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Abstract

We investigate how TV regularization naturally recognizes scale of individual image features, and we
show how perception of scale depends on the amount of regularization applied to the image. We give
an automatic method for finding the minimum value of the regularization parameter needed to remove
all features below a user-chosen threshold. We explain the relation of Meyer’s G norm to the perception
of scale, which provides a more intuitive understanding of this norm. We consider other applications of
this ability to recognize scale, including the multiscale effects of TV regularization and the rate of loss of
image features of various scales as a function of increasing amounts of regularization. Several numerical
results are given.

1 Introduction

Consider the problem of restoring a noise-contaminated or otherwise degraded imagein R™: given a measured
image uo(Z), find an approximation u(Z) to the true image tspye (Z), where ug = Ktgpye + 1 and where 5(%)
is the noise or other degradation in the image. The work in this paper results from the case in which
the blurring operator K is the identity, in which case the problem could be considered one of filtering or
denoising: ug = ugrue + 1. Typically our goal is to recover the true image ug,q. as exactly as possible and/or
to find a new image u in which the information of interest is more obvious and/or more easily extracted.

1.1 Total variation regularization in image processing

Just over a decade ago, Rudin, Osher and Fatemi [22] proposed to modify the given image by decreasing the
total variation

TV(u) = /|Vu(i=’)|df (1)

in the image while preserving some fit to the original data ug. Equation (1) is typically referred to as the
total variation or bounded variation seminorm of u. There are two common formulations of this problem:
the unconstrained or Tikhonov formulation [27],

min llu - uoll? +a TV (u) | 2)
and the noise-constrained problem,

min TV (u) subject to ||u — uol|* = o2, (3)
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where the error or noise variance % is assumed to be known. As shown in [10], solving (2) is equivalent to
solving (3). In this paper we consider primarily the unconstrained formulation (2). We note that throughout
this paper || - || = || - |-

In (2), & > 0 is the regularization parameter that determines the balance between goodness of fit to
the original image and the amount of regularization done to the original image ug in order to produce the
approximation u. TV regularization produces a new image u which has less total variation than wug, but
with no particular bias toward a sharp (discontinuous) or smooth solution. When solving (2), the original
image ug and the regularization parameter o determine the sharpness or smoothness of the new, regularized
function u. Larger values of a result in more regularization and less goodness to fit of u of the original data
up. This is illustrated in Figure 1. Although TV regularization was originally introduced for deblurring
and denoising grayscale images, it has subsequently been employed in a variety of other image processing
tasks such as denoising color or other vector-valued images [8], blind deconvolution [13], segmentation [28],
inpainting [12], image decomposition [20], and upsampling [2].

Figure 1: Results of TV regularization of a simple noisy R! function (top row) and the standard Mandrill
image (bottom row) when using different values of « in solving (2). For the R! function, the first plot shows
the true and noisy images. For the Mandrill image, the first image is the original (noise-free) image. For
both, the subsequent figures are the results of solving (2) using & = 0.0001,0.001,0.01 and 0.1 (and o = 1.0
for the R! function), respectively.

1.2 Scale recognition and choice of regularization parameter

Scale is inherently important both in understanding and in manipulating an image. At present the effects of
TV regularization—in particular, how these effects relate to the scale of the various image features—are only
partially understood. Additionally, how to choose the regularization parameter o when solving (2) is often
done haphazardly or experimentally. In contrast, many researchers from a variety of perspectives have more
thoroughly investigated other aspects of TV regularization, such as existence and uniqueness of solutions,
development and convergence analysis of numerical schemes, and the basic effects of TV regularization on
an image. A representative sampling of the literature includes [1], [3], [7], [10], [11], [14], [15], [16], [18], [22],
[25] and [29].

If there is some regularity to the noise and if the noise level is known, then we can use (3) to solve the
TV regularization problem (and the choice of a in (2) would be inherent). If noise is irregular and/or noise
level is unknown, we must in some intelligent way choose a value for . In the past, this has been done more
by trial and error rather than by any well understood theory. While this might result in (indeed, the choice
of « is still often driven by) an image which “looks nice,” it is generally unclear precisely how the image
itself has been affected, which leaves us wondering just how accurately the image produced by regularization
represents the true image. Even in the case of known noise level and type, we may want to choose o based
on criteria other than trying to match a noise constraint. Additionally, we may want to apply regularization
to a noise-free image in order to more easily extract the desired information from the image.



It is clear that it would be helpful to have a more automatic, reliable and theory-based approach for
choosing a. Also, applying TV regularization would be an even more mathematically sound and predictable
approach to image processing if we better understood how the original image ug has been changed, particu-
larly with respect to scale, in order to produce the regularized image u.

1.3 How o« depends on the size of the image domain

In this paper, the image domains in R! and R? will be [0, 1] and [0,1]? = [0,1] x [0, 1], respectively. We
choose these unit domains because we prefer to have the scale of image features be consistent, regardless of
the discretization (resolution) of the image. Because some readers may be more familiar with values of a in
solving (2) for a discrete n x n image when the domain is taken to be [0, n]? rather than [0, 1]%, we give the
following lemma as part of this introductory section.

Lemma 1 If « is the regularization parameter used in solving (2) when the domain is [0,1]%, k € ZF, then
na is the value needed in solving (2) when the domain is [0,n]* in order to produce the same regularized
mage u.

Proof Let [0, 1]* be the unit hypercube in R*, and similarly for [0, n]*. Let i = nZ; that is, (t1,t2, 0y ty) =
n(x1, €2, ..., 25). Then dt = nF dZ. Let ug and Uy be the original image, if defined on [0,1]* and [0, n]",
respectively. Similarly, let « and U be the regularized image (the solution to (2)) if defined on [0, 1]* and

[0, n]*, respectively. That is, for & € [0,n])*, Up(f) = uo(g) = u(¥) and U(t) = u(%) = u(¥). Since
ou(d) _ U(# U U (f
ai,) = 6@'(:) = 6t(;) g_;l, =n 6t(:)’ then
. u(Z) Ou(Z)  du(d) U  aU(1) U (1)
\% = = = nVU().
U(l‘) ( 81‘1 ’ 81‘2 ’ ’ Z)xk ) (n 8t1 N 8t2 ’ N Btk ) " (‘j
Then (2) on [0, 1]* can be related to (2) on [0, n]* as follows:
U=l +aTV(u) = %/ [u(Z) — uo(2)]* dZ + / |Vu(Z)|d¥
Felo,1]* Zefo,1]*
- %/ V(@) - Uo(@)]? & di'+ a n [VU (@) & df
fefo,n]* fe0,n]k
= FUIU=Uol* +naTV(U)}
And, of course,
arg H}]in L AL - Uol> + naTV(U)} = arg H}]in LU = Ul + naTV(U).
|

Remark Changing the domain from [0, 1]* to [0, n]* requires us to change a to na in order to produce
the same results—this is true for any k. For example, for a 256 x 256 image, if our domain is [0, 1]% and
a = 0.001, then we would need o = 0.256 if our domain were instead [0,7]% in order to produce the same
regularized image.

Finally, in addition to choosing the unit hypercube as our domain, we note that all images in R? are
grayscale and, again for consistency, have been normalized so that the minimum and maximum image
intensity values are 0 and 1, respectively.

