
Motivating Student Learning Through
Applications

Steven Schlicker
schlicks@gvsu.edu

Grand Valley State University

JMM: Thursday, January 17, 2019

Overview

I Background

I Examples

I Big Picture

Background

I My background

I What do my students need?

Background

I My background

I What do my students need?

Examples of Applications

I Linear Combinations: Analyzing Knight Moves

Application: The Knight’s Tour

Chess is a game played on an 8 × 8 grid which utilizes a variety of different pieces. One piece, the knight,
is different from the other pieces in that it can jump over other pieces. However, the knight is limited in how
far it can move in a given turn. For these reasons, the knight is a powerful, but often under-utilized, piece.

A knight can move two units either horizontally or vertically, and one unit perpendicular to that. Four
knight moves are as illustrated in Figure 1, and the other four moves are the opposites of these.

Figure 1: Moves a knight can make.

The knight’s tour problem is the mathematical problem of finding a knight’s tour, that is a sequence of
knight moves so the the knight visits each square exactly once. While we won’t consider a knight’s tour in
this text, we will see using linear combinations of spans of vectors that a knight can move from its initial
position to any other position on the board, and that it is possible to determine an sequence of moves to
make that happen.

1

Project: Analyzing Knight Moves

To understand where a knight can move in a chess game, we need to know the initial setup. A chess board
is an 8× 8 grid. To be able to refer to the individual positions on the board, we will place the board so that
its lower left corner is at the origin, make each square in the grid have side length 1, and label each square
with the point at the lower left corner. This is illustrated at left in Figure 2.

Figure 2: Initial knight placement and moves.

Each player has two knights to start the game, for one player the knights would begin in positions (1, 0)
and (6, 0). Because of the symmetry of the knight’s moves, we will only analyze the moves of the knight
that begins at position (1, 0). This knight has only three allowable moves from its starting point (assuming
that the board is empty), as shown at right in Figure 2. The questions we will ask are: given any position
on the board, can the knight move from its start position to that position using only knight moves and, what
sequence of moves will make that happen. To answer these questions we will use linear combinations of
knight moves described as vectors.

Each knight move can be described by a vector. A move one position to the right and two up can be

represented at n1 =

[
1
2

]
. Three other moves are n2 =

[
−1
2

]
, n3 =

[
2
1

]
, and n4 =

[
−2
1

]
. The

other four knight moves are the opposites of these four. Any sequence of moves by the knight is given by
the linear combination

x1n1 + x2n2 + x3n3 + x4n4.

A word of caution: the knight can only make complete moves, so we are restricted to integer (either positive
or negative) values for x1, x2, x3, and x4. You can use the GeoGebra app at https://www.geogebra.
org/m/dfwtskrj to see the affects the weights have on the knight moves. We should note here that since
addition of vectors is commutative, the order in which we apply our moves does not matter. However, we
may need to be careful with the order so that our knight does not leave the chess board.

Project Activity 1.

(a) Explain why the vector equation[
1
0

]
+ x1n1 + x2n2 + x3n3 + x4n4 =

[
5
2

]

2

https://www.geogebra.org/m/dfwtskrj
https://www.geogebra.org/m/dfwtskrj

will tell us if it is possible for the knight to move from its initial position at (1, 0) to the position
(5,2).

(b) Find all solutions, if any, to the system from part (a). If a solution exists, find weights x1, x2, x3,
and x4 to accomplish this move. Is there more than one sequence of possible moves? (Hint: Be
careful – we must have solutions in which x1, x2, x3, and x4 are integers.) You can check your
solution with the GeoGebra app at https://www.geogebra.org/m/dfwtskrj.

Project Activity 1 shows that it is possible for our knight to move to position (5, 2) on the board. We
would like to know if it is possible to move to any position on the board. That is, we would like to know if
the span of the four moves n1, n2, n3, and n4 will allow our knight to cover the entire board. This takes a
bit more work.

