Flipping Linear Algebra

Teaching a Majors-Level Linear Algebra Course in a Flipped Learning Environment

Jeff Suzuki

Department of Mathematics Brooklyn College Brooklyn NY 11210

jeff.a.suzuki@gmail.com

3

Lecture is BAD, we shouldn't do it.

2

イロン イロン イヨン イヨン

Lecture is so important that students should be able to access it multiple times.

2

イロン イ団 とくほと くほとう

Lecture is so important that students should be able to access it multiple times.

In a flipped class:

2

Lecture is so important that students should be able to access it multiple times.

In a flipped class:

• Students view a lecture "offline" (online),

2

Lecture is so important that students should be able to access it multiple times.

In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

3

イロト イヨト イヨト イヨト

Lecture is so important that students should be able to access it multiple times.

In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

We used to do this:

3

イロト イヨト イヨト イヨト

Lecture is so important that students should be able to access it multiple times.

In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

We used to do this: Reading assignments!

3

Lecture is so important that students should be able to access it multiple times.

In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

We used to do this: Reading assignments!

A video lecture may be the BEST WAY to present mathematics, because it shows mathematics as a process, not a finished product.

・ロト ・個ト ・ヨト ・ヨト

Advanced mathematics isn't "Solving harder problems."

2

イロン イロン イヨン イヨン

Advanced mathematics isn't "Solving harder problems."

It's "Creating solutions to unsolved problems."

э

・ロト ・個ト ・ヨト ・ヨト

Advanced mathematics isn't "Solving harder problems."

It's "Creating solutions to unsolved problems."

Majors-Level linear algebra should:

э

・ロト ・個ト ・ヨト ・ヨト

Advanced mathematics isn't "Solving harder problems."

It's "Creating solutions to unsolved problems."

Majors-Level linear algebra should:

• Develop student ability to analyze a situation,

3

イロト 不得 トイヨト イヨト

Advanced mathematics isn't "Solving harder problems."

It's "Creating solutions to unsolved problems."

Majors-Level linear algebra should:

- Develop student ability to analyze a situation,
- Offer students opportunities to create solutions,

- 4 同 ト - 4 国 ト - 4 国 ト

Advanced mathematics isn't "Solving harder problems."

It's "Creating solutions to unsolved problems."

Majors-Level linear algebra should:

- Develop student ability to analyze a situation,
- Offer students opportunities to create solutions,
- Promote student exploration of mathematics.

・ 何 ト ・ ヨ ト ・ ヨ ト

Advanced mathematics isn't "Solving harder problems."

It's "Creating solutions to unsolved problems."

Majors-Level linear algebra should:

- Develop student ability to analyze a situation,
- Offer students opportunities to create solutions,
- Promote student exploration of mathematics.
- A flipped environment is ideally suited for these goals!

・ 何 ト ・ ヨ ト ・ ヨ ト

Before class students watch one or more short videos on a topic:

2

イロン イロン イヨン イヨン

Before class students watch one or more short videos on a topic:

• Under 10 minutes.

(日) (四) (三) (三) (三)

Before class students watch one or more short videos on a topic:

• Under 10 minutes. Don't videotape your lecture!

3

Before class students watch one or more short videos on a topic:

• Under 10 minutes. Don't videotape your lecture!

Before class students watch one or more short videos on a topic:

- Under 10 minutes. Don't videotape your lecture!
- Constant reminders to watch (email, in-class, LMS).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Before class students watch one or more short videos on a topic:

- Under 10 minutes. Don't videotape your lecture!
- Constant reminders to watch (email, in-class, LMS).
- Comprehension questions.

We'll go x units horizontally and then y units vertically.

< ロ > < 同 > < 回 > < 回 > < 回 > <

In class, students consider problems.

2

In class, students consider problems.

Problem

Let M_y be the transformation matrix for a reflection across the y-axis. Find M_y .

イロト イヨト イヨト イヨト

In class, students consider problems.

Problem

Let M_y be the transformation matrix for a reflection across the y-axis. Find M_y .

Problem

Let R_{90° be the transformation matrix for a rotation by 90° counterclockwise. Find R_{90° .

イロト イヨト イヨト イヨト

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

3

イロン イ団 とくほと くほとう

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$.

3

ヘロン ヘロン ヘヨン ヘヨン

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$. Is matrix multiplication commutative?

3

・ロト ・四ト ・ヨト ・ヨト

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$. Is matrix multiplication commutative?

Is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$$

Explain.

3

◆□> ◆圖> ◆理> ◆理>

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_{\gamma}R_{90^{\circ}}$ and $R_{90^{\circ}}M_{\gamma}$. Is matrix multiplication commutative?

Is

$$\begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \begin{pmatrix} \mathsf{e} & \mathsf{f} \\ \mathsf{g} & \mathsf{h} \end{pmatrix} = \begin{pmatrix} \mathsf{a} \mathsf{e} & \mathsf{b} \mathsf{f} \\ \mathsf{c} \mathsf{g} & \mathsf{d} \mathsf{h} \end{pmatrix}$$

Defend your conclusion.

・ロト ・個ト ・ヨト ・ヨト

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$. Is matrix multiplication commutative?

Is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$$

Defend your conclusion.

• Find $(M_y)^{1000}$ and $(R_{90^\circ})^{15}$.

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$. Is matrix multiplication commutative?

Is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$$

Defend your conclusion.

- Find $(M_y)^{1000}$ and $(R_{90^\circ})^{15}$.
- Find $R_{90^{\circ}}^{-1}$.

