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Abstract

We give and prove two new and fundamental properties of total-variation-
minimizing function regularization (TV regularization): edge locations of
function features tend to be preserved, and under certain conditions are
preserved exactly; intensity change experienced by individual features is
inversely proportional to the scale of each feature. We give and prove
exact analytic solutions to the TV regularization problem for simple but
important cases. These can also be used to better understand the effects of
TV regularization for more general cases. Our results explain why and how
TV-minimizing image restoration can remove noise while leaving relatively
intact larger-scaled image features, and thus why TV image restoration is
especially effective in restoring images with larger-scaled features. Although
TV regularization is a global problem, our results show that the effects of TV
regularization on individual image features are often quite local. Our results
give us a better understanding of what types of images and what types of
image degradation are most effectively improved by TV-minimizing image
restoration schemes, and they potentially lead to more intelligently designed
TV-minimizing restoration schemes.

1. Introduction

Consider the problem of restoring a noise-contaminated image in R', R?> or R®: find an
approximation u (X) to the true image . (X), given the measured (noisy) image uo(X), where
1y = Kugee + 1 and n(X) is the noise or other degradation in the image. In order to develop
more precise and directly useful results, we consider only the case in which the blurring
operator K is the identity (in which case, strictly speaking, the problem could be considered a
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filtering problem, rather than a regularization problem). Rudin et al [33] proposed to remove
the noise by minimizing the total variation 7'V («) in the image, where

TV(u) = / [Vu(X)| dx, (1)

while preserving some fit to the original (e.g. measured) data 1. The total variation (1) of u is
also often known as the bounded variation of u. There are two common formulations of this
function regularization problem. The formulation which we primarily consider in this paper
is the unconstrained or Tikhonov [22] problem,

min/ Hu®) — ug(®)1* + a(¥)|Vu(x)| dx. 2)
When «(X) = « is constant, (2) is simply

min 4 flu — uo|* + TV (u), (3)
where || - || is the L, norm and, unless otherwise specified, all functions we consider are of

bounded variation. Another common formulation of this problem is the noise-constrained
problem

min/ [Vu(¥)| dx subject to [|u — ug|> = o2, 4)

where the error (noise) level o2 is assumed to be known. As shown in [9], solving (3) is
equivalent to solving (4) when o = % where A is the Lagrange multiplier found in solving (4).
All of (2)—(4) are solved assuming Neumann boundary conditions on u.

In (2) and (3), @ > 0 is the regularization parameter that determines the balance between
goodness of fit to the measured data and the amount of regularization done to the measured
data ug in order to produce u. TV regularization looks for an approximation u to the
original (e.g. noisy) function uy which has minimal total variation, but with no particular
bias toward a sharp (i.e. discontinuous) or smooth solution. The measured data u, as well as
the regularization parameter o when solving (2) or (3) or the estimated noise level 2 when
solving (4), determine the sharpness or smoothness of the restored function. Larger values of
« result in more regularization and less goodness of fit of u to the original data uy. We can
choose a(X) to be spatially varying in (2) or add a weighting term to the integrand in (4) for
spatially adaptive image restoration or function regularization (e.g. [36-38]).

As we subsequently show, TV regularization, while not discriminating against smoothness,
is particular adept at recovering sharp edges in an image. We do not attempt to exhaustively
compare TV regularization to edge-preserving methods, but we do point out a few papers
in which one may find further discussions. Obviously much has been written about median
filters (e.g. [39]). Anisotropic diffusion (and several variations), introduced by Perona and
Malik in [31], is increasingly popular and effective [8, 23, 26, 34, 44]. (In fact, as described
in [38], TV regularization can actually be viewed as a model case of anisotropic diffusion,
and consequently our results are also of use in understanding anistropic diffusion.) In [27],
Mammen and van de Geer discuss least-squares penalized regression estimates with total
variation penalties. In [17], Davies and Kovac look at the problem of non-parametric regression
with emphasis on controlling the number of local extrema, and in particular consider the run
method and the taut string-wavelet method. In [42] and [43], Winkler and Liebscher discuss
the Potts and L1 procedures, including their multi-scale aspects, where a hyper-parameter is
varied to control the strength of penalization.

Numerical results have shown that TV regularization is quite useful in image
restoration (see e.g. [33, 36, 41]). However, while a relatively large amount of effort
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Figure 1. A comparison of results when using different values of «, when solving (3), in applying
TV regularization to a noisy function in R'. In each plot, the dashed line is the true function. In (a),
the dotted line is the noisy function and in (b)—(f) the solid line is the regularized function. Larger
values of « result in more regularization being applied to the noisy function. An unintelligent
choice of « can result in insufficient noise removal or excessive loss of smaller-scaled features and
other detail.

has been put into developing faster numerical schemes for solving the TV regularization
problem [10, 12, 13, 25, 28, 33, 41], and to a lesser extent into the existence and uniqueness
of solutions to (2)—(4) [1, 9, 19, 20], a relatively limited amount of study has been devoted to
understanding more precisely how TV regularization affects images or other functions.

A more precise understanding of TV regularization is useful and is even necessary to
provide a stronger mathematical justification for using TV minimization in image processing or
other function regularization. A limited understanding of TV regularization can lead to unclear
and even disastrous results. For example, figure 1 illustrates the problems that can occur when
applying TV regularization to a function without understanding how the regularization affects
features of varying scales or how the regularization depends on the value of & (we also see that
for appropriate values of ¢, TV regularization is quite effective). Moreover, if we understand
more precisely how TV regularization affects an image, then we can develop schemes that better
exploit the properties of TV regularization that make it effective in image processing. Such
schemes include TV regularization for vector-valued (e.g. colour) images [6], TV regularization
for deblurring an image when the type of blurring experienced by the image is unknown [16]
and new applications of the TV model for restoring nonflat image features, such as optical
flows and chromaticity [15, 30, 40]. Additionally, the results which we subsequently develop
in this paper can be used to construct spatially adaptive TV-minimizing image restoration
schemes [36-38], as previously mentioned.

It is due to the nonlinearity of problems (2)—(4) that it is possible for TV regularization to
effectively recover sharp edges in an image while simultaneously not penalizing smooth image
features. Unfortunately, it is also because of this nonlinearity that it is extremely difficult (if
not impossible) in the general case—and certainly non-trivial even in simple cases—to develop
meaningful analytic theory which describes the effects of TV regularization in a simple, exact
and useful way.

