Flipping Linear Algebra

Teaching a Majors-Level Linear Algebra Course in a Flipped Learning Environment

Jeff Suzuki

Department of Mathematics
Brooklyn College
Brooklyn NY 11210
jeff.a.suzuki@gmail.com

Flipped Classes

Lecture is BAD, we shouldn't do it.

Flipped Classes

Lecture is so important that students should be able to access it multiple times.

Flipped Classes

Lecture is so important that students should be able to access it multiple times.
In a flipped class:

Flipped Classes

Lecture is so important that students should be able to access it multiple times.
In a flipped class:

- Students view a lecture "offline" (online),

Flipped Classes

Lecture is so important that students should be able to access it multiple times.
In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

Flipped Classes

Lecture is so important that students should be able to access it multiple times.
In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

We used to do this:

Flipped Classes

Lecture is so important that students should be able to access it multiple times.
In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

We used to do this: Reading assignments!

Flipped Classes

Lecture is so important that students should be able to access it multiple times.
In a flipped class:

- Students view a lecture "offline" (online),
- Students comes to class to work problems.

We used to do this: Reading assignments!
A video lecture may be the BEST WAY to present mathematics, because it shows mathematics as a process, not a finished product.

So You Want To Be A Mathematician ...

Advanced mathematics isn't "Solving harder problems."

So You Want To Be A Mathematician ...

Advanced mathematics isn't "Solving harder problems."
It's "Creating solutions to unsolved problems."

So You Want To Be A Mathematician ...

Advanced mathematics isn't "Solving harder problems."
It's "Creating solutions to unsolved problems."
Majors-Level linear algebra should:

So You Want To Be A Mathematician ...

Advanced mathematics isn't "Solving harder problems."
It's "Creating solutions to unsolved problems."
Majors-Level linear algebra should:

- Develop student ability to analyze a situation,

So You Want To Be A Mathematician ...

Advanced mathematics isn't "Solving harder problems."
It's "Creating solutions to unsolved problems."
Majors-Level linear algebra should:

- Develop student ability to analyze a situation,
- Offer students opportunities to create solutions,

So You Want To Be A Mathematician ...

Advanced mathematics isn't "Solving harder problems."
It's "Creating solutions to unsolved problems."
Majors-Level linear algebra should:

- Develop student ability to analyze a situation,
- Offer students opportunities to create solutions,
- Promote student exploration of mathematics.

So You Want To Be A Mathematician ...

Advanced mathematics isn't "Solving harder problems."
It's "Creating solutions to unsolved problems."
Majors-Level linear algebra should:

- Develop student ability to analyze a situation,
- Offer students opportunities to create solutions,
- Promote student exploration of mathematics.

A flipped environment is ideally suited for these goals!

A Day In The Life: Before Class

Before class students watch one or more short videos on a topic:

A Day In The Life: Before Class

Before class students watch one or more short videos on a topic:

- Under 10 minutes.

A Day In The Life: Before Class

Before class students watch one or more short videos on a topic:

- Under 10 minutes. Don't videotape your lecture!

A Day In The Life: Before Class

Before class students watch one or more short videos on a topic:

- Under 10 minutes. Don't videotape your lecture!

Reflections

```
Problem
For P\in\mp@subsup{\mathbb{R}}{}{2}\mathrm{ , write the transformation matrix for}
Mx :P->\mp@subsup{P}{}{\prime}}\mathrm{ , where P}\mp@subsup{P}{}{\prime}\mathrm{ is the reflection of P across the
x-axis.
```


We'll go x units horizontally and then y units
vertically.

A Day In The Life: Before Class

Before class students watch one or more short videos on a topic:

- Under 10 minutes. Don't videotape your lecture!
- Constant reminders to watch (email, in-class, LMS).

Reflections
Problem
For $P \in \mathbb{R}^{2}$, write the transformation matrix for
$M_{x}: P \rightarrow P^{\prime}$, where P^{\prime} is the reflection of P across the
x-axis.

We'll go x units horizontally and then y units
vertically.

A Day In The Life: Before Class

Before class students watch one or more short videos on a topic:

- Under 10 minutes. Don't videotape your lecture!
- Constant reminders to watch (email, in-class, LMS).
- Comprehension questions.

Reflections

We'll go x units horizontally and then y units
vertically.

A Day In The Life: During Class

In class, students consider problems.

A Day In The Life: During Class

In class, students consider problems.

Problem

Let M_{y} be the transformation matrix for a reflection across the y-axis. Find M_{y}.

A Day In The Life: During Class

In class, students consider problems.

Problem

Let M_{y} be the transformation matrix for a reflection across the y-axis. Find M_{y}.

Problem

Let $R_{90^{\circ}}$ be the transformation matrix for a rotation by 90° counterclockwise. Find R_{90}.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?
- Is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right)
$$

Explain.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?
- Is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right)
$$

Defend your conclusion.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?
- Is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right)
$$

Defend your conclusion.

- Find $\left(M_{y}\right)^{1000}$ and $\left(R_{90^{\circ}}\right)^{15}$.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?
- Is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right)
$$

Defend your conclusion.

