Teaching About Learning

Gilbert Strang

MIT

Minimize $\|\mathbf{v}\|_{p}$ among vectors $\left(v_{1}, v_{2}\right)$ on the line $3 v_{1}+4 v_{2}=1$

$\left(\frac{3}{25}, \frac{4}{25}\right)$ has $\left\|v^{*}\right\|_{2}=\frac{1}{5}$

$\left(\frac{1}{7}, \frac{1}{7}\right)$ has $\left\|v^{*}\right\|_{\infty}=\frac{1}{7}$

The solutions v^{*} to the ℓ^{1} and ℓ^{2} and ℓ^{∞} minimizations.
The ℓ^{1} solution $\left(0, \frac{1}{4}\right)$ is sparse.

$$
\begin{aligned}
& A v_{i}=\sigma_{i} u_{i} \\
& \begin{array}{l}
\text { Orthonormal } v_{1} \ldots v_{r} \\
\text { Orthonormal } u_{1} \ldots u_{r} \\
\text { Principal components in the SVD } A=U \Sigma V^{T}
\end{array} \\
& A\left[\begin{array}{lll}
\mathbf{v}_{1} & \ldots & \mathbf{v}_{r}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{u}_{1} & \ldots & \mathbf{u}_{r}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& & \ddots
\end{array}\right. \\
& \\
&
\end{aligned}
$$

Construction $\quad A^{T} A v_{i}=\sigma_{i}^{2} v_{i} \quad$ eigenvectors of $A^{T} A$

$$
u_{i}=A v_{i} / \sigma_{i} \quad \text { also orthornormal }
$$

Eckart-Young property of $U \Sigma V^{T}=\sigma_{1} u_{1} v_{1}^{T}+\cdots+\sigma_{r} u_{r} v_{r}^{T}$
$A_{k}=$ sum of first k of those rank 1 pieces has rank k
Best approximation $\left\|A-A_{k}\right\| \leq\|A-B\|$ if B has rank k
$\|A\|_{2}=\sigma_{\max }$ or $\|A\|_{F}^{2}=\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}$ or $\|A\|_{N}=\sigma_{1}+\cdots+\sigma_{r}$
Alternating algorithm to minimize $\left\|A-\mathbf{C R}^{\mathbf{T}}\right\|$
Find best \mathbf{R} with \mathbf{C} fixed, then \mathbf{C} with \mathbf{R} fixed
Unsupervised learning: The only instructor is linear algebra

Three bases for the column space of A

1. Orthonormal columns in $Q \quad A=Q R$ is Gram-Schmidt
2. Orthonormal columns in $U \quad A=U \Sigma V^{T}$ is the SVD
3. Independent columns in \mathbf{C} taken directly from \mathbf{A} $\mathbf{A}=\mathbf{C M R}^{\mathbf{T}}=($ columns from $\mathbf{A}) \mathbf{M}$ (rows from \mathbf{A})
$\mathbf{M}=$ mixing matrix often written as U

Goal of deep learning

Create a function F that learns how to classify data vectors v
You told it the correct classification for the training data
A giant optimization finds weights in F
to reproduce those correct classifications $F(v)$

Construction of Deep Neural Networks

1 Key operation
2 Key rule
3 Key algorithm
4 Key subroutine
5 Key nonlinearity $\operatorname{ReLU}(y)=\max (y, 0)=$ ramp function

$$
\text { Layer } \mathbf{k} \quad \mathbf{v}_{\mathbf{k}}=\mathbf{F}_{\mathbf{k}}\left(\mathbf{v}_{\mathbf{k}-\mathbf{1}}\right)=\operatorname{ReLU}\left(\mathbf{A}_{\mathbf{k}} \mathbf{v}_{\mathbf{k}-\mathbf{1}}+\mathbf{b}_{\mathbf{k}}\right)
$$

Weights \mathbf{x} for layer $k \quad \mathbf{A}_{\mathbf{k}}=$ matrix and $\mathbf{b}_{\mathbf{k}}=$ offset vector
$\mathbf{v}_{0}=$ training data $/ \mathbf{v}_{1}, \ldots, \mathbf{v}_{\ell-1}$ hidden layers $/ \mathbf{v}_{\ell}=$ output

Figure from math.mit.edu/learningfromdata

Key computation: Weights \mathbf{x} minimize overall loss $L(\mathbf{x})$

$$
L(\mathbf{x})=\frac{1}{N} \sum_{j=1}^{N} \operatorname{loss} \ell\left(\mathbf{x}, \mathbf{v}_{0}^{j}\right) \text { on sample } j
$$

"Square loss" $=$ error $\ell\left(\mathbf{x}, \mathbf{v}_{0}^{j}\right)=\left\|F\left(\mathbf{x}, \mathbf{v}_{0}^{j}\right)-\operatorname{true}\right\|^{2}$
Cross-entropy loss, hinge loss, ...
Classification problem: true $=1$ or -1
Regression problem: true $=$ vector
Gradient descent $\mathbf{x}_{k+1}=\arg \min \left\|\mathbf{x}_{k}-s_{k} \nabla L\left(\mathbf{x}_{k}, \mathbf{v}\right)\right\|$
Stochastic descent $\mathbf{x}_{k+1}=\arg \min \left\|\mathbf{x}_{k}-s_{k} \nabla \ell\left(\mathbf{x}_{k}, \mathbf{v}\right)\right\|$