There is arelatively little literature which describes exactly why and how TV regularization
works. Moreover, the work that has been done, while of some use, is also somewhat abstract
and theoretical. In [7], Bellettini er al discuss conservation of shape and scale parameters
controlling evolution within the TV-flow context. A nice study of TV regularization is
made by Chambolle and Lions in [9]. In [18], Dobson and Santosa consider how TV
regularization affects frequency distributions to show that the effectiveness of TV-minimizing
image restoration depends on the ‘mass’ (essentially the size and grey-scale intensity) of the
image feature relative to its total variation, and conclude that TV regularization is particularly
effective in restoring ‘blocky’ images. In [21], Gousseau and Morel discuss why TV-
minimizing techniques are effective for blocky images, but not as effective for detailed or
textured images. In [4], Andreu et al prove that the solution to (3) for sufficiently large «
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is simply the average of the initial data. These results are helpful; still, the effects of TV
regularization should be understood more completely and more exactly.

In this paper we develop a precise and simple quantitative theory which describes the
effects of TV regularization in some specific and important simple cases. Our theory also
gives us a more thorough and precise qualitative understanding of how TV regularization
affects images or other functions in the general case. We give and prove analytic formulae
which describe the effects of applying TV regularization to a function (e.g. a noisy image),
and which are useful for both understanding and predicting the effects of TV regularization.

Our theory shows the following:

(1) TV regularization tends to preserve edge locations, and under certain conditions it
preserves edge locations exactly;

(2) intensity change is exactly inversely proportional to local feature scale (which helps to
explain why TV image restoration, such as noise removal, can remove smaller-scaled
noise, while leaving larger-scaled features essentially intact), is independent of original
intensity and is directly proportional to the regularization parameter o;

(3) for smooth radially symmetric function features, function intensity change is inversely
proportional to radial distance and directly proportional to o and

(4) TV regularization is somewhat local in its effects on image features; that is, under certain
conditions, the effects of TV regularization on one feature in the image have little or no
correlation with the effects of TV regularization on another feature.

This last result not only gives us a better understanding of how TV regularization affects
an image, but it is potentially useful in developing faster numerical schemes (e.g. domain
decomposition), which is important because of the relatively high computational costs in
solving (2)—(4).

Our results are given for the continuous TV regularization problem (2) rather than the
discrete version of the problem. Treating the continuous problem is often done for at least
two reasons: first, the solution to the discrete problem will depend on how the problem is
discretized, and second, the numerical problem is sometimes solved using some non-standard
numerical scheme (for example, a scheme which tends to artificially preserve edges). In other
words, the continuous problem is the most general case: it is the starting point regardless of
how the problem is discretized or what numerical scheme is used to compute the solution.
Our analytic results for the continuous problem agree with (in fact, they predict) the results of
numerically solving the discrete problem.

We outline the remainder of our paper. In section 2 we give and prove formulae which
describe precisely the basic effects of TV regularization when dealing with piecewise constant
functions, and we examine some special cases of these formulae. The two fundamental
properties of TV regularization are proved by these formulae:

(1) edge location (e.g. the boundary of a feature in an image) is preserved exactly, and
(2) the change in intensity experienced by individual image features due to regularization is
inversely proportional to the scale of each feature.

In section 3 we discuss this second fundamental property and some of its implications. In
section 4 we extend our formulae to the simplest case of smooth functions. A few important
conclusions and a discussion of future work motivated by our results are given in section 5.

2. The two fundamental properties of TV regularization

We first analyse the effects of TV regularization on noise-contaminated radially symmetric
piecewise constant functions. We do this because image features are often partially or entirely



Edge-preserving and scale-dependent properties of total variation regularization S169

piecewise constant, and because for the radially symmetric piecewise constant case we can find
exact results that are impossible to derive in the general case. Our results can then be extended
to more general cases. We consider the unconstrained problem (2). This makes the effects of
TV regularization more obvious (than if we were to solve (4)), since in (2) the regularization
is directly dependent on the regularization parameter «. Our results, of course, apply to (4),
in which the regularization parameter is implicit in the form of the Lagrange multiplier.

Insection 2.1, we give the general formulae which describe the effects of TV regularization
on a radially symmetric piecewise constant function. The key results of this section are the
two fundamental properties of TV regularization, that edge location is preserved exactly and
that the change in function intensity is exactly inversely proportional to the scale of individual
image features. Prior to the theoretical results we give below, the exact preservation of edge
location was seemingly evident in numerical results and suspected by many, but, in fact,
was still doubted by some. The results of 2.1 are consequently quite significant to the basic
understanding of TV regularization. In section 2.2, we examine our theoretical results for
simple functions in R, R? and R3, with constant «, and for each of these cases we give
numerical examples which illustrate and confirm our analytic results.

2.1. Formulae and proofs

With radially symmetry, it is not difficult to transform the minimization problem (2) in
R? 1 < d < 3, to a one-dimensional problem,

min / 3[u@) = o) +a () lu, (r)| dQ(r) 5)
where
1 ford =1
dQ(r) = Bri~tdr and Ba= {27 ford =2 (6)

4 ford = 3.

One consequence of assuming that u is radially symmetric (where g = uyye + noise, and
Uye 18 radially symmetric) is that we are also assuming that the noise present in the image is
radially symmetric. Of course, for most problems noise is not radially symmetric. We make
our assumption in order to make our mathematical analysis and results possible. Ultimately
(and quite necessarily), numerical results have consistently shown that our formulae describe
the results in the usual case of non-radially symmetric noise. It is reasonable to take « in (2)
to be radially symmetric if u is, and it is reasonable to assume that « is radially symmetric in
solving (2) if both u and « are (which, in fact, can be proved). We also note that although the
analytic results we give are proved for the continuous problem when assuming radial symmetry,
our analytic results predict quite well the results of solving the discrete problem (e.g. for digital
images) with no radial symmetry. Examples of this are given in section 3.2.