- Find $\left(M_{y}\right)^{1000}$ and $\left(R_{90^{\circ}}\right)^{15}$.
- Find $R_{90^{\circ}}^{-1}$.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?
- Is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right)
$$

Defend your conclusion.

- Find $\left(M_{y}\right)^{1000}$ and $\left(R_{90^{\circ}}\right)^{15}$.
- Find $R_{90^{\circ}}^{-1}$.
- Find M_{y}^{-1}.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?
- Is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right)
$$

Defend your conclusion.

- Find $\left(M_{y}\right)^{1000}$ and $\left(R_{90^{\circ}}\right)^{15}$.
- Find $R_{90^{\circ}}^{-1}$.
- Find M_{y}^{-1}.
- Find $\left(M_{y} R_{90^{\circ}}\right)^{-1}$. Express your answer in terms of M_{y}^{-1} and $R_{90^{\circ}}{ }^{-1}$.

A Day In The Life: During Class

At this point, we have NOT taught any matrix arithmetic.
Instead, they develop it with in-class activities:

- Find $M_{y} R_{90^{\circ}}$ and $R_{90^{\circ}} M_{y}$. Is matrix multiplication commutative?
- Is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e & b f \\
c g & d h
\end{array}\right)
$$

Defend your conclusion.

- Find $\left(M_{y}\right)^{1000}$ and $\left(R_{90^{\circ}}\right)^{15}$.
- Find $R_{90^{\circ}}^{-1}$.
- Find M_{y}^{-1}.
- Find $\left(M_{y} R_{90^{\circ}}\right)^{-1}$. Express your answer in terms of M_{y}^{-1} and $R_{90^{\circ}}^{-1}$.
- Let A, B be linear transformations from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Find $A B$.

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

- Students often make mistakes in proofs that they don't learn about until they get their papers back,

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

- Students often make mistakes in proofs that they don't learn about until they get their papers back,
- Starting "the wrong way" can make it impossible to complete a proof,

Developing Proofs

Proof-based courses are ideally suited for the flipped environment:

- Students often make mistakes in proofs that they don't learn about until they get their papers back,
- Starting "the wrong way" can make it impossible to complete a proof,
- Students don't see the point of proof.

Developing a Proof

We teach:

Theorem (Product of Determinants)
The determinant of a product is the product of the determinants.

There's Something About Matrix

To motivate and develop the proof, students consider:

There's Something About Matrix

To motivate and develop the proof, students consider:
Problem
Let

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a linear transformation. What is the area of a unit square transformed by M ?

There's Something About Matrix

To motivate and develop the proof, students consider:

Problem

Let

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a linear transformation. What is the area of a unit square transformed by M ?
$a d-b c$ seems important. Let's use it.

There's Something About Matrix

To motivate and develop the proof, students consider:

Problem

Let

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a linear transformation. What is the area of a unit square transformed by M ?
$a d-b c$ seems important. Let's use it.

- Find $\operatorname{det} l$.

There's Something About Matrix

To motivate and develop the proof, students consider:

Problem

Let

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a linear transformation. What is the area of a unit square transformed by M ?
$a d-b c$ seems important. Let's use it.

- Find det I.
- Find $\operatorname{det} M^{-1}$ without finding M^{-1}. Defend your conclusion.

There's Something About Matrix

To motivate and develop the proof, students consider:

Problem

Let

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be a linear transformation. What is the area of a unit square transformed by M ?
$a d-b c$ seems important. Let's use it.

- Find $\operatorname{det} l$.
- Find $\operatorname{det} M^{-1}$ without finding M^{-1}. Defend your conclusion.
- Find $\operatorname{det} M^{-1} M$ without computing it. Defend your conclusion.

Three Shameless Plugs

Flipping a course requires having a set of online lectures.

Three Shameless Plugs

Flipping a course requires having a set of online lectures.
You should make your own to personalize them.

Three Shameless Plugs

Flipping a course requires having a set of online lectures.
You should make your own to personalize them.
But mine are on YouTube: "Jeff Suzuki linear algebra".

MyOpenMath

This is a free, open source LMS with a well-integrated mathematics OHM:

- www.myopenmath.com
- Library of courses available to copy and modify (including mine)
- Library of problems available to copy and modify (incuding mine) ever seen)
- No "in-house" server needed (long story ...)
- Unit 2: Elementary Matrix Operations Showing Collapsed Always
- Unit 3: Linear Transformations

Showing Collapsed Always
Add An Item... \quad.

Lectures

Showing Collapsed Always
Add An Item...
Linear Transformations, Part One
[${ }^{2}$ [+]
Showing Always

Comprehension: Linear
Transformations, Part One
Past Due Date of Tue 6/12/18, 12:25 pm. Showing as Review. LP This assessment is in review mode - no scores will be saved

This quiz is based on the material in the preceding video. You should be able to complete it in under 5 minutes.

Shameless Plug

Patently Mathematical (Johns Hopkins University Press, 2019)

- Mathematics and recent patents,
- Lots of basic applications of linear algebra,
- Google is based on pre-midterm material.