1.4 Outline

In Section 2 we discuss how TV regularization naturally perceives scale in an image, including how this
perception changes with increasing amounts of regularization (larger values of «) applied to the image. The
main contributions of this paper are given in Sections 3 - 5. In Section 3, we motivate and give an algorithm



for determining the minimum value of « in (2) that will result in the removal of all features of scale at
or below (smaller than) any given threshold. Section 4 is devoted to relating Meyer’s G norm to scale,
to some degree a consequence of the algorithm given in the previous section, which gives us new insight
and a more intuitive understanding of this norm. In Section 5 we give several numerical results of this
algorithm. Finally, in Section 6, we begin to explore additional ways to employ TV regularization’s ability
to recognize scale, including to better understand both the multiscale effects of TV regularization and the
rate at which features of any given scale disappear from an image as a function of «. Section 6 contains
additional numerical results. Conclusions and other final remarks are given in Section 7.

2 Scale, as perceived by TV regularization

In this section we further develop the notion of scale introduced in [25]. We show how TV regularization
naturally recognizes scale, how the notion of scale in TV regularization can be quantified on a pixel-by-pixel
basis, and how perception of scale varies with «.

2.1 Scale and intensity change

As shown by Strong and Chan in [25], there are two fundamental properties of TV regularization:

1. Edge locations of image features tend to be preserved, and under certain conditions, are preserved
exactly.

2. The intensity change § experienced by an individual image feature €2 is inversely proportional to the
scale of that feature,

o «
o(7) = scale(Z)’ (4)

where we define
scale = —|§;2|| (5)

Remark This notion of scale arises naturally in TV regularization, as described in [25], rather than simply
being arbitrarily defined. At present there is discussion about other, more general—and also more math-
ematically abstract—ways of defining scale as it is perceived by TV regularization. For instance, one may
define the scale of an object as being the radius of the largest ball which can be contained in the object. See
also [23] for notions related to scale, as well as further discussions in [25]. The definition of scale in (5) is
essentially a special case of these more general definitions. This definition (5) is intuitively simpler and is
practically (as opposed to theoretically) more useful, and ultimately this particular definition of scale makes
possible the results that we give in this paper.

Remark Property 1 is quite significant and is a primary reason TV regularization is used in a variety of
image processing applications, such as those listed at the end of Section 1.1, not to mention its potential use
in applications other than image processing. Property 2 explains in a very basic way how TV regularization
works: smaller-scaled features (including noise) experience large reduction in intensity, thus removing or
greatly reducing them by flattening them, while larger-scaled features experience relatively little intensity
reduction and are consequently left more intact. This was seen in Figure 1. As Figure 1 also illustrates, a
less than precise understanding of Property 2 can lead to undesirable results when using TV regularization.

Remark As described in [24], TV regularization can be viewed as a model or unbiased case of anisotropic
diffusion, and consequently Property 2 is also one way of explaining how anisotropic diffusion works. We
also note that Bellettini, Caselles and Novaga did a related analysis of TV regularization by considering the

eigenvalue problem of —V - (Igzl) = v. Details can be found in [7].




Equation (4) describes how change in intensity is a function of scale. When rewritten as
«@

mv (6)

we see that scale can be viewed as a function of change in image intensity. Although simple—indeed, in part
because it is so simple—this relationship is potentially very useful. Essentially what it means is that we can
determine what the scales of the various image features are throughout the image by looking at how much
intensity changes as a result of applying TV regularization to the image. Understanding how to measure
scale as perceived by TV regularization potentially has many uses, including four that we will investigate in
this paper:

scale(Z) =

1. We can find the smallest @ needed to remove all features whose scale is less than any scale threshold.
2. We can give an intuitive explanation of Meyer’s G norm by relating it to the above notion of scale.

3. We can better develop our understanding of how TV regularization can be used to produce multiscale
representations of images.

4. We can begin to understand how quickly the various scales present in the image disappear for increasing
values of a.

In this paper we will investigate the first application in detail. We will also consider the three other
applications, but we expect that our results will be the beginning of more analysis of these ideas. In other
words, we expect that more work can and will be done both by ourselves and others to further develop our
understanding of these other aspects of TV regularization. A fifth promising application is that once TV
regularization has been applied, we can determine the scales of the remaining features and using (4) and (6)
we can determine how much intensity was lost due to TV regularization, and add back this lost intensity to
the regularized image to get a more accurate approximation u of the true image uy,y. This fifth application
turns out to be a bit more complicated than it might first seem, and consequently it is being investigated in
a separate paper.

2.2 Scale of piecewise constant features

The notion of scale defined in (5) may at first be unclear or even confusing to the reader to whom it is
new. To make it easier to understand, we explain it for two simple examples. A circle of radius r» would
have scale = nr? / 27 = r/2 that is linearly proportional to radius ». The scale of a sphere would also be
increasing linearly in r. Second, a rectangle of k1 x ky pixels on an n x n discretized grid of the unit square
[0,1] x [0,1] would have scale = kiks / 2n(ky + k2). Consequently, a k x k square has the same scale as
a rectangle of width k/2 and infinite length. In general, large, blocky features have relatively large scale,
while thin features—even those that are very long—have relatively small scale. This fact was one of the
main results of [15], in which Dobson and Santosa use a Fourier analysis to show that TV regularization is
particularly suited to denoising images comprised of large, blocky features.

2.3 Determining scale using the scale recognition probe

Using (6), we can compute the scale, as perceived by TV regularization, in an image. We accomplish this
by performing what we refer to as a scale recognition probe for determining scale, (#) in image u:

Scale Recognition Probe Algorithm

1. Choose aprope

2. Find uprope = arg min £||a — u||2 + qprobe TV ()
3. Compute (&) = |uprope(Z) — u(Z)]

4. Compute scale, (¥) = %




To illustrate the scale recognition probe, we apply the above algorithm to the simple image shown in
Figure 2. In (a) is the noise-free image in which to find scale. In (b) is the image showing scales computed
using the scale recognition probe, and in (c) is the image showing scales as predicted by (5). In (b) and (c)
we assign the background a value of 0, to more easily see the scales of the shapes.

Remark As seen in the image in (c), the corners of the squares and the corners and ends of the rectangles
experience a slightly greater change in intensity, and thus are interpreted as having smaller scale. The
definition of scale and the change in intensity (4) is exact for radially symmetric features. From this point of
view, the corners of each square, for example, are like smaller-scaled features attached to a larger one: like
four small circles connected at each “corner” of a larger circle.

0.04
0.02

Figure 2: The scales of individual features as perceived by TV regularization, found by applying the scale
recognition probe. The first image is the noise-free image in which to recognize scale. The second image
is the image showing computed scales found using the scale recognition probe, and the third image is the
image showing theoretically predicted scales found using (5).

2.4 Perception of scale dependent on amount of regularization done

When using TV regularization, there are two natural ways to recognize the various levels of scale in an
image: first is by simple inspection; second, and more interestingly and usefully, is how TV regularization
will perceive scale. We consider how this perception is affected by the choice of a. The value of & chosen in
solving (2) determines how much regularization of ug occurs in producing u, and thus what scales remain in
the regularized function. More precisely, it is well known that for increasing values of « there is increasing
loss of smaller scale in the image. We look at this in more detail in the following section.