Radially symmetric piecewise constant functions are comprised of three types of features:
‘extrema’, ‘steps’, and ‘boundary’ regions, as illustrated in figure 2. The functions in figure 2
are simply the R! functions that correspond to their radially symmetric counterparts in R¢.
The formulae subsequently given in theorems 1-3 describe the effects of TV regularization
on each of these types of feature as well as on the noise. Theorem 1 describes the effects of
TV regularization when u((r) is a noisy monotonic (i.e. monotonic before noise is added) step
function, as illustrated in figure 2(a). Using theorem 1 in the case where n = 2, we prove
theorem 2, which describes the effects of TV regularization when u( (r) is a hat function (before
noise is added), that is, when u((r) has a single (piecewise constant) extremum as illustrated
in figure 2(b). Theorem 3, which is illustrated in figure 2(c), summarizes theorems 1 and 2.
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Figure 2. Noisy piecewise constant functions, before and after TV regularization, which results in
piecewise constant functions (noise is removed) with exactly preserved edge location and reduced
contrast. Intensity change is inversely proportional to the scale of the image features. The R'
functions shown correspond to radially symmetric R¢ functions.

We give a few words on our notation: €, is the circle in R? or the sphere in R* with
radius r, and 0€2, is the boundary of 2,. Then where r; < rp, let Q,, ,, = Q,, — Q,,; that is,
Q,, ., is the region enclosed by the two boundaries 32, and 8%2,,. Then |9Q2,| = B4r¢~! and
12,0, | = LL(rd — 1)), where By is given by (6).

Theorem 1 (Noisy monotonic step function). For R 1 < d <3, let uy(r) be defined on
[ro, rn]. For 1 <i < n —1suppose that U; > Uy, where

S uo(r) d2(r)

UiEW for1 <i <n. @)
I
(@) Ui +6; 2 Uis1 +8in for1 <i<n—1
@) 18> max fuo(r) - Uil for1<i<n ®
o Sr<n
and
a(r) = Qmax = lglélzi_l{ai} Jorr & {riti<i<n— &)

where o; = a(r;) for 1 <i < n — 1, then the solution to (5) is given by

u(r)y=U; +6; forr elrii,ril, 1<i<n (10)
where
—O[,‘|8§2r,.| for i |
_ ori =
12,
Oli_]|8Qr,.71| —OliIaer.| .
8 = for2<i<n—1 (1)
192, .l
;1|02 | .
_ fori =n.
12,

Because of its length, the proof for theorem 1 is given in the appendix.

To make theorem 1 easier to understand and appreciate, we make a few notes. First, U;
in (7) is simply the mean of u in the region €2,._, ;.. A simple case (but not the only case)
of this is if uyye () is a monotonically decreasing step function u . () whose discontinuities
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are at {r;}, and whose value in region [r;_;, r;] is U;. If noise, whose mean in each region
Q. , . 1s zero, is added to create uy = uye + noise, then the mean of ug over @, , ., is U;.
(Results are only slightly affected if the mean of the noise over a particular region is not exactly
zero.) Under the conditions given in the theorem, the basic result of TV regularization is then
a monotonically decreasing step function u(r) whose discontinuities are also at {r;} and whose
contrasts (i.e. size of the discontinuities at {r;}) are less than they were in . Thisisillustrated
in figure 2(a). In theorem 1, the regularized function u () is given by (10) and the changes
in intensity (which reduce the contrast in the image) are given by (11). Condition (9) simply
quantifies the condition that the values of spatially varying «(r) away from the discontinuities
{r;} are at least as large as the values of «(r) at the discontinuities {r;} (it does not matter what
the values of «a(r) are at r = ry and r,, since we have Neumann boundary conditions). A
typical example of this is when «(r) = « is constant.

We next make a few observations. First, notice that if we take |0€2,,| and [0€2,, | to be zero
(which it turns out is equivalent to solving (5) using Neumann boundary conditions), then all
three cases of (11) can be written as

_ ai—] Iaszr,’,ll - alIaQr,I

8; forl <i < n.
12, r,
Second, notice that with the regularized image u as defined in (10), (7) and (11),
/ u(r)ydQ(r) = / uo(r)dQ(r). (12)
ro o

This conservation of mass occurs while simultaneously 7V (1) < TV (ug). For « sufficiently
large (but finite), the regularized image u (r) is constant and is simply the mean of the measured
image uo(r) over the entire domain. This interesting result is discussed in more detail and
from a different perspective in [4]. Observe this phenomenon in figure 1(f). Third, we note
that theorem 1 is stated and proved for monotonically decreasing step functions (that is,
before noise is added the function u. is a monotonic step function); however, the results
and corresponding proof are analogous for monotonically increasing step functions, which we
consequently assume and later use without proof. Fourth, as images become more complicated,
the formulae we find for § are for the amount of change, but not necessarily the direction (i.e. the
sign) of the change. In general, the direction of change will be such as to reduce the contrast
in the image between neighbouring features. Finally, we note that the only condition placed
on the original image u is found in (8)(ii), and the conditions indirectly related to (8)(ii).

Condition (8) in theorem 1 ensures what is subsequently referred to as the a-condition,
when applying TV regularization to noisy (as well as noise-free) piecewise constant functions.
The a-condition is described qgualitatively, and if desired can be defined quantitatively for any
given noisy function u(r).

Definition 1 (a-condition). The regularization parameter o.(X) meets the a-condition for a
noise-contaminated piecewise constant function if

(i) a(X) is sufficiently small that all discontinuities in uy. are present in u and

(ii) a(X) is sufficiently large that the noise is completely removed, resulting in a regularized
function that is piecewise constant with reduced contrast, and that has discontinuities
exactly where they were in Uyye.

This a-condition is generally an intuitive guide rather than a strict bound on «. In fact,
often there are no theoretical bounds on « that would ensure that both stipulations of the
a-condition are satisfied. Still, when in practice there happens to be no theoretical region for
a which ensures the two conditions of the «-condition, the results predicted by the formulae
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in theorems 1-3 are still approximately or even exactly the actual results of TV regularization.
This is the case for the subsequent examples illustrated in figures 3(d)—(f).

Theorem 2 is a natural consequence of applying theorem 1 in the case thatn = 2 to a
noise-contaminated radially symmetric piecewise constant function with a single extremum,
as illustrated in figure 2(b). Theorem 1 in the case n = 2 is a step function with a single
negative step. The result for the case of a step function with a single positive step is analogous
and we use without proof this analogous result in proving theorem 2.