Project Activity 2. Given any position (a, b), we want to know if our knight can move from its start position
(1, 0) to position (a, b).

(a) Write a vector equation whose solution will tell us if it is possible for our knight to move from its
start position (1, 0) to position (a, b).

(b) Show that the solution to part (a) can be written in the form

x1 =
1

4
(−5x3 + 3x4 + b+ 2(a− 1)) (1)

x2 =
1

4
(3x3 − 5x4 + b− 2(a− 1)) (2)

x3 is free

x4 is free.

To answer our question if our knight can reach any position, we now need to determine if we can always
find integer values of x3 and x4 to make equations (1) and (2) have integer solutions. In other words, we
need to find values of x3 and x4 so that −5x3 + 3x4 + b + 2(a − 1) and 3x3 − 5x4 + b − 2(a − 1) are
multiples of 4. How we do this could depend on the parity (even or odd) of a and b. For example, if a is odd
and b is even, say a = 2r + 1 and b = 2s for some integers r and s, then

x1 =
1

4
(−5x3 + 3x4 + 2s+ 4r)

x2 =
1

4
(3x3 − 5x4 + 2s− 4r) .

With a little trial and error we can see that if we let x3 = x4 = s, then x1 = r and x2 = −r is a solution
with integer weights. For example, when a = 5 and b = 2 we have r = 2 and s = 1. This makes x1 = 2,
x2 = −2, x3 = 1 = x4. Compare this to the solution(s) you found in Project Activity 1. This analysis
shows us how to move our knight to any position (a, b) where a is odd and b is even.

Project Activity 3. Complete the analysis as above to determine if there are integer solutions to our knight’s
move system in the following cases.

(a) a odd and b odd

(b) a even and b even

(c) a even and b odd.

3

https://www.geogebra.org/m/dfwtskrj

Project Activity 3 shows that for any position on the chess board, using linear combinations of move
vectors, we can find a sequence of moves that takes our knight to that position. (We actually haven’t shown
that these moves can be made so that our knight always stays on the board – we leave that question to you.)

4

Examples of Applications

I Bases for Vector Spaces: Wavelets

Application: Image Compression

If you painted a picture with a sky, clouds, trees, and flowers, you would use a different size
brush depending on the size of the features. Wavelets are like those brushes.

-Ingrid Daubechies

The advent of the digital age has presented many new opportunities for the collection, analysis, and
dissemination of information. Along with these opportunities come new difficulties as well. All of this
digital information must be stored in some way and be retrievable in an efficient manner. One collection of
tools that is used to deal with these problems is wavelets. For example, The FBI fingerprint files contain
millions of cards, each of which contains 10 rolled fingerprint impressions. Each card produces about 10
megabytes of data. To store all of these cards would require an enormous amount of space, and transmitting
one full card over existing data lines is slow and inefficient. Without some sort of image compression,
a sortable and searchable electronic fingerprint database would be next to impossible. To deal with this
problem, the FBI adopted standards for fingerprint digitization using a wavelet compression standard.

Another problem with electronics is noise. Noise can be a big problem when collecting and transmitting
data. Wavelet decomposition filters data by averaging and detailing. The detailing coefficients indicate
where the details are in the original data set. If some details are very small in relation to others, eliminating
them may not substantially alter the original data set. Similar ideas may be used to restore damaged audio,1,
video, photographs, and medical information.2

We will consider wavelets as a tool for image compression. The basic idea behind using wavelets to
compress images is that we start with a digital image, made up of pixels. Each pixel can be assigned a
number or a vector (depending on the makeup of the image). The image can then be represented as a matrix
(or a set of matrices) M , where each entry in M represents a pixel in the image. As a simple example,
consider the 16 × 16 image of a flower as shown at left in Figure 1. (We will work with small images like
this to make the calculations more manageable, but the ideas work for any size image. We could also extend
our methods to consider color images, but for the sake of simplicity we focus on grayscale.) This flower
image is a gray-scale image, so each pixel has a numeric representation between 0 and 255, where 0 is black,
255 is white, and numbers between 0 and 255 represent shades of gray. The matrix for this flower image is

