �thresh� thus it is not recognized as
having a scale smaller than scalethresh� In �d� we have exactly the same ui� but this time we use a value of
�probe that is half of the �probe used in �c��notice that the limits on the vertical axis in �d� are exactly half
of those in �c�� In �d� we see that this time the scale of this feature is accurately computed� which results
in the expected � � �thresh for this feature� as seen in �a� and �b�� while for the other features the change

�



0 0.2 0.4 0.6 0.8 1

0

0.20

0.40

0.60

0.80

1.00
 u

i
 u

probe

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.10

δ
thresh

a� For smaller �� all de�
tails and small�scaled fea�
tures� including those at
positions ����� ��
� and
����� are present�

0 0.2 0.4 0.6 0.8 1

0

0.20

0.40

0.60

0.80

1.00

 u
i

 u
probe

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.10

δ
thresh

b� For larger �� some fea�
tures evolved from smaller
to larger scale� including
at ����� ��
� and �����

0 0.2 0.4 0.6 0.8 1

0

0.20

0.40

0.60

0.80

1.00

 u
i

 u
probe

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

0.10

δ
thresh

c� The true scale of the
feature at ��� is not recog�
nized� when using the cur�
rent value of �probe�
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d� The true scale of the
feauture at ��� is now rec�
ognized� as a result of
choosing a smaller �probe�

Figure �� For increasing values of �� smaller scaled features are lost� as seen in �a� � �c�� The ability to
accurately measure scale depends on the value of �probe used in the scale recognition probe� smaller �probe
makes it more likely that scale will be accurately measured� as seen in comparing �c� and �d�� The top plots
include the true and regularized functions� and the function resulting from the scale recognition probe� The
bottom plots show the change in intensity � � jui � uscalej due to the scale recognition probe�

in intensity relative to �thresh is still the same as in �c�� This helps explain why we need to choose �probe
small� as we will also later con�rm analytically with Lemma � in Section ��

����� A theoretical de�nition of scale

It turns out that given any u in which to determine scale� in performing the scale recognition probewe
could �nd a value of � su�ciently small to accurately determine scale throughout the image� However� the
smaller �probe is� the more precise we would need to be in computing uprobe� which is computationally more
expensive� Moreover� given any value of �probe� we could contrive an image in which the scale would not be
accurately measured using that particular value of �probe� In the end� we could rede�ne ��� as

scaleu��x� � lim
�probe���

�probe
���x�

� ���

where ���x� is the change in intensity due to the scale recognition probe�

����� Estimate interval for  �

In trying to determine  �� it turns out that where 
�min� �max� is the current estimate interval for  �� then
in reality the upper bound on  � is  � � �max � �probe� This is clearly illustrated in �c� and �d� of Figure
�� Similarly� it turns out that the lower bound on  � is �min � �probe rather than �min� Thus rather than

�min� �max�� the interval 
�min � �probe� �max � �probe� is the true estimate interval for  �� Note� of course�
that the maximum possible absolute error for our estimate of  � is still �max � �min in either case� and
the maximum possible relative error ��max � �min�
��min� �probe� will still be approximately the same as
��max��min�
�min if �probe � �max� Lemma � in Section ��� further explains why we need �probe � �max�
In our subsequent numerical examples� we have arbitarily chosen �probe � �max
���
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Observation If our current estimate interval for  � were 
�min� �max�� then in �a�� �b� and �d� of Figure �
we would increase � �that is� move to 
�i� �max��� while in �c� we would decrease � �move to 
�min� �i���

��� The �� Algorithm

We now give the complete algorithm for �nding  ��

 � Algorithm

� Choose �min� �max� scalethresh

�� Initialize i � � �� � ��min � �max�
��

�probe � �max
��� �thresh � �probe
scalethresh

�� Repeat steps a � d until error � desired tolerance

�a� ui � arg min
u

�

�
ku� u�k

� � �i TV �u�

uprobe � arg min
u

�

�
ku� uik

� � �probe TV �u�

�b� �max � max
�x
juprobe��x�� ui��x�j

�c� If �max � �thresh

�min � �i

else

�max � �i

�d� Update� i � i � � �i � ��min � �max�
��

�probe � �max
��� �thresh � �probe
scalethresh

��  � � �max � �probe

Remark We allow �probe to vary with �max� to ensure that �probe � �max� In the above algorithm we
update �probe at each step to be �probe � �max
��� Also� to account for numerical imprecisions� to be more
conversative one might choose �thresh to be slightly smaller than the theoretical �thresh� In the results given
in the subsequent �gures we compare �max with ���� �thresh� Finally� the error in Step � could be either the
absolute or relative error�

Prior to giving numerical results of this algorithm� in the following section� we carry out a mathematical
study of the  � Algorithm�

� Mathematical analysis of the �� Algorithm

In this section we analyze the  � Algorithm from the perspective of the G norm introduced by Meyer in

��� Essentially� we show how our notion of scale helps give an intuitive interpretation of the G norm and
conversely how this norm gives some enlightening insight into the  � Algorithm�

��� Meyer�s G norm

Recently� Meyer did an interesting mathematical analysis of the Rudin�Osher�Fatemi model in 
��� He
introduced a new space� the G space� to model oscillating patterns�

De�nition � G is the Banach space composed of the distributions f which can be written

f � ��g� � ��g� � div �g� ���





with g� and g� in L�� On G� the following norm is de�ned�

kvkG � inf
n
kgkL� � v � div �g�� g � �g�� g��� g� � L�� g� � L�� jg�x�j �

p
jg�j� � jg�j��x�

o
���

See 
�� for an analysis of G in a discrete setting and 
�� for a generalization of Meyer�s de�nition to
bounded domains in a continuous setting� We will use the following ball in G �� � ���

G� � fv � G � kvkG � �g � ��

We consider the discrete setting� It is shown in 
�� that G is then the set of functions with zero mean� The
following Lemma will prove to be useful�

Lemma � If f belongs to G �i�e� if f is of zero mean�� then



�n
kfkL� � kfkG � �nkfkL� ���

Proof In 
��� it is shown that there exists g such that f � divg and kfkG � kgkL� � It is easy to check
that kdivkL� � �n� which gives the right�hand side inequality in ���� Since the identity I � div�� div � we
have  � kdiv��kL�kdiv kL� � from which we get the left�hand side of ����

�

Remark It is a standard result that in a �nite dimensional normed space� all of the norms are equivalent�
Lemma � gives the equivalence constants explicitly� 
n is the discretization step if our image is n x n on the
unit square� it is clear that as n	 �
� then the G norm and the L� norm are no long equivalent norms�

��� Relating the G norm and ROF model

Let us consider the ROF problem ���� The following proposition is shown in 
�� �the proof is based on convex
analysis��

Proposition � The solution to ��� is given by

u � u� � PG�
�u�� ���

where PG�
�u�� denotes the orthogonal projection �with respect to the L� scalar product� of u� on G�� de�ned

by �����

In 
��� Meyer introduced the G norm to analyze the mathematical properties of the ROF model� One
of the main results of 
�� happens to be a straightforward corollary of Proposition � We �rst de�ne

!� � ku� � "u�kG� ���

and then give the corollary�

Corollary � Where u is the solution of ��� and "u� is the mean of u�� then we have�

� If � � !�� then ku� u�kG � ��

� If � � !�� then u � "u��

�



Remark It is well known that for any image there is a �nite ��value above which the solution to ��� is
simply the mean of the original image u�� Thus we see intuitively that !� � ku�� "u�kG is precisely this value
of �� As we can see� the behavior of the ROF model is closely related to the G norm of the initial data u��
Before now� there has been no easy or intuitive interpretation of the G norm�

Let us again consider ���� which links scale to �� When rewritten as

� � � scale ���

we see that the G norm in Corollary  is proportional to scale� We give a rough explanation of Corollary �

� If u� has features with scale larger than � scale� then u�u� contains all the features with scale smaller
than � scale�

� If all the features in u� are of scale smaller than � scale� then u � "u��

This con�rms the analysis of the ROF model in 
��� based on scale�

Remark There is another way to see that the G norm is closely related to the notion of scale� We can
see it through the algorithms used to compute them� In this paper� we have presented the  � Algorithm
to compute the parameter � in ��� to remove all the features with scale equal to or smaller than a given
threshold� Thanks to ���� we see that this essentially amounts to constraining the residual u � u� to be
such that ku� u�kG � � scale� However� as far as we know� the only algorithm that has been proposed to
compute the G norm of an image is the one introduced in 
��� This algorithm is also based on the bisection
method� one compares u with PG�

�u�� that is one checks if all the features in u are smaller than � scale�

��� Mathematical study of the �� Algorithm

In this subsection� we give more theoretical insight into the  � Algorithm� We take the same notations as in
the description of the  � Algorithm�

Proposition � If scalethresh �  
 �n� then the  � Algorithm will return  � � �probe�

Remark The aim of this proposition is simply to con�rm that the  � Algorithm does what we would expect
it to do in one extreme case� Indeed�  
 �n is the smallest available scale in the image� it is the scale of a
single pixel when the image is n x n and the domain is the unit square� If we choose scalethresh �  
 �n�
than we expect to keep all the features of the original image� Since �probe decreases to �� this is precisely
what the  � Algorithm does�

Proof of Proposition � From Step �b of the  � Algorithm and Proposition � we have

uprobe � ui � PG�probe
�ui�� ���

We recall that �max � kuprobe � uikL� � From ��� and Lemma �� we deduce that



�n
�max � kPG�probe

�ui�kG � �n �max� ���

But by de�ntion� we know that kPG�probe
�ui�kG � �probe� We thus get

�max � �nkPG�probe
�ui�kG � �n�probe� ���

Using the fact that �probe � �thresh scalethresh� we deduce that

�max � scalethresh �thresh �n� ���

Since we assume that scalethresh � �
�n � we then get �max � �thresh�

�

The following result helps to further explain why �probe needs to be small�

Lemma � For i � � let us denote by !�i � kui�"u�kG �with the notations of the  � Algorithm�� If �probe � !�i�
then we have �probe � ���i �

�



Proof From Step �a of the  � Algorithm and Proposition � we have�

ui � u� � PG�i
�u��� ����

From Corollary � we know that exactly one of the following statements �i� or �ii� holds�

�i� If �probe � !�i� then kuprobe � uikG � �probe�

�ii� If �probe � !�i� then uprobe � "u��

If �probe � !�i� then we will have �probe � ���i �

�

Remark As a direct consequence of Lemma �� we see that if �probe � !�i� then ��� cannot be used to
compute the scale anymore� Therefore� if we want to check if features with a given scale are still present in
ui� then we need to have �probe � !�i�

Remark The result of Lemma � is illustrated by �c� and �d� in Figure �� which illustrates why �probe needs
to be small� On the other hand� the smaller �probe is� the more accurate we need to be when computing
uprobe� As previously mentioned� we arbitrarily choose �probe � �max
�� in our implementation of the  �
Algorithm�

This ends our mathematical analysis of the  � Algorithm� In the following two sections we turn our
attention to numerical results of the  � Algorithm and to other ways in which to exploit our understanding
of how TV regularization recognizes scale in an image�

� Numerical results of the �� Algorithm

We now give some examples of applying the  � Algorithm to both noise�free and noisy images�

��� A detailed look at the �� Algorithm

We �rst apply the  � Algorithm to the Mandrill image shown in Figure �� In this example we wish to �nd
the value of  � that will result in the removal of all features of scale less than or equal to the scale of a single
pixel� Of course� larger features will also be a�ected by the regularization� and some may even be removed�
depending on their initial intensity levels and contrast with surrounding features� This image is ��� x ���
with the domain being the unit square� thus scalethresh � j�j
j��j � �
n�� 
 ��
n� �  
 �n � 
���� We
choose �min � �� The intensity of the image is normalized to be between � and � thus we choose �max to be
large enough to completely change the intensity of a single pixel by � Using ���� �max � �max scalethresh �
 � 
��� � ���������

As this is the �rst time we have seen this algorithm in action� it is enlightening to see what each iteration
of the algorithm produces� both the value of �i �the estimate for  � for each iteration� and the corresponding
regularized image� The �rst �gure in Figure � is the plot of the �min� �i and �max values for each iteration�
Next is the orginal �noise�free� image and the images corresponding to the �rst few �i values found by the
algorithm� Subsequent images appear virtually identical and are omitted� As seen in the plot of � values and
as observed in the images themselves� most of the change occurs within the �rst few iterations� particularly
if good initial values of �min and �max are chosen�

We can �nd as precise an estimate for  � as wanted� Where �i is our estimate at iteration i for  �� and
where �min and �max are the initial lower and upper bounds for the  � Algorithm� then after each iteration
we have a bound on the absolute error of j�i �  �j � � �

�
�i��max � �min�� and similarly for the relative

error� This additional precision comes at a numerical price and is normally unnecessary� given the resulting
insigni�cant amount of change in the image� The �nal estimate for  � is ��������
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Figure �� Results of applying the  � Algorithm to the Mandrill image� where scalethresh is the scale of a
single pixel� First is a plot of the values of �min� �i and �max produced by the  � Algorithm� Next is the
original image� followed by the images corresponding to the �rst three values of �i found by the  � Algorithm�
The �nal estimate for  � is ��������

��� Results of the �� Algorithm for noise�free images

We next give results� both the values found for  � and the corresponding images� of applying the  � Algorithm
to three standard �noise�free� images using scale thresholds of �k�� x �k�� pixels for k �  to � �e�g� for
k � � the scale threshold is a single pixel�� For an n x n image on the unit square� these correspond to
scales of �k�� 
 �n for k �  to �� Of course� these scales given for square features correspond to a variety
of non�square features� For example� the scale of an � x � pixels square is also the scale of both a circle of
radius � pixels and a rectangle of � pixels width and in�nite length� Results are given in Figure � and Table
� The �rst images in each set are a bit larger in order to better see the loss of �ne detail� The Mandrill and
Toys images are both ��� x ���� while the Canaletto image is �� x ��� Consequently� the scale thresholds
for the Mandrill and Toys images range from 
��� to 
� while the scales thresholds for the Canaletto
image range from 
���� to 
��� as seen in Table �

Remark In all three cases� it seems that a signi�cant amount of regularization was necessary even for this
smallest possible scale threshold� the scale of a single pixel� This is seen in comparing the �rst and second
images �the original� and the result of using scalethresh of one pixel� in each set of images� Later� in Section
��� in which we brie�y consider the multiscale e�ects of TV regularization� we look at the results of TV
regularization applied to the Mandrill image when using � � �� �� ��� �� ����  � where  � � ������� is the value
of � found earlier when applying the  � Algorithm where the scale threshold corresponded to a single pixel�

Remark The results seen in Figure � are not as dramatic as those seen in Figure �� This is expected� as
for these images we have not attempted to choose scale thresholds corresponding to speci�c scales present
in the images� as we had done in obtaining the results of Figure �� Still� for each of the three images in
Figure �� there are a number of speci�c features which are obviously present in a few of the images in the
sequence� but then disappear once a certain scale threshold is reached� The conclusion is that each feature
�or portion of a feature� was larger than the scale threshold used to obtain the images in which it was still
present� but smaller than the scale threshold used in obtaining the image in which it �rst was absent� as well
as subsequent images in for which increasingly larger scale thresholds were used�

��� Results of the �� Algorithm for noisy images

We next apply the  � Algorithm to three noisy images� using four di�erent noise levels� as shown in Figure ��
We consider the ��� x ��� Peppers image� the ��� x ��� Elaine image� and the �� x �� Blood Vessels image�
Before adding noise� as usual the images are normalized to minimumand maximumintensities of � and � and
the domain is the unit square� In each case exactly the same Gaussian noise �of four di�erent magnitudes� is
added to each image� The four levels of noise are created by scaling the noise to have maximum magnitude
�both positive and negative� of ����� ����� ���� and ���� Because each image has a di�erent signal level�
although the same noise is added to each image� the resulting noisy images have di�erent signal�to�noise
ratios� as is seen in the second table in Table �� The  � Algorithm is applied to each of the twelve noisy
images where in all cases the scale threshold is  
 �n �where the image is n x n on the unit square�� which

�



Figure �� Results of the  � Algorithm for scale thresholds of �k�� x �k�� pixels for k �  to �� The actual
scale threshold depends on the size of the image� Values of  � found for each scale threshold for each image
are given in Table  and are plotted in Figure �� In each set is the original image followed by the seven
regularized images�

�



Figure �� The  � Algorithm applied to three noisy images� The  � values found using the  � Algorithm� where
the scale threshold was a single pixel� are given in the �rst table in Table �� Noise levels� before and after
regularization� are given in the second table in Table �� For each pair of images� the top image is the noisy
image and the bottom image is the regularized image from solving ��� using the  � value found using the  �
Algorithm�

�



corresponds to a single pixel� The resulting images are given in Figure �� The  � values found and the old
and new SNRs are given in Table ��

The numerical results given for noisy images are not meant to demonstrate the basic e�ects of TV
regularization on a noisy image� which are of course well known by now� What is novel about these results is
that they were obtained without any knowledge of noise level being explicity incorporated into the process
for �nding the optimal value of � and the corresponding regularized image� The only information used by
the  � Algorithm was the scale threshold to use� we chose a scale of one pixel in all twelve cases �three images�
four noise levels for each�� Of course� the amount of noise in the image inherently in�uences the value of
 � found by the  � Algorithm� As expected� applying the  � Algorithm to noisier images results in larger  �
values� as seen in Table ��

Obviously it is quite useful to have an approach to denoising that does not depend an accurate measure
of noise present in the image� particularly since noise level often is unknown or is� at best� an estimate� As
the  � Algorithm is not necessarily a denoising algorithm� in this paper we do not further consider it from
this point of view� We are currently investigating in more detail the usefulness of the  � Algorithm as a
denoising scheme� and we will give results in a separate paper�

��� �� as a function of scalethresh and SNR

We conclude this section of numerical results by examining how  � increases with scalethresh for the three
noise�free images considered and how  � increases with noise for the three noisy images considered� These  �
values were already given in Tables  and Table �� The plots of these data are given in Figure ��

The �rst plot in Figure � shows the values of  � found as a function of scalethresh for the Mandrill� Toy
and Canaletto images� Although each of the noise�free images is quite di�erent from the other two� the
values of  � found for each scalethresh are quite similar� Also� the resolution of the image does not seem to
signi�cantly a�ect the relationship between  � and the chosen scale threshold� as illustrated by the similar
results of both of the ��� x ��� Mandrill and Toy images as compared to the �� x �� Canaletto image�

The other plot in Figure � shows the values of  � found as a function of noise level� For all three images
and for all four noise levels� we found the  � corresponding to a scale threshold of  
 �n� i�e� a single pixel�
For all three images�  � appears to increase as noise level increases at approximately the same rate� Quite
interestingly� the relationship between  � and noise level is nearly exactly linear for the given range of noise
levels�

Observation The  � values for the Blood Vessels image are larger than those for the Peppers and Elaine
images because it is �� x �� as opposed to the Peppers and Elaine images being ��� x ���� Since the
domain for all three images is the unit square� the scale a single pixel in the Peppers image is ��	��� the
scale of a single pixel in the Elaine and Blood Vessel images� The ratios of the Peppers and Elaine  � values
to the Blood Vessels  � values is close to ��	��� �of course since they are di�erent images� we would not
expect this to be exact��

Both plots of Figure � are very interesting� but it is not completely clear how to best interpret or generalize
these results� It will certainly be worthwhile to further investigate these issues in future work�

� Other applications of scale recognition

In this �nal section �prior to the summary and conclusions�� we begin to consider other ways in which to
exploit our understanding of TV regularization�s natural ability to perceive scale in an image� As already
seen above� we can measure the scale throughout the image in order to precisely �nd the minimumvalue of �
required to remove all features at or below any given scale threshold� We brie�y consider two other potential
uses for this ability to measure scale� First� we can determine at exactly which locations there is a feature
or a portion of a feature of or below any given scale� This leads to some insight on the multiscale e�ects
of TV regularization� which we brie�y examine in Section ���� Second� in Section ��� we use the ability to
determine scale at each discrete location throughout the image to examine the rate at which scale is lost as
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Table � The  � values found for the several scale thresholds used when applying the  � Algorithm to the
�noise�free� Mandrill� Toys and Canaletto Images in �� These values are plotted in Figure ��a��

Signal�to�noise ratios

 � values where SNR � ��signal
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Table �� Data for the images seen in Figure �� The �rst table gives the  � values found for the four noise
levels that were added to each image� The second table gives the corresponding signal�to�noise ratios for
each image and noise level� both before and after regularization using the  � value given in the �rst table� A
scale threshold of one pixel was used in all cases� The values in the �rst table are plotted in Figure ��b��
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Figure �� Plots of  � values as a function of scalethresh ��rst plot� and noise level �second plot�� The data
in the �rst plot are the  � values in Table � which were used to obtain the results for the noise�free images
in Figure �� The data in the second plot are the  � values in the �rst table of Table �� which were used to
obtain the results for the noisy images in Figure ��
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� increases for the two images considered in Section ��� and comment on how this might generalize to other
images�

As mentioned earlier� the analysis in this paper is intended to help �rather than exhaustively� develop
a precise understanding of how TV regularization perceives scale in an image and how TV regularization
resolves an image into its various scales� Still� two basic behaviors� which we give next as axioms� should
hold regardless of the complexity of the image�

	�� Measuring scale kukscale and contrast kukcontrast

Let kukscale be a seminorm of u with respect to the scales present in u� and let kukcontrast be a seminorm
of u with respect to the contrast present in u� Given

u � arg min
u

�

�
ku� u�k

� � �TV �u� ���

ui � arg min
u

�

�
ku� u�k

� � �i TV �u� ����

!� � ku� � "u�kG ����

any measure kukscale of scale and kukcontrast of contrast should satisfy the following axioms�

Axiom � �Increasing scale� Where M � sup
�
kukscale and given ���� � ��	�� we have�

� If �� � ��� then ku�kscale � ku�kscale�

� As � !�� kukscale M �

In short� scale is non�decreasing and asymptotically increasing in ��

Axiom � �Decreasing contrast� Given ���� � ��	�� we have�

� If �� � ��� then ku�kcontrast � ku�kcontrast�

� As � !�� kukcontrast� �� and for � � !�� kukcontrast � ��

In short� contrast is decreasing in ��

Remark Axiom  basically says that the evolution of scale� both for the image as a whole and at any
particular location in the image� is nonreversible� That is� there is sort of a scale entropy� as � increases�
the scale� as measured in the image as a whole or at each location� increases asymptotically in �nite time
�i�e� for a �nite value of �� to the limiting maximum scale where there is no variation in scale� Of course� we
know that for � � !� �whos value depends only on u� and the size of the image domain�� the solution to ���
is simply a constant�valued image with value equal to the mean of the original image u�� Axiom � describes
a similar notion for contrast�

De�nition � Let kuk�xscale be the smallest scale in u still present at �x�

Remark For this de�nition� Axiom  becomes a property�

Example We saw in Figure � that the region 
�
��� �
��� �the �rst of the � extrema� is part of features
of three di�erent scales� depending on the value of � used to regularized the image� More precisely� for
x � 
�
��� �
��� �or x � ��
��� �
����the end points of the interval� having measure �� are not important��
we have

kukxscale �

���
��


�� if � � � � �	�



� if �	�
 � � � �
��


� if �
�� � � � ����

For � � ���� there are no longer features present in the regularized image� which would be constant�valued�

��



Remark In addition to the above de�nition of kuk�xscale� there would be several other de�nitions of kukscale
that are natural measures of contrast in an image� Similarly� there would be a variety of natural de�nitions
of kukcontrast� Any global �i�e� over the entire image� or local �i�e� at a speci�c location in the image�
de�nition of kukscale or kukcontrast should satisfy the above axioms�

Since we are measuring scale using ���� De�nition � naturally applies to our work� We will observe the
scale entropy described in Axiom  in the following section�

	�� Multiscale and scalespace e
ects of TV regularization

The multiscale and scalespace�generating e�ects of TV regularization are well known and are the subject
of ongoing investigation� See� for example� 
��� 
�� and 
���� Of course� a more accurate and complete
understanding of the multiscale and scalespace�generating nature of TV regularization is really only possible
if there exists a precise and complete notion of scale as perceived by TV regularization� Therefore� we expect
that the theory and discussion presented in the previous sections will lead to a better understanding of the
multiscale and scalespace�generating e�ects of TV regularization� As mentioned earlier� as this is a fairly
complex issue� we do not attempt to treat it in detail in this paper� Rather� we give two examples that lend
some insight into the inherent ability of TV regularization to recognize scale� insight that we expect to lead
to further discussion and development of theory�

����� Scalespace of Mandrill image

We consider in more detail the Mandrill image shown earlier in Figures � and �� The image is ��� x ����
and as usual the domain is the unit square and we have normalized the image so that the minimum and
maximum intensities are � and �

Earlier we found that  � � ������� is the minimum value of � necessary to remove all features at or
below a scale threshold corresponding to a single pixel� We now examine the results when solving ��� using
a range of values between � and  �� ��  �� ���  �� ����  �� to see in more detail the e�ects of the regularization�
The resulting images are given in Figure �� There are eleven sets of images� the �rst corresponding to the
original image� and the other ten corresponding to the results of solving ��� using these ten values of ��

For each set �organized by columns�� the top image is the image itself� The second image �second row of
the set� shows the locations throughout the image at which there are features at or below the scale threshold
of  
 �n �where n � ����� the scale of a single pixel� Similarly� the third and fourth rows of images show
the locations in the image at which there are features at or below the scale thresholds of  
 �n and  
 �n�
the scales corresponding to  x � pixel and � x � pixel features� respectively� The remaining percentage of
features at or below each of the given scale thresholds for each value of � is given in the �rst table in Table
��

Observation In examining the images in Figure �� it is apparent that most of the feature removal is
relatively immediate� i�e� for the smaller values of �� For example� the second row of images shows the
location of features whose scale corresponds to that of a single pixel� Although a value of  � � ������� is
needed to completely remove all features of this size from the image� even for � � ����  � or � � ����  �� the
image is almost entirely devoid of these one pixel features� We demonstrate this in more detail for a portion
of this image in Figure � Notice� in particular� that the one feature that is still present until the end is the
center of pupil of the Mandrill�s left eye �the right eye� from our perspective�� So if the goal is to remove
all single�pixel features� perhaps a smaller value of � should be used� even if there are a few single�pixel
features still remaining in order to better preserve the �wanted� larger features� This decision will depend
on the image and the reason for applying regularization� It is not completely clear how to best evaluate the
results in Figures � and � still� they are enlightening and shed some new light on how TV regularization
has a multiscale e�ect on images� dependent on the value of � used in solving ���� It is clear that further
investigation of TV regularization multiscale e�ects is warranted�

Remark In the images shown in Figure � and especially in the images shown in Figure � it is clear
that once scale at any given location is recognized as being at or above a certain thresold� it will never

�



Figure �� Results of applying TV regularization ��� to the Mandrill image� The eleven sets of images
correspond to the original image plus the ten images resulting from solving ��� using � � ��  �� ���  �� ���  ��
���  � and ���  � �top set of images� and � � ���  �� ���  �� ���  �� ���  � and ��  � �bottom set�� For each set of
images� the top image is the image itself� while the second through fourth images show the locations of all
�portions of� features with scale at or below  
 �n � x  pixel��  
 �n � x �� and  
 �n �� x ��� respectively�
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Figure � Results of applying TV Regularization using �� The �rst row contains the original image� plus
results of solving ��� using � � ��  �� ���  �� ����  �� The second row contains corresponding images showing
the locations of still�remaining features at or below the one�pixel scale�

drop below that threshold� and in fact� as described in Axiom � the scale at every location throughout the
image will increase asymptotically to a maximum scale as � increases� The white �dots� in Figures � and
Figure  are the locations at which are there features at or below a given scale� Notice that you see only
the disappearance of the dots� but no reappearance of dots or appearance of new dots anywhere� We can
formalize this phenomenum with the following proposition�

Proposition � Given image u�� for a given scale and �� de�ne

S�scale �
n
�x � scaleu��x� � scale� u � arg min

u

�

�
ku� u�k

� � �TV �u�
o

then we have�

� For any �� if scale� � scale� then S�scale� � S�scale� �

� For any scale� if �� � �� then S��scale � S��scale�

Remark This proposition is directly related to Axiom  given in Section �� and to the notion of scale
entropy� Although we do not prove the proposition� the principles conveyed by both statements are apparent
in Figure �� The second statement� in which scale is �xed� is also illustrated quite nicely in Figure �

	�� Rate of loss of features

We last brie�y examine the decay �rate of loss� of features of any given scale in an image� In the previous
section we saw that we can recognize scale throughout the image� It is illuminating to look at the rate of
decay of the remaining scale for increasing values of �� Table � gives us the percentage of all features at
or below a given scale remaining for each value of  �� as illustrated in Figure �� These data are plotted in
Figure ��a��

As a second example we �nd the same information about remaining percentages at the same three scale
levels for the Canaletto image� In this second case� since most of the features for each of the three scales in
the Mandrill image seemed to be removed rather quickly� we now use more values of �� particularly smaller
values� in order to observe more gradually the decrease in percentages� These data are listed in the second
table in Table � and are plotted in Figure ��b��

Remark For both images� in Figure �� we �rst plot the standard �linear� plot of each scale percentage�
and then we give the log �in the y axis� the percentage of features at or below a certain scale� plot of the same
data� From these plots� we see that the rate of loss or decay of the features at or below the three given scales
seems nearly exponential for both images� Of course we could easily contrive an image for which scale decay
is not exponential� Still� it may be that for a variety of natural images� scale decay would be exponential�
That is� most of the features at or below a given scale disappear rapidly� while there are a few features that
still remain for a while until � is too large� This was especially evident in Figures � and � This decay of
scale and our ability to measure it using TV regularization certainly merit further investigation�
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Mandrill Image Canaletto Image

�� as # # of scale remaining �� as # # of scale remaining

of  �  
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 �n of  �  
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 �n
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Table �� The percentage of features at or below three speci�ed scales remaining after applying TV regular�
ization ��� to the Mandrill image �shown in Figure �� and the Canaletto image for various values of �� The
three scales considered are  
 �n�  
 �n and  
 �n� which correspond to scales of  x � � x  and � x � pixel
features� respectively� Each column shows the percentage of the orginal pixel locations recognized as being
at or below the speci�c scale for the given value of �� We found  � using the  � Algorithm� For the Mandrill
image�  � corresponded to removing all features at or below scale  
 �n� notice the  
 �n column of Mandrill
results� For the Canaletto image�  � corresponds to removing all features at or below scale  
 �n� notice this
in the  
 �n column of Canaletto results�
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Figure �� A plot of the remaining percentages of scales listed in Table �� For each pair of images� the
�rst plot is the linear plot of the data� and the second plot is the log plot of the data� The nearly linear
behavior seen in the log plots illustrates the nearly exponential decay of the image features of the three
scales considered� For each image� the three curves� from top to bottom� show the percentage of features at
or below scale thresholds of  
 �n�  
 �n and  
 �n� respectively�
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� Summary and Conclusions

TV regularization naturally recognizes scale in an image� This gives us great insight into how TV regular�
izations works� and it leads to a number of ways in which this ability to recognize scale can be exploited�
As shown� we can automatically and precisely determine how much regularization is needed �i�e� what value
of � to choose� to remove all features at or below a given scale threshold from an image� There is a nice
connection between Meyer�s G Norm and both our notion of scale and our  � Algorithm� This connection
leads to a more intuitve explanation of the G norm and how it relates to scale in an image� The ability
to recognize scale leads to a better understanding of already known TV�based ideas and schemes� including
scalespace� and it leads to a number of new and potentially very useful tasks for manipulating and under�
standing images� including measuring the decay of features of various scales in an image� Using this ability
to measure scale� for the examples we considered� we have seen that most features at a given scale tend to
disappear quickly� while a relatively small fraction persists longer� Some of the ideas investigated in this
paper are complete� and some of the work was intended to show how more possible avenues of investigation
have been opened due to this ability to recognize scale� Finally� although this work is done for images in R��
the theory developed can be extended to any function in any dimension� Other work that naturally stems
from the work done in this paper includes a spatially adaptive  � Algorithm and more e�cient approaches
to �nding  �� such as multigrid and domain decomposition approaches to the  � Algorithm� which we are
currently developing�
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