Theorem 2 (Hat function: single extremum). For R 1 <d <3, let(7)and (9) hold for
n = 3. If maX,ep, , quo(r) < Ui +6 < Us + 8 < minyeqy, ) Uo(r) for i = 1,3 (which
ensures that the o-condition is met), then the solution to (5) is given by

M(T)ZUi+5i forre[ri_l,ri], 1=1,2 (13)
where
02,
o982, | fori=1
|Qr0,r]|
5 o102, | + an]0€2), | fori=2
=1 — ori =
(2,1, |
a2|8Qr7| .
—_— fori = 3.
(2,1

Proof. Choose 7 such that 7 = (et;r¢~'r§ + aprd'rd) /(17" + aard™") (it not difficult to
show that r{ < 7¢ < r{ and thus that r; < 7 < r2) so that
a1]082, [+ 02|02, | 1[92, ] 02]0S2,,]
Ier,r2| |Qr1,7| |Q}7,r2|

(14)
Define

f) = / () = ug(N)P +a(r) v, () dQ (). 5)

0

Let

fiw) = f o) — w0 ()P + () o, () 4L,
[ro.7)
f) = / Lo(r) — o) + () [v, (7))
(7,31
Then f(v) = fi(v) + fo(v) + f{;} a(r)|v,(r)| d2(r), so that

min f(v) = min{fl W) + fo(v) +/ a(r)|v,(r)| d2 (r)}
v v {7}
> min{ f;(v) + f>(v)} (since a(r) = 0)
> min f(v) + min f>(v).

Using theorem 1 when n = 2 and using (14), we find that f] and f, are each minimized by
u as defined in (13). Since this u is continuous at » = 7, then f in (15) is minimized by this
u. (]

Theorems 1 and 2 are combined and slightly simplified (by taking ry = 0) in theorem 3,
which is illustrated in figure 2(c).
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Theorem 3 (General piecewise constant function). Given the conditions of theorems 1
and 2, the unique argument u to (5) is as given in those theorems, where the change in
function intensity (not necessarily including its sign) is given by

ai—]|8Qri,1|+ai|aQr,’| .
extremum regions

12, 1,

Oli_]|8Qr,.71| —ailaQ,,.| .

8 = step regions (16)

€21, 1, |

o 1199, | .

_ boundary region.

12, 1,

Proof. This theorem can be proved for any noise-contaminated radially symmetric piecewise
constant function in R? by dividing the function into its three types of component (extremum,
step and boundary regions), similar to what was done in proving theorem 2. 0

The changes in intensity {§;} depend only on the value of «(r) at {r;} (the discontinuities of
Ugue), as long as o (r) = max,e,) @ (r). We take advantage of this fact in constructing spatially
adaptive image restoration schemes in [36, 37]. Also, our results show that the regularized
image is the same when restoring a noise-free image and when restoring the noisy version of
that image, for sufficiently large values of «, if the mean of the noise in each region of the
image is zero. This is subsequently illustrated in figure 3. We note that the sign of the change
in intensity §; in each region will in general be such as to reduce contrast in the image.

2.2. Theorem 3 with constant o

Let the conditions of theorem 3 be satisfied, and let «(x) = « be constant. Then (16) is given
by

R! R? R3 Type of region
2 2(ri +riz1) 3(r7+17 )
_ 5 T« 3 EEd Extremum
Xi = Xi—1 ri —ri ri =T
i = 0 2(ri —ri1) 37 =1l )) a7
—a=0 5 —a 3 e Step
Xi — Xi—1 | P —rig
1 2ri_y 3ri2_1
—« -« -5 Boundary
Xi — Xi—1 ri—r r: —r:

i—1 i i—1

Example 1. In R', R? and R?, we take the original image (before noise is added) to be
0.5 for 0.00 <r < 0.25

1.0 for 0.25 <r < 0.50

0.5 for 0.50 <r < 0.75

0.0 for 0.75 < r < 1.00.

In the top row of images (a)—(c) in figure 3 we give the numerical results in applying TV
regularization to uy = iy (i.e. without noise), solving (5) using « = 0.01. We also apply
TV regularization to ug = uwe + 1, a noise-added version of this image, and obtain virtually
identical results, as shown in the second row of images (d)—(f). For all six cases, the numerical
results match the results predicted by (17). The juxtaposition of the regularized noisy images

and the regularized noise-free images helps to clarify how TV regularization affects both the
noise in the image and the image itself.

uo(r) =
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(a) R', noise-free (b) R?, noise-free (¢) R?, noise-free
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(d) R!, noisy

(e) R?, noisy (f) R?, noisy

0 0102 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1 0 0102 03 04 05 06 07 08 09 1

Figure 3. Example 1. Results of solving (5) using @ = 0.01. (a) and (d) are R! functions, and (b)—
(e) are the R! functions corresponding to radially symmetric R? and R> functions, noise-free and
noisy, before and after TV regularization. The dashed line is the noise-free function, the solid line
is the regularized function and in (d)—(f) the dotted line is the noisy function. In each case the
change in intensity level is as predicted by (17). Notice the equivalence between the regularized
functions in the noise-free case and the noisy case.

For this example theoretically there is no region of values for & in which both conditions
of the «-condition could be met; this illustrates that in practice the theoretical bounds on « that
would be required in order to ensure the «-condition do not necessarily need to be met in order
to approximately or even exactly obtain the results predicted by (17), or more generally (16).

Finally, we note that, as we have formulae which describe exactly how much the intensity
changes in each region, theoretically it is possible to perfectly (or approximately) reconstruct
the true image, by adding back to the regularized image the loss in intensity caused by
regularization. This turns out to be more difficult that one might first suspect, at least for
more complicated (e.g. more realistic) images. We are currently studying the possibilities
of this near perfect reconstruction given our precise understanding of how TV regularization
changes intensity levels.