2.4.1 A simple example of evolution of scale perception

Consider the function labeled as “9 extrema” in Figure 3(a). There are three levels of scale at which this
function could be viewed: at the finest level is the actual function, at the next level is the “3 extrema”
function, and at the coursest level is the “1 extremum” function. At successively courser levels, the value
of the function in each region is simply the mean of the values over the subregions found in the finer levels.
Let ag_,3 be the value of a at which the 9-extrema function transitions into the 3-extrema function, as seen
in (b). Tt turns out that for a > ag_,3, TV regularization perceives the function as the 3-extrema function.
This is illustrated by the fact that the function produced using a = 0.0100 in (b), in which ug was the (true)
9-extrema function, is identical to the function produced using o = 0.0100 in (c), when using the 3-extrema
version of ug to solve (2). Similarly, the function produced using o« = 0.100 in (c) in which ug was the
3-extrema function (or equivalently, if the wo used were the original 9-extrema function itself), is identical
to the function produced using a = 0.100 in (d), when using the l1-extremum version of ug to solve (2). This
illustrates that for o > aa_1, TV regularization perceives this function as the 1-extremum function seen in
(c). For o > a1, the resulting regularized image will simply be the constant image shown in (d). It is not
difficult to analytically predict what these transitional values of « should be, as well as the behavior of this
simple function for other values of a. Indeed, we found analytically, rather than empirically, the values for
g3, az—1 and aj_,¢ given in Figure 3. For brevity we omit the details.
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o & 0.0037.
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a l-extremum function.
The transition occurs at
a &2 0.0259.

(d) The evolution from
a l-extremum function
to a constant function.
The transition occurs at
a a2 0.1284.

Figure 3: In R', the scale present throughout the function, as perceived by TV regularization, increases as
« increases. In (a) is the original function, when perceived as having 9, 3 or 1 extrema. For 0 < o < 0.0037,
the function is perceived as the original 9-extrema function, as seen in (b). For 0.0037 < « < 0.0259, the
function is perceived as the 3-extrema function, as seen in (b) and (c). For 0.0259 < « < 0.1284, the function
is perceived as the 1-extrema function, as seen in (c¢) and (d). For 0.1284 < «, the function is perceived as
the constant-valued function in (d).

2.4.2 Generalization

The above example helps explain the well known fact that, in general, any image in R™ will gradually evolve
into an image with larger scales—that is, with less detail, as smaller-scaled features are lost—as the value
of the regularization parameter « increases. Of course, in general the transition from one scale to another
does not occur at a few distinct values of «. Indeed, these transitions are more continuous: for most images,
at various locations and for various values of « this transition is continually occuring as « increases. Also,
images are not comprised only of piecewise constant features, although in the discrete case an n x n image
has n? pixels, each with a particular value, so in this sense the image could be thought of as being piecewise
constant, albeit on a very fine scale. Consequently, the notion of scale is more complicated than thus far
discussed. The analysis in this paper helps (but does not exhaustively) develop a precise understanding of
how TV regularization perceives scale in an image and how TV regularization resolves an image into its
various scales. It turns out that this relatively simple notion of scale is sufficient (and, indeed, necessary) to
obtain the results we give later.

Our goal in the next section will be to determine the value of o needed to remove all features at or below
a certain scale. In order to best preserve the other wanted features, we want to find the minimum such value
of a;, and we would like to find it quickly and accurately.

3 Selection of regularization parameter

We now consider applications of our understanding of TV regularization’s recognization of scale in an image.
The first application is the specific task of removing from an image all features whose scales are at or
below (smaller than) a specific threshold, while leaving all other features as intact as possible. That is, we
would like to find the value of o in solving (2) that is just large enough to result in removing all features
below scaleipresn, but no larger. We denote this particular value as & Where scale, (Z) is the scale of
u=arg Hhin Hlu— uo||* + a TV (u), we define

(7)

& = min{a : min scale, (£) > scaleipresh }-
xr



3.1 An example of what we want to accomplish

As a simple example of what we want to accomplish, we apply TV regularization to the image shown in
Figure 4. This image contains checkboard “texture” of two smaller scales and shapes of four larger scales.
The first image is the original image, while the next six are the images in which we have removed all features
at or below six different scale thresholds, corresponding to the six different scales present in the image. The
values of a corresponding to each of the six scale thresholds are given in the caption of Figure 4. These
values were found using the algorithm that we subsequently give in Section 3.3.

Remark To be clear, the values of @ and the corresponding images given in Figure 4 were not found
experimentally, i.e. by choosing a sequence of « values and looking at the resulting images in order to see
where the different features of varying scales are completely removed. This process, given in Section 3.3, was
automatic and was accomplished as a result of our ability to recognize scale.

Figure 4: Results of solving (2) using values of « that are just large enough to remove all features at or below
specific scale thresholds. The first image is the original image, and the subsequent images are regularized
images found by solving (2) using a-values of 0.00025, 0.00050, 0.00239, 0.00495, 0.00990 and 0.01550. These
are the value of & resulting from using six scale thresholds corresponding to the six distinct scales present in
the image, respectively: 0.00125, 0.00250, 0.00500, 0.01000, 0.02000 and 0.04000. These & values were found
automatically, using the & Algorithm given subsequently in Section 3.3. The first two images are larger in
order to better see the effects of regularization on the artificial texture. The intensities of the objects are
the actual intensities; no rescaling has been done to enhance contrast.



3.2 Basic strategy for finding &
3.2.1 Bisection method

The strategy we use to find & is essentially the bisection method, where the desired “root” is @, as defined in
(7). We will describe why this approach to finding & is a natural one. In using the bisection method, there
are two questions. First is the question of how to choose the initial lower and upper bounds on our estimate
for &, which we denote apin and aumgeey. The simplest choice for o, is 0, since by definition o > 0. In
choosing gz, it is of course necessary that & < aumgy. The choice of apq, will depend on scalespresp and
on the image itself. We revisit how to choose a4, when we consider our first numerical example in Section
5.1.

For each iteration 4, we find u; = arg min f|ju — uo||2 + a; TV (u) where a; = (min + @maz)/2. The
U

second question then is what criteria to use in deciding which of the two subintervals [amin, a;] or [, maz]
to move to after iteration 7. That is, we need to determine whether & < a; or & > «;. Our task is to
determine if there are any features or portions of features in u; with scale at or below scalepresp. To do
this we perform a scale recognition probe, as described in Section 2.3, to find the scale in u;. Once we find
scaley, (¥), we want to determine whether scale,, (Z) < scaleipresn, anywhere # in the image. If so, then our
choice «; is too small and we should move to the upper half of the interval [, @mqz]. If nOt, our choice was
sufficiently large, and since & is the smallest of all such values of «, we know that & < a;, in which case we
move to the lower half of the interval [amin, a;].

Conceptually, we want to compare scaley, (%) to scalepresy. Unfortunately, if §(Z) = 0 anywhere in
the image, we end up dividing by 0. We avoid this by instead simply comparing 6(#) to dtpresp Where
Othresh = Qprobe/scalespresn. Since scaley, (L) < scaleipresh <= (L) > dtnresns if 6(Z) > Senresn anywhere
# in the image, then there are still features at or below scaleip,esp, in which case we need to increase the
value of a by moving to [a;, @mas]; otherwise we move to [@min, ;]

3.2.2 A simple illustration of this approach

In this subsection we illustrate our approach on a simple example, as seen in Figure 5. Each of (a) - (d)
includes a plot of the original function ug, the regularized function u; for a given value of «;, and the second
regularized function uprope, found by applying regularization to u; using apr.pe When performing the scale
recognition probe. To be clear, these images are not the results of the first three steps of the bisection
procedure just described above—they are simply the results of three possible choices of ;. The second plot
in each subfigure is a plot of §(Z) = |uprobe(Z) — u;(£)], the change in intensity due to the scale recognition
probe. We remind the reader that larger § means smaller scale, and inversely. For more clarity, the example
involves a noise-free, mostly piecewise constant function in R'.