240 240 240 240 130 130 240 130 130 240 240 240 240 240 240 240
240 240 240 130 175 175 130 175 175 130 240 240 240 240 240 240
240 240 130 130 175 175 130 175 175 130 130 240 240 240 240 240
240 130 175 175 130 175 175 175 130 175 175 130 240 240 240 240
240 240 130 175 175 130 175 130 175 175 130 240 240 240 240 240
255 240 240 130 130 175 175 175 130 130 240 240 225 240 240 240
240 240 130 175 175 130 130 130 175 175 130 240 225 255 240 240
240 240 130 175 130 240 130 240 130 175 130 240 255 255 255 240
240 240 240 130 240 240 75 240 240 130 240 255 255 255 255 255
240 240 240 240 240 240 75 240 240 240 240 240 240 240 240 240
240 240 240 75 75 240 75 240 75 75 240 240 240 240 240 240
50 240 240 240 75 240 75 240 75 240 240 240 240 50 240 240
240 75 240 240 240 75 75 75 240 240 50 240 50 240 240 50
240 240 75 240 240 240 75 240 240 50 240 50 240 240 50 240
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75



. (1)

Now we can apply wavelets to the image and compress it. Essentially, wavelets act by averaging and
differencing. The averaging creates smaller versions of the image and the differencing keeps track of how far

1see https://ccrma.stanford.edu/groups/edison/brahms/brahms.html for a discussion of the denoising
of a Brahms recording

2Denoising of Heart Sound Signal Using Wavelet Transform, Gyanaprava Mishra, Kumar Biswal, Asit Kumar Mishra, Interna-
tional Journal of Research in Engineering and Technology, ISSN: 2319-1163, Volume: 02 Issue: 04, Apr. 2013.

1

https://ccrma.stanford.edu/groups/edison/brahms/brahms.html

Figure 1: Left: A 16 by 16 pixel image. Right: The image compressed.

the smaller version is from a previous copy. The differencing often produces many small (close to 0) entries,
and so replacing these entries with 0 doesn’t have much effect on the image (this is called thresholding). By
introducing long strings of zeros into our data, we are able to store a (compressed) copy of the image in a
smaller amount of space. For example, using a threshold value of 10 produces the flower image shown at
right in Figure 1.

The averaging and differencing is done with special vectors (wavelets) that form a basis for a suitable
function space. More details of this process can be found at the end of this section.

2

Project: Image Compression with Wavelets

We return to the problem of image compression introduced at the beginning of this section. The first step in
the wavelet compression process is to digitize an image. There are two important ideas about digitalization
to understand here: intensity levels and resolution. In grayscale image processing, it is common to think of
256 different intensity levels, or scales, of gray ranging from 0 (black) to 255 (white). A digital image can
be created by taking a small grid of squares (called pixels) and coloring each pixel with some shade of gray.
The resolution of this grid is a measure of how many pixels are used per square inch. An example of a 16
by 16 pixel picture of a flower was shown in Figure 1.

An image can be thought of in several ways: as a two-dimensional array; as one long vector by stringing
the columns together one after another; or as a collection of column vectors. For the sake of simplicity, we
will use the latter approach in this exercise. We call each column vector in a picture a signal. Wavelets are
used to process signals. After processing we can apply some technique to compress the processed signals.

To process a signal we select a family of wavelets. There are many different families of wavelets – which
family to use depends on the problem to be addressed. The simplest family of wavelets is the Haar family.
More complicated families of wavelets are usually used in applications, but the basic ideas in wavelets can
be seen through working with the Haar wavelets, and their relative simplicity will make the details easier to
follow. Each family of wavelets has a father wavelet (usually denoted φ) and a mother wavelet (ψ).