3. Change in image intensity as a function of image feature scale

One of the most important and useful results of section 2 is the fact that the change in image
intensity due to TV regularization is directly proportional to the regularization parameter o
and inversely proportional to the scale of the image feature, as we now describe in section 3.1.
This explains why noise (which can often be thought of as very small-scaled image features)
is removed while the image features (whose scales tend to be large relative to the noise) are
preserved. In section 3.2 we apply this relationship to three discrete examples in R?, which are
images with non-radially symmetric features, and we give numerical results. In section 3.3 we
give a few simple applications of this interesting property of TV regularization. In section 3.4
we briefly discuss how our results demonstrate the somewhat local nature of TV regularization.
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3.1. Change in image intensity 6 = a/scale

In the case where « is constant, note for the formula given in (16) for extremum regions
that the change in intensity simplifies to §; = (192, »|/|2,_, Do where |09, .| =
[0€2, | +1092,,]. If we let Q represent a radially symmetric constant region, then this can
be written § = (|02|/|2|)c, where |0€2]| is the size of the entire (inner + outer) boundary
of the feature. We define the scale of a piecewise constant image feature as the ratio of the
area in R? (volume in R?) of the feature to its boundary length (surface area in R?); that is,

scale = |2]/]0€2|. (Note that this definition also applies to non-symmetric features.) For
example, in R? a circle of radius r would have scale = 3 = %, so that its scale is linearly

proportional to r.
With this definition of scale, the change in intensity § can be rewritten as
o

§= (18)

scale’

so that the change in image intensity, &, is inversely proportional to scale and directly
proportional to «. This is perhaps the most basic and important property of TV regularization
and how it affects an image: TV regularization causes smaller-scaled features (such as noise)
to be partially or entirely removed while larger-scaled image features are relatively unaffected.
In both [18] and [21] it is concluded that TV image regularization is well suited for denoising
images with large-scale features; the above results now explain this more precisely and in a
perhaps more exploitable way.

3.2. Numerical results for discrete non-radially symmetric image

So far we have considered some special cases of the continuous TV regularization problem,
namely radially symmetric piecewise constant functions. We have been able to find analytic
solutions to (2) for these cases. In the general case, however, we are not able to explicitly
find analytic solutions to (2). Also, in practice we must of course numerically solve the
discrete version of the (usually non-radially symmetric) continuous problem, for example,
when denoising a digital image. We now briefly show the agreement between the theory and
the numerical solutions to the discrete version of (2) for three images, two of which are not
radially symmetric. We limit ourselves to the three images shown in figure 4 in order to keep
the discussion relatively simple. Our primary purpose in this paper has been to develop a
simple and precise theory for the special cases which we have treated, which may be used
to understand how TV regularization affects the various types of images dealt with in the
general case. Our purpose is not to attempt to exhaustively examine the exact effects of TV
regularization in the general case.

Example 2. We briefly examine the agreement between the change in intensity in the feature
of interest and the change predicted by (18) for three images. Before noise is added the region
of interest (the shape) has unit intensity and the background has zero intensity. The intensities
in the image after noise is added and after regularization occurs can be seen in each image.
The feature of interest 2 in the first image, shown in figure 4(a), is a circle of radius % in a
1 x 1 square domain, discretized at 128 x 128. We note that the finer the discretization, the
more similar to the continuous problem the discretized problem would be, and thus the better
the agreement between the theoretically predicted results for the continous problem and the

actual numerical results for the discretized problem.

To each image we add Gaussian noise, a different amount to each image for variety (the
particular level of noise is not terribly important for our purposes). Of course, in general, more
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(a) Original Image (b) Original Image (c) Original Image
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Figure 4. Example 2. Refer to table 1. The results of applying TV regularization to general
piecewise constant functions. For each image feature, noise is removed, edge location is preserved
and the change in intensity level in the image feature and the background is approximately as
predicted.

noise means that more regularization is necessary, which in this case means a larger value of «.
For the firstimage we use o« = 0.01, so that in the circular region the change in intensity predicted
as predicted by (18) should be Syrediced = oz = 'f%a = [271(%)/71(%)2](0_01) = 0.06, so
that in the circular region the intensity level should be 0.94 after regularization. This is nearly
exactly the case, as shown in figure 4(d).

Notice that the boundary of the circle has been slightly smoothed. This is because of the
noise and because the discretized circle is not perfectly radially symmetric. If desired this slight
boundary smoothing in the discrete case can be mitigated or entirely removed by employing
an edge-preserving numerical scheme for solving (2)-(4), such as the minmod scheme used
in [33]. Because of the effectiveness and the popularity of edge-preserving numerical schemes,
we are currently investigating whether it is possible to find analytic formulae which describe
the effects of TV regularization when using such schemes.

We can also find the predicted change in the background of the image as well. Since
Neumann boundary conditions are inherent in solving the TV regularization problem, the only
boundary of the background is the boundary between the background and the circle, in which
case we have Spredicied = 1oz = i@ = [27(3)/(1 = 7($)H)]1(0.01) ~ 0.03, so that the
intensity of the background should be approximately 0.03 after regularization, which is the
case.

We also apply TV regularization to two images whose features in the continuous case are
not radially symmetric: a rectangle and an ‘S’. We note that in the non-radially symmetric
case, TV-minimizing techniques tend to smooth out rough or non-radially symmetric
boundaries [18, 36], and can consequently result in the deformation of boundaries in the
function (unless an edge-preserving numerical scheme is used). This boundary deformation
occurs because the total variation of a feature is directly proportional to its boundary size,
e.g. for a piecewise constant feature [35], so that one way of minimizing the total variation of
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Table 1. Example 2. Refer to figure 4. A comparison of predicted changes in intensity to the
results found numerically in applying TV regularization to discrete images. The numerical results
nearly exactly match the predicted results, with the small discrepancy being due to the noise not
having exactly zero mean and due to the slight deformation of the boundaries in the images with
non-radially symmetric features.

Shape Background
Image o Predicted § Computed § Predicted § Computed §
Circle 0.010  =0.06 ~0.06 ~0.03 ~0.03
Rectangle  0.005 =0.06 ~0.06 ~0.01 ~0.00
‘S’ 0.010 =~0.18 ~0.18 ~0.03 ~0.02

the feature would be to reduce its boundary size, in particular by smoothing corners. Because
this boundary deformation occurs in the non-radially symmetric case, the results given in
section 2.1 (in particular, that there is no boundary deformation in the radially symmetric case)
are even more significant.