Observation For smaller values of «, the smaller features are still present and their scales are recognized.
Notice in the top plot in (a) the 3-extrema feature at » = 0.45. For small «;, the feature is recognized (by
comparing 6(#) t0 d¢presh) as having three small extrema, while for larger « this feature is perceived as being
one larger extrema, as we see in (b) - (d). Next consider the non-piecewise constant features: the triangular
and the semicircular features located at approximately # = 0.65 and 0.90. Notice that for smaller values of
«, as in (a), these are perceived as having smaller scale (larger §), corresponding to the top of each feature,
while for larger « each feature is more flattened and thus each feature is perceived as having larger scale
corresponding to the lower part of the feature, as is seen in (b) - (d).

Observation Consider the extremum located at 0.30. In (a) and (b) this feature is recognized as having
scale < scaletpresn (0 > dthresn ). Notice that ¢ for this feature is the same in both cases. In (c), clearly there
is some of this feature still remaining, but it turns out there is not enough of it (that is, its intensity relative
to the intensity on either side of it is not large enough) to result in § > dtpresn, thus it is not recognized as
having a scale smaller than scaleipresp. In (d) we have exactly the same u;, but this time we use a value of
Qprobe that is half of the oy, o5 used in (c)—mnotice that the limits on the vertical axis in (d) are exactly half
of those in (c). In (d) we see that this time the scale of this feature is accurately computed, which results
in the expected & > dipresn for this feature, as seen in (a) and (b), while for the other features the change
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Figure 5: For increasing values of «, smaller scaled features are lost, as seen in (a) - (c). The ability to
accurately measure scale depends on the value of a;,.0. used in the scale recognition probe: smaller apyope
makes it more likely that scale will be accurately measured, as seen in comparing (c) and (d). The top plots
include the true and regularized functions, and the function resulting from the scale recognition probe. The
bottom plots show the change in intensity § = |u; — wscate| due to the scale recognition probe.

in intensity relative to d¢presh is still the same as in (c). This helps explain why we need to choose apyope
small, as we will also later confirm analytically with Lemma 3 in Section 4.

3.2.3 A theoretical definition of scale

It turns out that given any w in which to determine scale, in performing the scale recognition probewe
could find a value of «a sufficiently small to accurately determine scale throughout the image. However, the
smaller aprope is, the more precise we would need to be in computing t,,.pe, Which is computationally more
expensive. Moreover, given any value of a;,.pe, We could contrive an image in which the scale would not be
accurately measured using that particular value of ap,ope. In the end, we could redefine (6) as

Qprobe
p—a (8)

scaley (%) = 3 IZHLOJr 5(@)

where §(Z) is the change in intensity due to the scale recognition probe.

3.2.4 Estimate interval for &

In trying to determine &, it turns out that where [@min, @mas] is the current estimate interval for &, then
in reality the upper bound on & is & < @mae + @prope. This is clearly illustrated in (¢) and (d) of Figure
5. Similarly, it turns out that the lower bound on & is omin + Qprove Tather than ay;,. Thus rather than
[@mins @mac], the interval [min + Qprobe, Omaz + Qprove] 1s the true estimate interval for &. Note, of course,
that the maximum possible absolute error for our estimate of & is still aypqp — Qpmpn in either case, and
the maximum possible relative error (@maz — @min)/(Qmin + @prope) Will still be approximately the same as
(Omaz — Umin )/ Wmin If Aprobe K Omar. Lemma 3 in Section 4.3 further explains why we need aprobre K amae.
In our subsequent numerical examples, we have arbitarily chosen a,rope = @maz/100.
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Observation If our current estimate interval for & were [min, @maz], then in (a), (b) and (d) of Figure 5
we would increase o (that is, move to [a;, dmar]), While in (c) we would decrease o (move to [@min, @;]).

3.3 The & Algorithm

We now give the complete algorithm for finding a.

& Algorithm

Choose Uminy Omaz Scalethresh
2. Initialize i = 1, o1 = (@min + Omaz)/2,
Qprobe = amax/looa 6th7‘esh = aprobe/scalethresh
3. Repeat steps a - d until error < desired tolerance
3a. w; =arg min Lf|u— uo||2 +a; TV (u)
U
Uprobe = ATY Hhin Hlu— uZ||2 + aprope TV (1)
3b.  Smae = max [Uuppope (T) — 4 (T)]
xr
3c. If 6max Z 6th7‘esh
Amin = Q4
else
Amar = Qf
3d. Update: i=i+1, & = (@min + Omaz)/2,
Qprobe = amax/looa 6th7‘esh = aprobe/scalethresh

4. @ = amar + Qprobe

Remark We allow aprope to vary with aumaz, to ensure that aprope € apmae. In the above algorithm we
update apyope at each step to be aprobe = Amar/100. Also, to account for numerical imprecisions, to be more
conversative one might choose dp,¢c5, to be slightly smaller than the theoretical d;4.¢55- In the results given
in the subsequent figures we compare 4, With 0.95d;p,¢54. Finally, the error in Step 3 could be either the
absolute or relative error.

Prior to giving numerical results of this algorithm, in the following section, we carry out a mathematical
study of the & Algorithm.
4 Mathematical analysis of the a Algorithm

In this section we analyze the & Algorithm from the perspective of the G norm introduced by Meyer in
[19]. Essentially, we show how our notion of scale helps give an intuitive interpretation of the G norm and
conversely how this norm gives some enlightening insight into the & Algorithm.

4.1 Meyer’s G norm

Recently, Meyer did an interesting mathematical analysis of the Rudin-Osher-Fatemi model in [19]. He
introduced a new space, the G space, to model oscillating patterns:

Definition 1 G is the Banach space composed of the distributions f which can be written

f = 0141 + 0292 = div (g) 9)
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with g1 and g9 in L= . On G, the following norm is defined:

lella =it { llgllzs = v =divig), 9= (91.92), 91 € 1% g2 € 1, lg(@)| = VIgr P + g2 Pw) | (10)

See [5] for an analysis of (G in a discrete setting and [4] for a generalization of Meyer’s definition to
bounded domains in a continuous setting. We will use the following ball in G (a > 0):

Go={veG:|v|lg <a}. (11)

We consider the discrete setting. It is shown in [5] that G is then the set of functions with zero mean. The
following Lemma will prove to be useful:

Lemma 2 If f belongs to G (i.e. if f is of zero mean), then
1
ol < lflle < 4nlfl|z (12)

Proof In [5], it is shown that there exists g such that f = divg and ||f|l¢ = ||g||z=. It is easy to check
that ||div||re < 4n, which gives the right-hand side inequality in (12). Since the identity I = div =1 div, we
have 1 < ||div =Y||pe]||div ||z, from which we get the left-hand side of (12).

Remark It is a standard result that in a finite dimensional normed space, all of the norms are equivalent.
Lemma 2 gives the equivalence constants explicitly. 1/n is the discretization step if our image is n x n on the
unit square: it is clear that as n — 400, then the G norm and the L° norm are no long equivalent norms.