Wavelets are generated from the mother wavelet by scalings and translations. To further simplify our
work we will restrict ourselves to wavelets on [0,1], although this is not necessary. The advantage the
wavelets have over other methods of data analysis (Fourier analysis for example) is that with the scalings
and translations we are able to analyze both frequency on large intervals and isolate signal discontinuities on
very small intervals. The way this is done is by using a large collection (infinite, in fact) of basis functions
with which to transform the data. We’ll begin by looking at how these basis functions arise.

If we sample data at various points, we can consider our data to represent a piecewise constant function
obtained by partitioning [0,1] into n equal sized subintervals, where n represents the number of sample
points. For the purposes of this project we will always choose n to be a power of 2. So we can consider all
of our data to represent functions. For us, then, it is natural to look at these functions in the vector space
of all functions from R to R. Since our data is piecewise constant, we can really restrict ourselves to a
subspace of this larger vector space – subspaces of piecewise constant functions. The most basic piecewise
constant function on the interval [0, 1] is the one whose value is 1 on the entire interval. We define φ to be
this constant function (called the characteristic function of the unit interval). That is

φ(x) =

{
1 if 0 ≤ x < 1

0, otherwise.

This function φ is the Father Haar wavelet.

This function φ may seem to be a very simple function but it has properties that will be important to us.
One property is that φ satisfies a scaling equation. For example, Figure 2 shows that

φ(x) = φ(2x) + φ(2x− 1)

while Figure 3 shows that

φ(x) = φ(22x) + φ(22x− 1) + φ(22x− 2) + φ(22x− 3).

So φ is a sum of scalings and translations of itself. In general, for each positive integer n and integers k

3

Figure 2: Graphs of φ(x), φ(2x), and φ(2x− 1) from left to right.

Figure 3: Graphs of φ(22x), φ(22x− 1), φ(22x− 2), and φ(22x− 3), from left to right.

between 0 and 2n − 1 we define
φn,k(x) = φ (2nx− k) .

Then φ(x) =
∑2n−1

k=0 φn,k(x) for each n.

These functions φn,k are useful in that they form a basis for the vector space Vn of all piecewise constant
functions on [0, 1] that have possible breaks at the points 1

2n , 2
2n , 3

2n , . . ., 2n−1
2n . This is exactly the kind of

space in which digital signals live, especially if we sample signals at 2n evenly spaced points on [0, 1]. Let
Bn = {φn,k : 0 ≤ k ≤ 2n − 1}. You may assume without proof that Bn is a basis of Vn.

Project Activity 1.

(a) Draw the linear combination 2φ2,0 − 3φ2,1 + 17φ2,2 + 30φ2,3. What does this linear combination
look like? Explain the statement made previously “Notice that these 2n functions φn,k form a basis
for the vector space of all piecewise constant functions on [0, 1] that have possible breaks at the
points 1

2n , 2
2n , 3

2n , . . ., 2n−1
2n ”.

(b) Remember that we can consider our data to represent a piecewise constant function obtained by
partitioning [0, 1] into n subintervals, where n represents the number of sample points. Suppose we
collect the following data: 10, 13, 21, 55, 3, 12, 4, 18. Explain how we can use this data to define
a piecewise constant function f on [0, 1]. Express f as a linear combination of suitable functions
φn,k. Plot this linear combination of φn,k to verify.

Working with functions can be more cumbersome than working with vectors in Rn, but the digital nature
of our data makes it possible to view our piecewise constant functions as vectors in Rn for suitable n. More
specifically, if f is a function in Vn, then f is piecewise constant functions on [0, 1] with possible breaks at
the points 1

2n , 2
2n , 3

2n , . . ., 2n−1
2n . If f has the value of yi on the interval between i−1

2n and i
2n , then we can

identify f with the vector [y1 y1 . . . y2n]
T.

4

Project Activity 2.

(a) Determine the vector in R8 that is identified with φ.

(b) Determine the value of m and the vectors in Rm that are identified with φ2,0, φ2,1, φ2,2, and φ2,3.