For each image, we give the value predicted by (18) for the change in intensity, and find the
change of intensity when solving the problem numerically. Since there is a bit of smoothing
near the edges, we take the value away from the edges (the image is essentially constant away
from the edges) as the computed value. The results are given in figure 4 and table 1. The slight
discrepancies between predicted and computed changes in intensity level are due mostly to
the noise not having exactly zero mean (this is especially the case for the background), as well
as the boundary deformation (not a change or shift in boundary location, but the boundary
smoothing—this distinction is significant) in the two images with non-radially-symmetric
features. Overall, the agreement between the theory and the numerical results is nearly exact.

3.3. Adaptive TV regularization using § = a/scale

There is good potential for exploiting the second fundamental property (18) of TV
regularization. For example, if we can locally measure the change in intensity level due
to TV regularization, then we can find the scale of various image features, by re-writing (18)
as

scale(¥) = (19)

o
8(X)
In [36] we use (19) to construct automatic scale recognition schemes, where we first apply TV
regularization to an image, then find 6 (x) throughout the image, then use (19) to find scale(x).
Also in [36] we use (19) to construct scale-sensitive adaptive image restoration schemes, where
the basic approach is to choose smaller «(r) in regions with smaller-scaled features in order to
better preserve detail, and larger «(r) in regions with larger-scaled features in order to better
remove noise. Finally, it turns out that TV regularization can be used to resolve an image into
its various scales. A simple illustration of this is seen in figure 1, where for larger values of «,
the smaller-scaled image features (including noise) are removed. Because of our fairly precise
understanding of how the value of o will determine the effect of TV regularization on features
of any given scale, it becomes possible to resolve an image into its features with scale larger
than any desired threshold, as is simplistically illustrated in figure 1. We are currently studying
these various ideas that are the direct result of (18) and (19).
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Figure 5. With radial symmetry, the effect of TV regularization in the smooth case (b) can be taken
as a limit of the piecewise constant case (a). In (b) and (¢) §(r) = 0 in R, 8(r) = %a in R% and
8(r) = %a in R3. In (c) for R', formulae for finding 7; and §; are given in (21) and (22); formulae

for finding 7 in R? and R> are given in (23), while §; and 8, must be numerically approximated.

3.4. The local nature of TV regularization

Although (5), and more generally (2), are global problems, the effects of TV regularization
are often quite local. Notice in (16) that the change §; in each region €2,, |, depends
only on the region itself and on «. In particular, §; does not depend on the effects of the
regularization felt in any other region. This is especially so for extremum regions, for which
we found (18). For extremum regions, § depends only on the scale of the feature and «,
but again § does not depend on the effects of the regularization felt in any other region. To
be clear, TV regularization is not local to a particular size of subdomain (e.g. 5 x 5 pixels
or 10 x 10 pixels). Rather, it is somewhat local to individual image features, whether the
features are small or large. Of course the conditions of theorems 1-3 are often not exactly
met in practice. Still, this local regularization characteristic of TV regularization is quite
evident when applying TV regularization to general images. It is our hope that this additional
understanding of the localness of TV regularization can lead to better manipulation of the
effects of TV regularization, as well as to faster numerical schemes which apply regularization
to individual parts of the image (e.g., domain decomposition-like schemes).

4. A note on TV regularization of smooth functions

We briefly consider how the theory developed in section 2 helps describe the effects of TV
regularization on ‘smooth’ (i.e. non-piecewise constant) features. Our results are for functions
in R! and for radially symmetric functionsin R> and R®. We consider the case where a(X) = «
is constant. We do not intend to provide a completely rigorous treatment of the smooth case
here, but rather simply to provide some insight into how TV regularization affects smooth
functions by using the theory we have already developed.

4.1. Smooth functions as the ‘limit’ of piecewise constant functions

We first consider the portion of a radially symmetric function with constant, decreasing slope,
as illustrated in figure 5(b). For now we assume that no noise is present. We can take this
function as a sort of limit of the step function shown in figure 5(a). In section 2 we found that
if « is constant, then §; in figure 5(a) is givenin (16) by 6; = [(|0€2,,| — [0S2, , )/|S2r, | 1 []cx.
As ri—; —> r; (and as the width of each step descreases, obviously the number of individual
steps in the step function would need to increase to maintain the same basic function), we find
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that §(r) for r € [r;_1, r;] is given by
1-1

—a=0 in R
Fi —Ti-1
PO 2% el P B RS DV R Y € 00)
IQr;,l,r;| Try —Tri r
drr? —4nr? 2 . 3
Wa —> — in R°.
3 T 3T r

We consider the effects of TV regularization on the noise-free function shown in figure 5(c).
We refer to it as ‘smooth’ in the sense that it is continuous, with no sharp discontinuous edges.
Although this function is not actually smooth in the usual sense, the results we develop using
this example are applicable to functions which are smooth in the usual sense. Moreover, the
notion of smoothness is somewhat irrelevant in the discrete implementation of the problem
anyway. By viewing this function as the limit of a step function, the results developed in
section 2 and in (20) predict the regularized function shown in figure 5(c).

4.2. Smooth functions in R'

In R', assuming that the regularization function u that is the solution to (3) is as shown in
figure 5(c), (20) tells us that §(r) = 0. Also, it is clear that

Si
r=ri——, (2D
m

and in solving (3) it is fairly easy to find that

81 = +m|Q,,, | — \/(m|szo,,l 2+ 2ma .

82 = —m|Qu 1|+ (m|2,.11)? + 2ma

where m = —L— (simply the slope of the non-constant part of the function). If we let

r—r

m —> —oo (which is equivalent to r; —> r;), we would have §; — —a/|Q,,| and
8> —> a/|L2,,.1], as found for the piecewise constant case in section 2.

Example 3. Using r; = 0.25, m = =2, r, = 0.75 and ¢ = 0.03, we find that the values
predicted by (21) and (22), §; = —0.139, r; = 0.320, 8, = 0.139 and 7, = 0.680, agree
exactly with the regularized function found by solving (3), as shown in figure 6(a). We do not
give further proof to verify these results, as they are a fairly natural extension of results given
in section 2 for the R! piecewise constant case. For comparison, we apply TV regularization
to a noisy version of the function, and observe similar results in figure 6(d), except for the
unwanted effect of ‘staircasing’. (This staircasing effect is well known and is currently being
studied [5,9, 11,29, 32].) These results show that, for smooth image features, TV regularization
can result in a slight shifting of the boundary/edge location of the feature. On the other hand,
for this type of function/image, there are not really sharp edges to begin with.