4.2 Relating the G norm and ROF model

Let us consider the ROF problem (2). The following proposition is shown in [9] (the proof is based on convex
analysis):

Proposition 1 The solution to (2) is given by
u = ug — Pg_ (uo) (13)

where Pg_(ug) denotes the orthogonal projection (with respect to the L* scalar product) of ug on G, defined
by (11).

In [19], Meyer introduced the G norm to analyze the mathematical properties of the ROF model. One
of the main results of [19] happens to be a straightforward corollary of Proposition 1. We first define

& = ||uo — o], (14)
and then give the corollary.

Corollary 1 Where u is the solution of (2) and ug is the mean of ug, then we have:
o Ifa <a, then ||u— uol|lg = a.

o Ifa>a, then u= ugp.
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Remark Tt is well known that for any image there is a finite a-value above which the solution to (2) is
simply the mean of the original image wg. Thus we see intuitively that & = ||ug — @ol|g is precisely this value
of a. As we can see, the behavior of the ROF model is closely related to the G norm of the initial data ug.
Before now, there has been no easy or intuitive interpretation of the G' norm.

Let us again consider (6), which links scale to . When rewritten as
a = d scale (15)
we see that the G norm in Corollary 1 is proportional to scale. We give a rough explanation of Corollary 1:

o If ug has features with scale larger than § scale, then u — ug contains all the features with scale smaller
than 4 scale.

e If all the features in ug are of scale smaller than § scale, then u = ug.

This confirms the analysis of the ROF model in [25] based on scale.

Remark There is another way to see that the GG norm is closely related to the notion of scale. We can
see it through the algorithms used to compute them. In this paper, we have presented the & Algorithm
to compute the parameter « in (2) to remove all the features with scale equal to or smaller than a given
threshold. Thanks to (15), we see that this essentially amounts to constraining the residual u — ug to be
such that ||u — uo||¢ = d scale. However, as far as we know, the only algorithm that has been proposed to
compute the G norm of an image is the one introduced in [6]. This algorithm is also based on the bisection
method: one compares u with Pg_(u), that is one checks if all the features in u are smaller than § scale.

4.3 Mathematical study of the & Algorithm

In this subsection, we give more theoretical insight into the @ Algorithm. We take the same notations as in
the description of the a Algorithm.

Proposition 2 If scaleipres, < 1/4n, then the & Algorithm will return & = apyope.-

Remark The aim of this proposition is simply to confirm that the & Algorithm does what we would expect
it to do in one extreme case. Indeed, 1/4n is the smallest available scale in the image: it is the scale of a
single pixel when the image is n x n and the domain is the unit square. If we choose scaleipresn < 1/4n,
than we expect to keep all the features of the original image. Since .. decreases to 0, this is precisely
what the & Algorithm does.

Proof of Proposition 2 From Step 2b of the & Algorithm and Proposition 1, we have

(ui)- (16)

Uprobe = Ui — PGQ

probe
We recall that dpa0 = ||tprose — Ui||Loe. From (16) and Lemma 2, we deduce that
1
1 0mar <Pa.,,,,. (wille < 4ndmas. (17)
But by defintion, we know that HPGapmbe(ui)HG < aprove. We thus get
Smar < 40P, (ui)ll < 4naprope. (18)

Using the fact that aprobe = Stnresn scaleipresn, we deduce that
6max S Scalethresh 6th7‘esh 4n. (19)

Since we assume that scaleippesy, < ﬁ, we then get 640 < dthresh-

The following result helps to further explain why «;,.p. needs to be small.

Lemma 3 Fori > 1, let us denote by &; = ||u;—tol||g (with the notations of the & Algorithm). If aprope > G,
then we have dprope = 04, .
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Proof From Step 2a of the & Algorithm and Proposition 1, we have:
U; = Ug — PGQ,(UO)- (20)
From Corollary 1, we know that exactly one of the following statements (i) or (ii) holds:
(i) If aprove < @y, then ||tprobe — illG = Qprobe-
(ii) If aprobe > &, then up,ope = to.
If arprove > G, then we will have dpyope = da;-

Remark As a direct consequence of Lemma 3, we see that if aprope > G;, then (6) cannot be used to
compute the scale anymore. Therefore, if we want to check if features with a given scale are still present in
u;, then we need to have aprope < é;.

Remark The result of Lemma 3 is illustrated by (c) and (d) in Figure 5, which illustrates why apyop. needs
to be small. On the other hand, the smaller aprope is, the more accurate we need to be when computing
Uprobe. As previously mentioned, we arbitrarily choose apyope = @mar/100 in our implementation of the &
Algorithm.

This ends our mathematical analysis of the a Algorithm. In the following two sections we turn our
attention to numerical results of the @ Algorithm and to other ways in which to exploit our understanding
of how TV regularization recognizes scale in an image.

5 Numerical results of the @ Algorithm

We now give some examples of applying the & Algorithm to both noise-free and noisy images.

5.1 A detailed look at the & Algorithm

We first apply the & Algorithm to the Mandrill image shown in Figure 6. In this example we wish to find
the value of & that will result in the removal of all features of scale less than or equal to the scale of a single
pixel. Of course, larger features will also be affected by the regularization, and some may even be removed,
depending on their initial intensity levels and contrast with surrounding features. This image is 256 x 256
with the domain being the unit square, thus scaleipresn = |Q2]/]092] = (1/n?) / (4/n) =1 /4n = 1/1024. We
choose i, = 0. The intensity of the image is normalized to be between 0 and 1, thus we choose 4, to be
large enough to completely change the intensity of a single pixel by 1. Using (4), &mazr = Omazr SC@lethresn =
1-1/1024 ~ 0.000977.

As this is the first time we have seen this algorithm in action, it is enlightening to see what each iteration
of the algorithm produces: both the value of a; (the estimate for & for each iteration) and the corresponding
regularized image. The first figure in Figure 6 is the plot of the aynpn, ; and g, values for each iteration.
Next is the orginal (noise-free) image and the images corresponding to the first few a; values found by the
algorithm. Subsequent images appear virtually identical and are omitted. As seen in the plot of a values and
as observed in the images themselves, most of the change occurs within the first few iterations, particularly
if good initial values of oy, and aynq, are chosen.

We can find as precise an estimate for & as wanted. Where «; is our estimate at iteration ¢ for &, and
where Qi and q g, are the initial lower and upper bounds for the & Algorithm, then after each iteration
we have a bound on the absolute error of |o; — &| < (%)i(am(w — Qmin), and similarly for the relative
error. This additional precision comes at a numerical price and is normally unnecessary, given the resulting
insignificant amount of change in the image. The final estimate for & is 0.00052.
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Figure 6: Results of applying the & Algorithm to the Mandrill image, where scaleip,esp is the scale of a
single pixel. First is a plot of the values of aynipn, a; and a4, produced by the & Algorithm. Next is the
original image, followed by the images corresponding to the first three values of a; found by the & Algorithm.
The final estimate for & is 0.00052.

5.2 Results of the & Algorithm for noise-free images

We next give results, both the values found for & and the corresponding images, of applying the & Algorithm
to three standard (noise-free) images using scale thresholds of 28~1 x 2~ pixels for £ = 1 to 7 (e.g. for
k = 1, the scale threshold is a single pixel). For an n x n image on the unit square, these correspond to
scales of 28~1 /4n for k = 1 to 7. Of course, these scales given for square features correspond to a variety
of non-square features. For example, the scale of an 8 x 8 pixels square is also the scale of both a circle of
radius 4 pixels and a rectangle of 4 pixels width and infinite length. Results are given in Figure 7 and Table
1. The first images in each set are a bit larger in order to better see the loss of fine detail. The Mandrill and
Toys images are both 256 x 256, while the Canaletto image is 512 x 512. Consequently, the scale thresholds
for the Mandrill and Toys images range from 1/1024 to 1/16 while the scales thresholds for the Canaletto
image range from 1/2048 to 1/32, as seen in Table 1.

