
Teaching About Learning

Gilbert Strang

MIT

Minimize ‖v‖p among vectors (v1, v2) on the line 3v1 + 4v2 = 1

The solutions v∗ to the `1 and `2 and `∞ minimizations.

The `1 solution (0, 14) is sparse.

1 / 18

Orthonormal v1 . . . vr
Avi = σiui Orthonormal u1 . . . ur

Principal components in the SVD A = UΣV T

A

v1 . . . vr

 =

u1 . . . ur

σ1 . . .

σr

Construction ATAvi = σ2i vi eigenvectors of ATA

ui = Avi/σi also orthornormal

2 / 18

Eckart-Young property of UΣV T = σ1u1v
T
1 + · · ·+ σrurv

T
r

Ak = sum of first k of those rank 1 pieces has rank k

Best approximation ‖A−Ak‖ ≤ ‖A−B‖ if B has rank k

‖A‖2 = σmax or ‖A‖2F = σ21 + · · ·+ σ2r or ‖A‖N = σ1 + · · ·+ σr

Alternating algorithm to minimize ‖A−CRT‖

Find best R with C fixed, then C with R fixed

Unsupervised learning: The only instructor is linear algebra

3 / 18

Three bases for the column space of A

1. Orthonormal columns in Q A = QR is Gram-Schmidt

2. Orthonormal columns in U A = UΣV T is the SVD

3. Independent columns in C taken directly from A

A = CMRT = (columns from A) M (rows from A)

M = mixing matrix often written as U

4 / 18

Goal of deep learning

Create a function F that learns how to classify data vectors v

You told it the correct classification for the training data

A giant optimization finds weights in F
to reproduce those correct classifications F (v)

5 / 18

Construction of Deep Neural Networks

1 Key operation Composition F = F3(F2(F1(x,v0)))
2 Key rule Chain rule for x-derivatives of F
3 Key algorithm Stochastic gradient descent to find x
4 Key subroutine Backpropagation to compute grad F
5 Key nonlinearity ReLU (y) = max(y, 0) = ramp function

Layer k vk = Fk(vk−1) = ReLU(Akvk−1 + bk)

Weights x for layer k Ak = matrix and bk = offset vector

v0 = training data / v1, . . . ,v`−1 hidden layers / v` = output

6 / 18

Three components y1 at layer 1 v1 at layer 1 Output v2 = v0`
of v0 for each y1 = A1v0 + b1 v1 = ReLU(y1) A2v1 + b2
training sample

Figure from math.mit.edu/learningfromdata

7 / 18

math.mit.edu/learningfromdata

Key computation: Weights x minimize overall loss L(x)

L(x) =
1

N

N∑
j=1

loss `(x,vj
0) on sample j

“Square loss” = error `(x,vj
0) = ‖F (x,vj

0)− true ‖2

Cross-entropy loss, hinge loss, . . .

Classification problem: true = 1 or −1

Regression problem: true = vector

Gradient descent xk+1 = arg min ‖xk − sk∇L(xk,v)‖

Stochastic descent xk+1 = arg min ‖xk − sk∇`(xk,v)‖

8 / 18

Mathematical questions

1. Convergence rate of descent and accelerated descent
(when xk+1 depends on xk and xk−1: momentum added)

2. Do the weights A1, b1, . . . generalize to unseen test data?
(Early stopping / Do not overfit the data)

3. Replace samples v or don’t replace in stochastic descent?
(Theory versus practice)

9 / 18

1. Stochastic gradient descent optimizes the weights Ak, bk

2. Backpropagation in the computational graph computes
derivatives with respect to weights x = A1,b1, . . . , A`

3. The learning function F (x,v0) = . . . F3(F2(F1(x,v)))

F1(v0) = max(A1v0 + b1, 0) = ReLU ◦ affine map

F (v) is continuous piecewise linear: how many pieces?

This measures the “expressivity” of the network

Assume 1 hidden layer with N neurons

10 / 18

v0 has m components / v1 has N components / N ReLU’s

The number of flat regions bounded by the N hyperplanes is:

r(N,m) =

m∑
i=0

(
N

i

)
=

(
N

0

)
+

(
N

1

)
+ · · ·+

(
N

m

)
N = 3 folds in a plane will produce 1 + 3 + 3 = 7 pieces

Start with 2 folds
← r(2, 2) = 4
Add new fold
← r(2, 1) = 3
Polya’s Cake Problem r(5, 3)

Recursion r(N,m) = r(N − 1,m) + r(N − 1,m− 1)

11 / 18

F(x) = F2(F1(x)) is continuous piecewise linear

One hidden layer of neurons: deep networks have many more

Overfitting is not desirable! Gradient descent stops early!

“Generalization” measured by success on unseen test data

Big problems often underdetermined # weights > # samples

Stochastic Gradient Descent finds weights that generalize well

12 / 18

Backpropagation = Automatic Differentiation:
Reverse Mode

Nick Higham referred to AD in the Dec 2017 SIAM News

The derivatives of F are computed in parallel with F itself

Differentiate every step in the computational graph

This produces the chain rule for dF/dx

13 / 18

Backpropagation: Derivatives of x2(x+ y) at x = 2, y = 3

14 / 18

Stochastic Gradient Descent

Update x using one random sample v (or a minibatch)

Simple methods start well (semi-convergence)

Just stop them early: Noise is not a disaster to correct

Kaczmarz chooses xk+1 to solve equation i(k) in Ax = b

xk+1 = xk +
bi − aT

i xk

‖ai‖2
ai

15 / 18

Norm-squared sampling Linear algebra + probability

Choose equation i with probability proportional to ‖ai‖2

Randomized multiplication AB of very large matrices

Choose column of A / row of B with probability ≈ ‖ai‖ ‖bi‖

Columns/rows stay sparse/positive/meaningful

A revolution in linear algebra for large matrices

Matrix approximation A ≈ CMR M = mixing matrix

16 / 18

Randomized Numerical Linear Algebra

For very large matrices, randomization has brought a revolution

Example: Multiply AB with column-row sampling (AS)(STB)

AS =

a1 a2 a3

s11 0
0 0
0 s32

 =

s11a1 s32a3

Norm-squared sampling Choose columns of A rows of B
with probabilities proportional to ‖ai‖‖bTi ‖

This choice minimizes the sampling variance

17 / 18

Input Layer ¹ Hidden Layer ¹² Hidden Layer ¹ Output Layer ¹

18 / 18