4.3. Smooth functions in R* and R?

For R? and R* we again consider the function shown in figure 5(c). The R! functionsin figure 5
can be viewed as the R' representation of radially symmetric R? or R? functions. Similar to
the R! case, in R? we can find 7; as a function of §;:

. omri+8; — VG +mri)? +29ma

P =

(23)

2m
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Figure 6. Examples 3-5. TV regularization of ‘smooth’ noise-free and noisy functions. The
dashed line is the true function, the solid line is the regularized function and in (d)—(f) the dotted
line is the noisy function. Exaggerated ‘staircasing’ in (e) and (f) is due in large part to the noise
being taken as radially symmetric for these examples. In (b), (c), (e) and (f), the R! functions
correspond to radially symmetric functions in R? and R3.

However, for the R? and R? cases we cannot find explicit equations for §;, as we were able to
do in finding (22) in R'. The best we can do is write (5) as a function of §; and 8, (as well as
other known values)

mind [ 1. 82) ~ ol +aTV (o1, 82) 4

and numerically approximate the minimizing values of §; and ;. It is reasonable to assume
that we can numerically find unique minimizing values for §; and &, since it has been
shown [1, 20] that a unique minimizer to (3) exists under certain typical conditions. If our
predictions about the form of u, as given in figure 5(c), are correct, then the function that results
from solving (24) should be identical to the function that results from solving (5), which is the
case, as demonstrated in the two examples below.

Example 4. In R%, where r; = 025, m = —2,r, = 0.75 and &« = 0.04, we numerically
approximate the values of §; and §, which minimize (24), use their values to compute 7 and
7> in (23) and find §; = —0.278, 7} = 0.328, 8, = 0.113 and 7, = 0.663. These values agree
exactly with the regularized function found by solving (5), with no assumptions made about
what form u should take, as shown in figure 6(b). Results for the noisy R? case are shown in
figure 6(e). The staircasing observed in figure 6(e) is exaggerated, since we took the noise to
be symmetric (in order to solve this radially symmetric R? problem as an R! problem). In the
actual R? problem, the noise of course is generally not radially symmetric, and the staircasing,
although still present, is not nearly as pronounced as seen in the figure.

Example 5. In R?, using the same values as used in example 4, we numerically approximate
the values of §; and §, which minimize (24), use these values to compute 7| and 7, in (23) and
find §; = —0.413, 7} = 0.338, §, = 0.089 and r, = 0.643, which agree with the function u
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found by solving (5), as shown in figure 6(c). Results for the noisy R> case are shown in
figure 6(f). Once again, the staircasing is exaggerated, due to the radial symmetry of the noise.

5. Conclusion and future work

As was suspected by many (but, in fact, doubted by a few), TV regularization tends to preserve
edges in general, and in certain cases does indeed preserve edges exactly. Consequently,
TV regularization is very well suited for edge-preserving image processing, while not
discriminating against smoothness in an image. Our results show that the basic effect of
TV regularization is to change intensity in an image to reduce the contrast (i.e. the variation)
between individual features in the image. Also, TV regularization tends to affect individual
image features, and the change in intensity experienced by each feature is inversely proportional
to the scale of that feature and directly proportional to the regularization parameter «.
There are various avenues to explore that are motivated by our results:

(1) developing spatially adaptive and more effective non-adaptive TV-minimizing image
restoration schemes, in particular, by making use of (19);

(2) developing more localized versions of TV regularization (which would consequently be
quicker and cheaper than the standard global TV regularization), taking advantage of the
localness of TV regularization; and

(3) developing faster numerical schemes for solving TV regularization problems by exploiting
both fundamental properties of TV regularization described in this paper.
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Appendix. Proof of theorem 1

To prove theorem 1, we will need the following technical result.

Lemma 1. Let u(r), e(r) and a(r) > 0 be defined on [ro, r,]. If u(r) is a monotonically
decreasing step function with discontinuities only at S = {r;}=}, then (where dQ2(r) is given

=1’
by (6))
/ Ol(r)lur(r)+8r(r)|d9(r)>/ o(r)lu, (r)| dS2(r)
[ro,rn]

[ro,rn]
+/ oe(r)lg,(r)ldQ(r)—/a(r)e,(r)dQ(r).
[ro,ra]=S S

Proof of lemma 1. First a note on f{f} f(r)d2(r). Suppose f(r) is in BV. Then
df/dr is a signed Radon measure which we denote s and we define f{;} fr(rdQ(r) =
lim; ;¢ pp ([7-, 7:]) = wyp ({7}). Likewise, for | fr| = |d f/dr|, we get a (positive) Radon
measure and the definition of f{;} | f-(r)]dQ (r) = w5 ({F}). Next, let

AE {Vi €S, 1<i<n-1 1/ lu,(r)| — &-(r)d2(r) 20},
{ri}

S_ = {ri eS,1<i<n—1: / lu,(r)| —e,(r)d2(r) < 0}.
{ri}



S182 D Strong and T Chan

Then we have

/ a(r)u,(r) +e.(r)| dS2(r)
[ro.rn]

Z/ 05(”)|8r(”)|d9(”)+/|Mr(r)+8r(i’)|d9(i’)
[ro,ra]=S S
(since u,(r) = 0in [ro, r,] — S)

=/ Oé(r)lsr(r)ldQ(FH/ a(r)lluy(r)| —&-(r)]1dS2(r)
[ro.ra1—$

Sy

+/ a(r)le,(r) — |uy(r)|1dS2(r)

<since a(r) > 0and / u,(r)dQ@r) < O)
{ri}

WV

/ Oé(r)lsr(r)ldQ(FH/Oé(r)[lur(r)l — &, (r)]dQ2(r)
[ro.ra1—$ s

=/[ ] Sa(r)lsr(r)IdQ(FH/ a(r)luy(r)[ d€2(r)