Remark In all three cases, it seems that a significant amount of regularization was necessary even for this
smallest possible scale threshold, the scale of a single pixel. This is seen in comparing the first and second
images (the original, and the result of using scale;pyesp of one pixel) in each set of images. Later, in Section
6.2 in which we briefly consider the multiscale effects of TV regularization, we look at the results of TV
regularization applied to the Mandrill image when using a = 0.1@, 0.24, ..., & where & = 0.00052 is the value
of a found earlier when applying the & Algorithm where the scale threshold corresponded to a single pixel.

Remark The results seen in Figure 7 are not as dramatic as those seen in Figure 4. This is expected, as
for these images we have not attempted to choose scale thresholds corresponding to specific scales present
in the images, as we had done in obtaining the results of Figure 4. Still, for each of the three images in
Figure 7, there are a number of specific features which are obviously present in a few of the images in the
sequence, but then disappear once a certain scale threshold is reached. The conclusion is that each feature
(or portion of a feature) was larger than the scale threshold used to obtain the images in which it was still
present, but smaller than the scale threshold used in obtaining the image in which it first was absent, as well
as subsequent images in for which increasingly larger scale thresholds were used.

5.3 Results of the & Algorithm for noisy images

We next apply the & Algorithm to three noisy images, using four different noise levels. as shown in Figure 8.
We consider the 256 x 256 Peppers image, the 256 x 256 Elaine image, and the 140 x 140 Blood Vessels image.
Before adding noise, as usual the images are normalized to minimum and maximum intensities of 0 and 1, and
the domain is the unit square. In each case exactly the same Gaussian noise (of four different magnitudes) is
added to each image. The four levels of noise are created by scaling the noise to have maximum magnitude
(both positive and negative) of 0.25, 0.50, 0.75 and 1.00. Because each image has a different signal level,
although the same noise is added to each image, the resulting noisy images have different signal-to-noise
ratios, as is seen in the second table in Table 2. The & Algorithm is applied to each of the twelve noisy
images where in all cases the scale threshold is 1 /4n (where the image is n x n on the unit square), which
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Figure 7: Results of the & Algorithm for scale thresholds of 2¢~1 x 2¥~1 pixels for £ = 1 to 7. The actual
scale threshold depends on the size of the image. Values of & found for each scale threshold for each image
are given in Table 1 and are plotted in Figure 9. In each set is the original image followed by the seven
regularized images.

16



Figure 8: The & Algorithm applied to three noisy images. The & values found using the & Algorithm, where
the scale threshold was a single pixel, are given in the first table in Table 2. Noise levels, before and after
regularization, are given in the second table in Table 2. For each pair of images, the top image is the noisy
image and the bottom image is the regularized image from solving (2) using the & value found using the &
Algorithm.
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corresponds to a single pixel. The resulting images are given in Figure 8. The & values found and the old
and new SNRs are given in Table 2.

The numerical results given for noisy images are not meant to demonstrate the basic effects of TV
regularization on a noisy image, which are of course well known by now. What is novel about these results is
that they were obtained without any knowledge of noise level being explicity incorporated into the process
for finding the optimal value of « and the corresponding regularized image. The only information used by
the & Algorithm was the scale threshold to use: we chose a scale of one pixel in all twelve cases (three images,
four noise levels for each). Of course, the amount of noise in the image inherently influences the value of
a found by the & Algorithm. As expected, applying the & Algorithm to noisier images results in larger a
values, as seen in Table 2.

Obviously it is quite useful to have an approach to denoising that does not depend an accurate measure
of noise present in the image, particularly since noise level often is unknown or is, at best, an estimate. As
the @ Algorithm is not necessarily a denoising algorithm, in this paper we do not further consider it from
this point of view. We are currently investigating in more detail the usefulness of the & Algorithm as a
denoising scheme, and we will give results in a separate paper.

5.4 ¢ as a function of scaley,.., and SNR

We conclude this section of numerical results by examining how & increases with scaleippesp for the three
noise-free images considered and how & increases with notse for the three noisy images considered. These a
values were already given in Tables 1 and Table 2. The plots of these data are given in Figure 9.

The first plot in Figure 9 shows the values of & found as a function of scale;pcsn for the Mandrill, Toy
and Canaletto images. Although each of the noise-free images is quite different from the other two, the
values of a found for each scale;p,esp are quite similar. Also, the resolution of the image does not seem to
significantly affect the relationship between & and the chosen scale threshold, as illustrated by the similar
results of both of the 256 x 256 Mandrill and Toy images as compared to the 512 x 512 Canaletto image.

The other plot in Figure 9 shows the values of & found as a function of noise level. For all three images
and for all four noise levels, we found the & corresponding to a scale threshold of 1/4n, i.e. a single pixel.
For all three images, & appears to increase as noise level increases at approximately the same rate. Quite
interestingly, the relationship between & and noise level is nearly exactly linear for the given range of noise
levels.

Observation The & values for the Blood Vessels image are larger than those for the Peppers and Elaine
images because it is 140 x 140 as opposed to the Peppers and Elaine images being 256 x 256. Since the
domain for all three images is the unit square, the scale a single pixel in the Peppers image is 140/256 the
scale of a single pixel in the Elaine and Blood Vessel images. The ratios of the Peppers and Elaine & values
to the Blood Vessels & values is close to 140/256 (of course since they are different images, we would not
expect this to be exact).

Both plots of Figure 9 are very interesting, but it is not completely clear how to best interpret or generalize
these results. It will certainly be worthwhile to further investigate these issues in future work.

6 Other applications of scale recognition

In this final section (prior to the summary and conclusions), we begin to consider other ways in which to
exploit our understanding of TV regularization’s natural ability to perceive scale in an image. As already
seen above, we can measure the scale throughout the image in order to precisely find the minimum value of «
required to remove all features at or below any given scale threshold. We briefly consider two other potential
uses for this ability to measure scale. First, we can determine at exactly which locations there is a feature
or a portion of a feature of or below any given scale. This leads to some insight on the multiscale effects
of TV regularization, which we briefly examine in Section 6.2. Second, in Section 6.3 we use the ability to
determine scale at each discrete location throughout the image to examine the rate at which scale is lost as
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scalespresp | Mandrill Toys Canaletto
1/2048 - - 0.00012
1/1024 0.00052 | 0.00018 0.00031
1/512 0.00100 | 0.00066 0.00068
1/256 0.00132 | 0.00151 0.00099
1/128 0.00224 | 0.00308 0.00175

1/64 0.00418 | 0.00457 | 0.00256
1/32 0.00750 | 0.01007 | 0.00346
1/16 0.01793 | 0.01670 -

Table 1: The & values found for the several scale thresholds used when applying the & Algorithm to the
(noise-free) Mandrill, Toys and Canaletto Tmages in 7. These values are plotted in Figure 9(a).