Mathematical questions

1. Convergence rate of descent and accelerated descent (when \mathbf{x}_{k+1} depends on \mathbf{x}_{k} and \mathbf{x}_{k-1} : momentum added)
2. Do the weights A_{1}, b_{1}, \ldots generalize to unseen test data? (Early stopping / Do not overfit the data)
3. Replace samples v or don't replace in stochastic descent? (Theory versus practice)
4. Stochastic gradient descent optimizes the weights A_{k}, b_{k}
5. Backpropagation in the computational graph computes derivatives with respect to weights $\mathbf{x}=A_{1}, \mathbf{b}_{1}, \ldots, A_{\ell}$
6. The learning function $F\left(\mathbf{x}, \mathbf{v}_{0}\right)=\ldots F_{3}\left(F_{2}\left(F_{1}(\mathbf{x}, \mathbf{v})\right)\right)$

$$
F_{1}\left(\mathbf{v}_{0}\right)=\max \left(A_{1} \mathbf{v}_{0}+b_{1}, 0\right)=\operatorname{ReLU} \circ \text { affine map }
$$

$F(\mathbf{v})$ is continuous piecewise linear: how many pieces? This measures the "expressivity" of the network Assume 1 hidden layer with N neurons
v_{0} has m components / v_{1} has N components / N ReLU's
The number of flat regions bounded by the N hyperplanes is:

$$
r(N, m)=\sum_{i=0}^{m}\binom{N}{i}=\binom{N}{0}+\binom{N}{1}+\cdots+\binom{N}{m}
$$

$N=3$ folds in a plane will produce $1+3+3=7$ pieces
Start with 2 folds

$$
\leftarrow r(2,2)=4
$$

Add new fold $\leftarrow r(2,1)=3$
Polya's Cake Problem $r(5,3)$

Recursion $r(N, m)=r(N-1, m)+r(N-1, m-1)$
$\mathbf{F}(x)=\mathbf{F}_{\mathbf{2}}\left(\mathbf{F}_{\mathbf{1}}(\mathrm{x})\right)$ is continuous piecewise linear
One hidden layer of neurons: deep networks have many more Overfitting is not desirable! Gradient descent stops early!
"Generalization" measured by success on unseen test data
Big problems often underdetermined \# weights > \# samples
Stochastic Gradient Descent finds weights that generalize well

Backpropagation $=$ Automatic Differentiation: Reverse Mode

Nick Higham referred to AD in the Dec 2017 SIAM News The derivatives of F are computed in parallel with F itself

Differentiate every step in the computational graph
This produces the chain rule for $d F / d x$

Backpropagation: Derivatives of $x^{2}(x+y)$ at $x=2, y=3$

Stochastic Gradient Descent

Update \mathbf{x} using one random sample \mathbf{v} (or a minibatch)
Simple methods start well (semi-convergence)
Just stop them early: Noise is not a disaster to correct
Kaczmarz chooses \mathbf{x}_{k+1} to solve equation $i(k)$ in $A x=b$

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\frac{\mathbf{b}_{i}-\mathbf{a}_{i}^{T} \mathbf{x}_{k}}{\left\|\mathbf{a}_{i}\right\|^{2}} \mathbf{a}_{i}
$$

Norm-squared sampling Linear algebra + probability

Choose equation i with probability proportional to $\left\|\mathbf{a}_{i}\right\|^{2}$
Randomized multiplication $A B$ of very large matrices
Choose column of $A /$ row of B with probability $\approx\left\|\mathbf{a}_{i}\right\|\left\|\mathbf{b}_{i}\right\|$
Columns/rows stay sparse/positive/meaningful
A revolution in linear algebra for large matrices
Matrix approximation $A \approx C M R$
$M=$ mixing matrix

Randomized Numerical Linear Algebra

For very large matrices, randomization has brought a revolution Example: Multiply $A B$ with column-row sampling $(A S)\left(S^{T} B\right)$

$$
A S=\left[\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}
\end{array}\right]\left[\begin{array}{cc}
s_{11} & 0 \\
0 & 0 \\
0 & s_{32}
\end{array}\right]=\left[\begin{array}{ll}
s_{11} \mathbf{a}_{1} & s_{32} \mathbf{a}_{3}
\end{array}\right]
$$

Norm-squared sampling Choose columns of A rows of B with probabilities proportional to $\left\|a_{i}\right\|\left\|b_{i}^{T}\right\|$

This choice minimizes the sampling variance

Input Layer $\in \mathbb{R}^{16}$
Hidden Layer $\in \mathbb{R}^{12}$
Hidden Layer $\in \mathbb{R}^{10}$
Output Layer $\in \mathbb{R}^{1}$