[ro.ral

— /ot(r)s, (r)yd2(r) (since u,(r) = 01in [ro, r,] — S).
S

Proof of theorem 1. Define
f) =f" o) — uo(M)1* +a()|v, ()| dQ(r),

which is simply the function to minimize in (5). We show that f(u + &) > f(u) for any
& = &(r) unless ¢ = 0, where u is as defined in (10). Using lemma 1 we have

Flu+e) = / " () + () — o + @)y () + £, ()] d2r)

> fu)+gu,e)

where

glu,) = / " o) — uo(r)]dQ () + / a6, ()] dQ(r)
ro [ro,rn]—S

— /a(r)e,(r)dQ(r)+/rn Ue(r) 2 dQ(r).
N

ro
We must show that g(u, &) > 0 unless ¢ = 0.
We first define

e(r)y=ce(r) —/ & (r)dQ2(r) forr € [ri_1,r), 1<i<n
Sic1
where S; = {r‘,-}‘i].:, (Sp is empty), so that &, (r) is continuous at each r; € S and
/ & r)dQ(r)=0= / a(r)|E(r)|dQFr) =0
{ri} {ri}

— /ot(r)|§,(r)|d§2(r) =0. (A.1)
S
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Also, with ¢ so defined, &,(r) = &,(r) forall r ¢ S, so that

/[ ] Sa(r)lsr(r)ldﬁ(r)=/ a(r)|e(r)|dQ(r)

[ro,ra]1=S
:/ a(r)|&(r)|dQ2(r) (using (A.1)). (A.2)
ro
We also have

/ ") — o (142 ()

- / "B — o (1R () + / "Le(r) — B)r) — o)1 d2r)

To

_ / DB — uo(r)]dQ(r)
+ Z{/ i le(r) — &) [u(r) — uo(r)] dQ(")}
i=1 Wrio)
_ f EO)u(r) — uo(r)]dQ(r)

+ Z{/ U e,(r)dszm}[u(r)—uo(r)]dsz(r)}
i=1 rio1 LSS

_ f EO)u(r) — o] dQ(r)

n—1
+ Z{[aiuaszr,J —aﬂaszr,.u[f s,(wdsz(r)“
i=2 1

+ 011082, | & (r)dQ(r) (using (7), (10), (11), and Sy = )
Su—1

_ / DB — uo(r)]dQ(r)

n—1 i—1
+ Z{[ai_naszw —ai|aszr,.|][2/ e,(r)dszm”
i=2 j=171rj}

+an—1|aszrﬂ,1| 8,(7') dQ(V)
Sn—1

- f EO)[u(r) — uo(r)]dQ(r)
Un72 n—1
+ Z{f () Q) Y o110, | —ai|aszr,.|]}
j=1 ) i=j+l

+an—1|aszrﬂ,1| 8,(7') dQ(V)
Sn—1

Tn n—1
=/ g(r)[u(r)—uo(r)]dQ(r)+E /{}Oé(r)Sr(r)dQ(r)
o i=1 Y

- /rné(r)[u(r)—uo(r)]dQ(r)+/a(r)8,(r)d§2(r). (A3)

S
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Next we define g(r) to be a vertically translated version of &(r),

E(r) = 8(r) — E(ry_1)

so that g(rn_l) = 0, which allows us to write
&(r) = / &) dt,
I=ry—1
and &,(r) = &,(r), which leads to

f"a(r)|ér(r>|dsz(r>=f”a(r)|§r(r>|dsz(r>.

o o

Then

f ) [u(r) — o] dQ(r)

To

To

- f VRO — uo(M1dQ(r)  (using (12))

o

:/rn [/f gt(t)dtj|[u(r)—uo(r)]dQ(r) (using (A.4))

—
= / h(t)é,(t) dt
1=ry

where

t
—/ u(r) —uo(r)dS2(r) forrg <t < ry_i

=r

h(t) =

/ u(r) —uo(r)d2(r) forr,_ <t <r,.
r=t

We show that |2(£)] < amaxBat?"! forr € [ro, ra], so that
— h(O)] = —amafat’™"  fort €lro,rl.

If ro <t < ry,then

t
()] = Ba / P () — up(r)]dr| - (using (6))

r()

GEr) .

alﬂdﬁ (using (7), (10) and (11))
ri—rg
<o fat™!
< OlmaX,de‘d ! (USing (9))
Similarly, foreach j, 1 < j <n —2,if r; <t < rj4, then

r J Ik t
|h(r>|=Hf +Z/ +f}u(r)—uo(r)dsz(r)
ro k=2 Y Tk-1 rj

- J

r J 17 t
<{/ | +“|u(r)—uo(r)|dsz(r)
ro k=2 Y 7Tk-1 rj

J

- f CEO)u(r) — uo()]dQUr) + E(ry) f () — uo(]1dQ(r)

(A4)

(A.5)

(A.6)

(A7)
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1 J 1 1 1 1 th—rf
< Ba |:a1r;1_ + Zak(r,‘f_ — r,f__l )+ ozj(r;.l:l — r;.I‘ )ﬁ}
= ' P =1
(using (6), (7), (10) and (11))
J td —rd
< amaxﬁd[rf—' D v B v r;"l)ﬁ} (using (9))
= Fippn =715
14— rd
— | 0! S
' Fiyp =1
S omaBa (" +17 — 107
= Olmax,Bdtd71~
Finally, if r,—; <t < 1y, then
()] = P / M) — uo(r)]dr|  (using (6))
r=t
g -t
= an,lﬂdrdid (using (7), (10) and (11))
n~ 'n—1
< g Bt
< amaxBat’™" (using (9)).
So
/ em)u@r) —uo(r)]d(r)
o
_ / " hF () dr (using (A.6))
1=ry
> —/ O ()] dr
o
> o / YE (0140 (using (A7)
o
> - / " a@)IE ()] dQ(@)  (using (9) and (A.1))
o
- / a(t)|E, ()] A1)  (using (A.5)). (A.8)

ro
Finally, we have

rn

glu,e) =/n§(r)[u(r) —uo(r)]dQ(r)+/ a(r)|e (r)|dQ(r)

o o

+ / " He)PdR() (using (A.2) and (A3))

To

> f " He)PdR()  (using (A.8))

To

>0 (unless e = 0).

So f(u+e) = f(u)+g(u,e) > f(u), unless ¢ = 0. Therefore u is the unique solution
to (5). O
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