Signal-to-noise ratios

& values where SNR = ingnal/o%oise
Noise | Peppers | Elaine Blood Noise Peppers Elaine Blood Vessels
level Vessels level Old New Old New Old New
0.25 | 0.00044 | 0.00031 | 0.00045 0.25 | 11.11 | 22.23 | 11.56 | 24.54 | 10.18 | 31.29
0.50 | 0.00052 | 0.00051 | 0.00092 0.50 2.78 | 17.18 | 2.89 | 15.78 | 2.55 | 14.36
0.75 | 0.00080 | 0.00074 | 0.00134 0.75 1.23 | 11.29 1.28 | 11.60 1.13 9.81
1.00 | 0.00106 | 0.00098 | 0.00176 1.00 0.69 | 855 | 0.72 | 9.20 | 0.64 7.53

Table 2: Data for the images seen in Figure 8. The first table gives the & values found for the four noise
levels that were added to each image. The second table gives the corresponding signal-to-noise ratios for
each image and noise level, both before and after regularization using the & value given in the first table. A
scale threshold of one pixel was used in all cases. The values in the first table are plotted in Figure 9(b).
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(a) & as function of scaleipresh. (b) & as function of noise level.

Figure 9: Plots of & values as a function of scalespresn (first plot) and noise level (second plot). The data
in the first plot are the & values in Table 1, which were used to obtain the results for the noise-free images
in Figure 7. The data in the second plot are the & values in the first table of Table 2, which were used to
obtain the results for the noisy images in Figure 8.
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« increases for the two images considered in Section 6.2 and comment on how this might generalize to other
images.

As mentioned earlier, the analysis in this paper is intended to help (rather than exhaustively) develop
a precise understanding of how TV regularization perceives scale in an image and how TV regularization
resolves an image into its various scales. Still, two basic behaviors, which we give next as axioms, should
hold regardless of the complexity of the image.

6.1 Measuring scale ||u||scate and contrast ||u||contrast

Let ||u]|scate be a seminorm of u with respect to the scales present in u, and let ||u||contrast be a seminorm
of u with respect to the contrast present in u. Given

u = arg min L|lu—uo|®* 4+ a TV (u) (21)
u; = arg min L|ju— uo||2 +a; TV (u) (22)
& = |luo - uolla (23)

any measure ||u||scqare Of scale and ||u||contrqase Of contrast should satisfy the following axioms.

Axiom 1 (Increasing scale) Where M = sup ||u||scaie and given (21) - (23), we have:

o IfOél < ag, then ||u1||scale S ||u2||scale'
o As« /‘OA[) ||u||scale /M

In short, scale is non-decreasing and asymptotically increasing in «.
Axiom 2 (Decreasing contrast) Given (21) - (23), we have:

L Ifal < ag, then ||u1||cont7'ast > ||u2||cont7'ast'

o Asa /&, ||ullecontrast \( 0, and for o > &, ||ul|contrast = 0.

In short, contrast is decreasing in «.

Remark Axiom 1 basically says that the evolution of scale, both for the image as a whole and at any
particular location in the image, is nonreversible. That is, there is sort of a scale entropy: as « increases,
the scale, as measured in the image as a whole or at each location, increases asymptotically in finite time
(i.e. for a finite value of «) to the limiting maximum scale where there is no variation in scale. Of course, we
know that for & > & (whos value depends only on ug and the size of the image domain), the solution to (2)
is simply a constant-valued image with value equal to the mean of the original image ug. Axiom 2 describes
a similar notion for contrast.

Definition 2 Let ||u|| be the smallest scale in u still present at .

z
scale
Remark For this definition, Axiom 1 becomes a property.

Example We saw in Figure 3 that the region [9/27,10/27] (the first of the 9 extrema) is part of features
of three different scales, depending on the value of « used to regularized the image. More precisely, for
x €19/27,10/27] (or € (9/27,10/27)—the end points of the interval, having measure 0, are not important),
we have

1/54 if 0§Oé<0[9_>3
— 1/18 if Qg3 S o < (0341

1/6 if 341 S o < 0190

||u||§cale

For o > 1,0 there are no longer features present in the regularized image, which would be constant-valued.
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Remark In addition to the above definition of ||u||fcale, there would be several other definitions of ||u||scaie
that are natural measures of contrast in an image. Similarly, there would be a variety of natural definitions
of ||t||contrast- Any global (i.e. over the entire image) or local (i.e. at a specific location in the image)
definition of ||ul|scate OF ||t||contrast should satisfy the above axioms.

Since we are measuring scale using (6), Definition 2 naturally applies to our work. We will observe the
scale entropy described in Axiom 1 in the following section.

6.2 Multiscale and scalespace effects of TV regularization

The multiscale and scalespace-generating effects of TV regularization are well known and are the subject
of ongoing investigation. See, for example, [17], [21] and [26]. Of course, a more accurate and complete
understanding of the multiscale and scalespace-generating nature of TV regularization is really only possible
if there exists a precise and complete notion of scale as perceived by TV regularization. Therefore, we expect
that the theory and discussion presented in the previous sections will lead to a better understanding of the
multiscale and scalespace-generating effects of TV regularization. As mentioned earlier, as this is a fairly
complex issue, we do not attempt to treat it in detail in this paper. Rather, we give two examples that lend
some insight into the inherent ability of TV regularization to recognize scale, insight that we expect to lead
to further discussion and development of theory.

6.2.1 Scalespace of Mandrill image

We consider in more detail the Mandrill image shown earlier in Figures 6 and 7. The image is 256 x 256,
and as usual the domain is the unit square and we have normalized the image so that the minimum and
maximum intensities are 0 and 1.

Earlier we found that & = 0.00052 is the minimum value of « necessary to remove all features at or
below a scale threshold corresponding to a single pixel. We now examine the results when solving (2) using
a range of values between 0 and &,0.1a,0.24,...,&, to see in more detail the effects of the regularization.
The resulting images are given in Figure 10. There are eleven sets of images, the first corresponding to the
original image, and the other ten corresponding to the results of solving (2) using these ten values of a.

For each set (organized by columns), the top image is the image itself. The second image (second row of
the set) shows the locations throughout the image at which there are features at or below the scale threshold
of 1/4n (where n = 256), the scale of a single pixel. Similarly, the third and fourth rows of images show
the locations in the image at which there are features at or below the scale thresholds of 1/3n and 1/ 2n,
the scales corresponding to 1 x 2 pixel and 2 x 2 pixel features, respectively. The remaining percentage of
features at or below each of the given scale thresholds for each value of « is given in the first table in Table

3.

Observation In examining the images in Figure 10, it is apparent that most of the feature removal is
relatively immediate, i.e. for the smaller values of . For example, the second row of images shows the
location of features whose scale corresponds to that of a single pixel. Although a value of & = 0.00052 is
needed to completely remove all features of this size from the image, even for « = 0.30 @ or a = 0.40 &, the
image is almost entirely devoid of these one pixel features. We demonstrate this in more detail for a portion
of this image in Figure 11. Notice, in particular, that the one feature that is still present until the end is the
center of pupil of the Mandrill’s left eye (the right eye, from our perspective). So if the goal is to remove
all single-pixel features, perhaps a smaller value of a should be used, even if there are a few single-pixel
features still remaining in order to better preserve the (wanted) larger features. This decision will depend
on the image and the reason for applying regularization. It is not completely clear how to best evaluate the
results in Figures 10 and 11; still, they are enlightening and shed some new light on how TV regularization
has a multiscale effect on images, dependent on the value of « used in solving (2). Tt is clear that further
investigation of TV regularization multiscale effects is warranted.