At this point, we have NOT taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$. Is matrix multiplication commutative?

Is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$$

Defend your conclusion.

- Find $(M_y)^{1000}$ and $(R_{90^\circ})^{15}$.
- Find $R_{90^{\circ}}^{-1}$.
- Find M_y^{-1} .

At this point, we have **NOT** taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$. Is matrix multiplication commutative?

Is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$$

Defend your conclusion.

- Find $(M_y)^{1000}$ and $(R_{90^\circ})^{15}$.
- Find $R_{90^{\circ}}^{-1}$.
- Find M_y^{-1} .
- Find $(M_y R_{90^\circ})^{-1}$. Express your answer in terms of M_y^{-1} and $R_{90^\circ}^{-1}$.

イロン イヨン イヨン イヨン 三日

At this point, we have **NOT** taught any matrix arithmetic.

Instead, they develop it with in-class activities:

• Find $M_y R_{90^\circ}$ and $R_{90^\circ} M_y$. Is matrix multiplication commutative?

Is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} ae & bf \\ cg & dh \end{pmatrix}$$

Defend your conclusion.

- Find $(M_y)^{1000}$ and $(R_{90^\circ})^{15}$.
- Find $R_{90^{\circ}}^{-1}$.
- Find M_y^{-1} .
- Find $(M_y R_{90^\circ})^{-1}$. Express your answer in terms of M_y^{-1} and $R_{90^\circ}^{-1}$.
- Let A, B be linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$. Find AB.

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

2

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

• Students often make mistakes in proofs that they don't learn about until they get their papers back,

3

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

- Students often make mistakes in proofs that they don't learn about until they get their papers back,
- Starting "the wrong way" can make it impossible to complete a proof,

3

イロト 不得 トイヨト イヨト

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

- Students often make mistakes in proofs that they don't learn about until they get their papers back,
- Starting "the wrong way" can make it impossible to complete a proof,
- Students don't see the point of proof.

イロト 不得 トイヨト イヨト

Developing a Proof

We teach:

Theorem (Product of Determinants)

The determinant of a product is the product of the determinants.

2

イロン イ団と イヨン イヨン

To motivate and develop the proof, students consider:

2

To motivate and develop the proof, students consider:

Problem

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be a linear transformation. What is the area of a unit square transformed by M?

・ロン ・四 と ・ ヨ と ・ ヨ と …

To motivate and develop the proof, students consider:

Problem

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be a linear transformation. What is the area of a unit square transformed by M?

ad - bc seems important. Let's use it.

イロン イ団と イヨン イヨン

To motivate and develop the proof, students consider:

Problem

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be a linear transformation. What is the area of a unit square transformed by M?

- ad bc seems important. Let's use it.
 - Find det *I*.

・ロト ・回ト ・ヨト ・ヨトー

To motivate and develop the proof, students consider:

Problem

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be a linear transformation. What is the area of a unit square transformed by M?

ad - bc seems important. Let's use it.

- Find det *I*.
- Find det M^{-1} without finding M^{-1} . Defend your conclusion.

イロト 不得 トイヨト イヨト

To motivate and develop the proof, students consider:

Problem

Let

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

be a linear transformation. What is the area of a unit square transformed by M?

ad - bc seems important. Let's use it.

- Find det *I*.
- Find det M^{-1} without finding M^{-1} . Defend your conclusion.
- Find det $M^{-1}M$ without computing it. Defend your conclusion.

(日) (周) (王) (王)

Three Shameless Plugs

Flipping a course requires having a set of online lectures.

2

Three Shameless Plugs

Flipping a course requires having a set of online lectures.

You should make your own to personalize them.

æ

Three Shameless Plugs

Flipping a course requires having a set of online lectures.

You should make your own to personalize them.

But mine are on YouTube: "Jeff Suzuki linear algebra".

Youlube	Search		Q III 0
Example Example Let <i>m</i> be a worker, and \vec{x} depende: $T(\vec{x}) = mT +$ $T(\vec{x} + \vec{v}) =$	a gan ann wetar. Pous a'	Definition Let $T, X \to \mathbb{R}$. We say T is a locar transformation if for all vectors \overline{v}, V and all scalars c . $T(\overline{v} + \nabla) = T(\overline{v}) + T(\overline{v}')$ $T(\overline{v} + \nabla) = T(\overline{v}) + T(\overline{v}')$ We write $T\overline{v} = \overline{y}$.	Lines Abjets All back 1/5/22 All back 1/5/22 Lines Tendenstores Pert 1 all back 1/5/22 Lines Tendenstores Pert 2 all back 1/5/22 Lines Tendenstores Pert 2 all back 1/5/22 Constructions Pert 2 all back 1/5/22 All back
Linear Transformations, Pa	art 1	de a 1910 de source de source	Circular Purple & Pink Particle Moving 4K Relaxing_ Jose Finka 1.5M views

・ロト ・回ト ・ヨト ・ヨトー

MyOpenMath

This is a free, open source LMS with a well-integrated mathematics OHM:

- www.myopenmath.com
- Library of courses available to copy and modify (including mine)
- Library of problems available to copy and modify (incuding mine) ever seen)
- No "in-house" server needed (long story ...)

11 / 12

Shameless Plug

Patently Mathematical (Johns Hopkins University Press, 2019)

- Mathematics and recent patents,
- Lots of basic applications of linear algebra,
- Google is based on pre-midterm material.

<ロ> (日) (日) (日) (日) (日)