Teaching About Learning

Gilbert Strang

MIT

Minimize ||v||, among vectors (vi,v2) on the line 3v; + 4vp =1

(0.%) hasHv*Hl:i (%2;45) hasHv*Hg:% (%%) has||v*||oo:%

The solutions v* to the ¢} and ¢2 and £°° minimizations.

C

The ¢! solution (0, 1) is sparse.

Orthonormal vy ... v,
Av; = oju; Orthonormal uq ... u,
Principal components in the SVD A = ULVT

01
Alvy ... v, = |uy ... u,

Or

Construction AT Av; = U?Ui eigenvectors of AT A

u; = Av; /oy also orthornormal

V]
[

Eckart-Young property of USVT = oyugvl + -+ + opupvl

Ay = sum of first k& of those rank 1 pieces has rank k

Best approximation ||A — Ai| < ||A — B|| if B has rank k
JAll2 = Omax o8 |43 = 03+ + 02 or [Ally = o1+ -+ + 0,
Alternating algorithm to minimize |[A — CRT||

Find best R with C fixed, then C with R fixed

Unsupervised learning: The only instructor is linear algebra

3/18

Three bases for the column space of A

. Orthonormal columns in @ A = QR is Gram-Schmidt
. Orthonormal columns in U A=UxVT is the SVD

. Independent columns in C taken directly from A

A = CMRT = (columns from A) M (rows from A)

M = mixing matrix often written as U

Goal of deep learning

Create a function F' that learns how to classify data vectors v
You told it the correct classification for the training data

A giant optimization finds weights in F
to reproduce those correct classifications F'(v)

Construction of Deep Neural Networks

Key operation Composition F' = F3(Fy(F1(x,vo)))
Key rule Chain rule for z-derivatives of F

Key algorithm Stochastic gradient descent to find x
Key subroutine = Backpropagation to compute grad F
Key nonlinearity ReLU (y) = max(y,0) = ramp function

U W N =

Layer k vy = Fk(Vk—l) = ReLU(Aka_l + bk)

Weights x for layer k& Ay = matrix and by = offset vector

vp = training data / vi,...,v,—1 hidden layers / v, = output

4 x 3 matrix A; 1 X 4 matrix Ag
Add 4 x 1 vector by Add 1 x 1 bo

RelLU

ReLU

RelLU

ReLU

Three components y; at layer 1 v at layer 1 Output va = vol
of vg for each yi=Aivo+bs vi=ReLU(y1) Azvi+be
training sample

Figure from math.mit.edu/learningfromdata

[

math.mit.edu/learningfromdata

Key computation: Weights x minimize overall loss L(x)

N
1 .
L(x) = N Z loss £(x, v}) on sample j
j=1
“Square loss” = error {(x, vg) = ||F(X,V6) — true ||

Cross-entropy loss, hinge loss, ...

Classification problem: true = 1 or —1

Regression problem: true = vector

Gradient descent x;+1 = arg min ||x; — sV L(xk, v)||

Stochastic descent x;41 = arg min ||xg — s VEI(xk, V)||

Mathematical questions

1. Convergence rate of descent and accelerated descent
(when xj41 depends on x;, and x;_1: momentum added)

2. Do the weights A1, b1, ... generalize to unseen test data?
(Early stopping / Do not overfit the data)

3. Replace samples v or don’t replace in stochastic descent?
(Theory versus practice)

9/18

1. Stochastic gradient descent optimizes the weights Ay, by

2. Backpropagation in the computational graph computes
derivatives with respect to weights x = Ay, by, ..., Ay

3. The learning function F(x,vo) = ... F3(F2(F1(x,V)))

Fi(vp) = max(A1vg + b1,0) = ReLU o affine map

F(v) is continuous piecewise linear: how many pieces?
This measures the “expressivity” of the network

Assume 1 hidden layer with N neurons

10/18

vo has m components / v; has N components / N ReLU’s

The number of flat regions bounded by the N hyperplanes is:

=3 ()= (3)+ (1) -+ ()

N = 3 folds in a plane will produce 1 + 3 + 3 = 7 pieces
Start with 2 folds

¢ —7r(2,2) =4
e 3a Add new fold
2a = —r(2,1)=3
1b 2b 3b Polya’s Cake Problem r(5, 3)

Recursion 7(N,m) =r(N —1,m)+r(N —1,m —1)

11/18

F(x) = F2(F1(x)) is continuous piecewise linear

One hidden layer of neurons: deep networks have many more
Overfitting is not desirable! Gradient descent stops early!
“Generalization” measured by success on unseen test data

Big problems often underdetermined # weights > # samples

Stochastic Gradient Descent finds weights that generalize well

Backpropagation = Automatic Differentiation:

Reverse Mode

Nick Higham referred to AD in the Dec 2017 STAM News
The derivatives of F' are computed in parallel with F itself
Differentiate every step in the computational graph

This produces the chain rule for dF/dx

13/ 18

Backpropagation: Derivatives of z2(z +y) at x = 2,y = 3

de
— =9
ox o

14 /18

Stochastic Gradient Descent

Update x using one random sample v (or a minibatch)
Simple methods start well (semi-convergence)
Just stop them early: Noise is not a disaster to correct

Kaczmarz chooses xj4+1 to solve equation i(k) in Az =b

T
bi —a; Xg

Xg+1 = Xi + a;

i

15/18

Norm-squared sampling Linear algebra 4 probability

Choose equation i with probability proportional to ||a;||?
Randomized multiplication AB of very large matrices
Choose column of A / row of B with probability = ||a;|| ||b;]|
Columns/rows stay sparse/positive/meaningful

A revolution in linear algebra for large matrices

Matrix approximation A ~ CMR M = mixing matrix

16 /18

Randomized Numerical Linear Algebra

For very large matrices, randomization has brought a revolution

Example: Multiply AB with column-row sampling (AS)(S” B)

S11 0
AS = a]p] az as 0 0 = [S11Q1 S32a3
0 s32

Norm-squared sampling Choose columns of A rows of B
with probabilities proportional to ||a;]|||67 ||

This choice minimizes the sampling variance

17 /18

Input Layer € R

%@é‘%

Hidden Layer € R*2

Hidden Layer € R®

Output Layer € R

DA

18 /18