Remark In the images shown in Figure 10 and especially in the images shown in Figure 11, it is clear
that once scale at any given location is recognized as being at or above a certain thresold, it will never
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Figure 10: Results of applying TV regularization (2) to the Mandrill image. The eleven sets of images
correspond to the original image plus the ten images resulting from solving (2) using @ = 0.1&, 0.2&, 0.3 &,
0.4 & and 0.5& (top set of images) and o = 0.6 &, 0.7&, 0.8 &, 0.9& and 1.0& (bottom set). For each set of
images, the top image is the image itself, while the second through fourth images show the locations of all
(portions of) features with scale at or below 1 /4n (1 x 1 pixel), 1 /3n (1 x 2) and 1/2n (2 x 2), respectively.
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Figure 11: Results of applying TV Regularization using «. The first row contains the original image, plus
results of solving (2) using & = 0.14,0.24,...,&. The second row contains corresponding images showing
the locations of still-remaining features at or below the one-pixel scale.

drop below that threshold, and in fact, as described in Axiom 1, the scale at every location throughout the
image will increase asymptotically to a maximum scale as « increases. The white “dots” in Figures 10 and
Figure 11 are the locations at which are there features at or below a given scale. Notice that you see only
the disappearance of the dots, but no reappearance of dots or appearance of new dots anywhere. We can
formalize this phenomenum with the following proposition.

Proposition 3 Given image ug, for a given scale and «, define

& ale = {f: scale, (F) < scale,u = arg min L||u — uo||* + aTV(u)}
U

then we have:

o For any «, if scale; < scaley then S2 c s

scaleq scaleg *

e For any scale, if oy > g then ST, C S72,..
Remark This proposition is directly related to Axiom 1 given in Section 6.1 and to the notion of scale
entropy. Although we do not prove the proposition, the principles conveyed by both statements are apparent
in Figure 10. The second statement, in which scale is fixed, is also illustrated quite nicely in Figure 11.

6.3 Rate of loss of features

We last briefly examine the decay (rate of loss) of features of any given scale in an image. In the previous
section we saw that we can recognize scale throughout the image. It is illuminating to look at the rate of
decay of the remaining scale for increasing values of «. Table 3 gives us the percentage of all features at
or below a given scale remaining for each value of &, as illustrated in Figure 10. These data are plotted in
Figure 12(a).

As a second example we find the same information about remaining percentages at the same three scale
levels for the Canaletto image. In this second case, since most of the features for each of the three scales in
the Mandrill image seemed to be removed rather quickly, we now use more values of «, particularly smaller
values, in order to observe more gradually the decrease in percentages. These data are listed in the second
table in Table 3 and are plotted in Figure 12(b).

Remark TFor both images, in Figure 12, we first plot the standard (linear) plot of each scale percentage,
and then we give the log (in the y axis, the percentage of features at or below a certain scale) plot of the same
data. From these plots, we see that the rate of loss or decay of the features at or below the three given scales
seems nearly exponential for both images. Of course we could easily contrive an image for which scale decay
is not exponential. Still, it may be that for a variety of natural images, scale decay would be exponential.
That is, most of the features at or below a given scale disappear rapidly, while there are a few features that
still remain for a while until « is too large. This was especially evident in Figures 10 and 11. This decay of
scale and our ability to measure it using TV regularization certainly merit further investigation.
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Mandrill Image Canaletto Image

a, as % % of scale remaining a, as % % of scale remaining

of & 1/4n  1/3n  1/2n of & 1/4n  1/3n  1/2n
0 100.00 | 100.00 | 100.00 0 100.00 | 100.00 | 100.00
10 36.77 | 49.15 57.88 1 60.39 70.30 77.39
20 16.85 26.73 37.25 2 41.95 | 49.31 63.76
30 7.79 14.74 | 24.03 3 28.28 35.50 50.32
40 3.34 7.79 15.11 4 20.22 27.42 41.07
50 1.16 3.68 8.87 5 14.77 | 21.67 | 35.75
60 0.37 1.64 4.96 6 10.79 17.38 30.41
70 0.09 0.61 2.54 8 6.08 11.97 | 23.32
80 0.01 0.22 1.14 10 3.74 8.44 18.46
90 0.01 0.15 0.50 12 2.11 6.14 14.54
100 0.00 0.07 0.17 14 1.29 4.50 11.80
17 0.68 3.00 8.78

20 0.36 2.06 6.71

25 0.08 0.91 4.25

30 0.01 0.52 2.76

40 0.01 0.24 1.30

50 0.00 0.04 0.54

60 0.00 0.03 0.22

75 0.00 0.00 0.05

100 0.00 0.00 0.00

Table 3: The percentage of features at or below three specified scales remaining after applying TV regular-
ization (2) to the Mandrill image (shown in Figure 10) and the Canaletto image for various values of «. The
three scales considered are 1 /4n, 1 /3n and 1/ 2n, which correspond to scales of 1 x 1, 2 x 1 and 2 x 2 pixel
features, respectively. Each column shows the percentage of the orginal pixel locations recognized as being
at or below the specific scale for the given value of @. We found & using the & Algorithm. For the Mandrill
image, & corresponded to removing all features at or below scale 1 /4n: notice the 1 /4n column of Mandrill
results. For the Canaletto image, & corresponds to removing all features at or below scale 1/ 2n: notice this
in the 1/2n column of Canaletto results.

100, 100, 1004 100,

30| 30|

01 01
20| 20|
10| 10|

] 20 40 60 80 100 0 20 40 60 80 100 ] 20 40 60 80 00 % 20 40 60 80 100

(a) Decay of features in Mandrill image. (b) Decay of features in Canaletto image.

Figure 12: A plot of the remaining percentages of scales listed in Table 3. For each pair of images, the
first plot is the linear plot of the data, and the second plot is the log plot of the data. The nearly linear
behavior seen in the log plots illustrates the nearly exponential decay of the image features of the three
scales considered. For each image, the three curves, from top to bottom, show the percentage of features at
or below scale thresholds of 1 /4n, 1/3n and 1/ 2n, respectively.
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7 Summary and Conclusions

TV regularization naturally recognizes scale in an image. This gives us great insight into how TV regular-
izations works, and it leads to a number of ways in which this ability to recognize scale can be exploited.
As shown, we can automatically and precisely determine how much regularization is needed (i.e. what value
of « to choose) to remove all features at or below a given scale threshold from an image. There is a nice
connection between Meyer’s G Norm and both our notion of scale and our & Algorithm. This connection
leads to a more intuitve explanation of the G norm and how it relates to scale in an image. The ability
to recognize scale leads to a better understanding of already known TV-based ideas and schemes, including
scalespace, and it leads to a number of new and potentially very useful tasks for manipulating and under-
standing images, including measuring the decay of features of various scales in an image. Using this ability
to measure scale, for the examples we considered, we have seen that most features at a given scale tend to
disappear quickly, while a relatively small fraction persists longer. Some of the ideas investigated in this
paper are complete, and some of the work was intended to show how more possible avenues of investigation
have been opened due to this ability to recognize scale. Finally, although this work is done for images in R?,
the theory developed can be extended to any function in any dimension. Other work that naturally stems
from the work done in this paper includes a spatially adaptive & Algorithm and more efficient approaches
to finding &, such as multigrid and domain decomposition approaches to the & Algorithm, which we are
currently developing.
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