We can use the functions φn,k to represent digital signals, but to manipulate the data in useful ways we
need a different perspective. A different basis for Vn (a wavelet basis) will allow us to identify the pieces of
the data that are most important. We illustrate in the next activity with the spaces V1 and V2.

Project Activity 3. The space V1 consists of all functions that are piecewise constant on [0, 1] with a possible
break at x = 1

2 . The functions φ = φn,k are used to records the values of a signal, and by summing
these values we can calculate their average. Wavelets act by averaging and differencing, and so φ does the
averaging. We need functions that will perform the differencing.

(a) Define {ψ0,0} as

ψ0,0(x) =


1 if 0 ≤ x < 1

2

−1 if 1
2 ≤ x < 1

0 otherwise

.

A picture of ψ0,0 is shown in Figure 4. Since ψ0,0 assumes values of 1 and −1, we can use ψ0,0

to perform differencing. The function ψ = ψ0,0 is the Mother Haar wavelet.3 This Haar wavelet
is nice in that it has what is called compact support (it is 0 outside of a small interval). Show that
{φ, ψ} is a basis for V1.

Figure 4: The graphs of ψ0,0, ψ1,0 and ψ1,1 from left to right.

(b) We continue in a manner similar to the one in which we constructed bases for Vn. For k = 0 and
k = 1, let ψ1,k = ψ

(
21x− k

)
. Graphs of ψ1,0 and ψ1,1 are shown in Figure 4. The functions ψ1,k

assume the values of 1 and −1 on smaller intervals, and so can be used to perform differencing on
smaller scale than ψ0,0. Show that {φ0,0, ψ0,0, ψ1,0, ψ1,1} is a basis for V2.

As Project Activity 3 suggests, we can make a basis for Vn from φ0,0 and functions of the form ψn,k

defined by ψn,k(x) = ψ (2nx− k) for k from 0 to 2n − 1. More specifically, if we let Sn = {ψn,k : 0 ≤
k ≤ 2n − 1}, then the set

Wn = {φ0,0} ∪
n−1⋃
j=0

Sj

is a basis for V ⊥n (we state this without proof). The functions ψn,k are the wavelets.
3The first mention of wavelets appeared in an appendix to the thesis of A. Haar in 1909.

5

Project Activity 4. We can now write any function in Vn using the basisWn. As an example, the string 50,
16, 14, 28 represents a piecewise constant function which can be written as 50φ2,0+16φ2,1+14φ2,2+28φ2,3,
an element in V2.

(a) Specifically identify the functions inW0,W1, andW2, andW3.

(b) As mentioned earlier, we can identify a signal, and each wavelet function, with a vector in Rm for
an appropriate value of m. We can then use this identification to decompose any signal as a linear
combination of wavelets. We illustrate this idea with the signal [50 16 14 28]T in R4. Recall that
we can represent this signal as the function f = 50φ2,0 + 16φ2,1 + 14φ2,2 + 28φ2,3.

i. Find the the vectors w1, w2, w3, and w4 in Rm that are identified with φ0,0, ψ0,0, ψ1,0, and
ψ1,1, respectively.

ii. Any linear combination c1φ0,0 + c2ψ0,0 + c3ψ1,0 + c4ψ1,1 is then identified with the linear
combination c1w1 + c2w2 + c3w3 + c4w4. Use this idea to find the weights to write the
function f as a linear combination of φ0,0, ψ0,0, ψ1,0, and ψ1,1.

Although is it not necessarily easy to observe, the weights in the decomposition f = 27φ0,0 + 6ψ0,0 +
17ψ1,0 − 7ψ1,1 are just averages and differences of the original weights in f = 50φ2,0 + 16φ2,1 + 14φ2,2 +
28φ2,3. To see how, notice that if we take the overall average of the original weights we obtain the value
of 27. If we average the original weights in pairs (50 and 16, and 14 and 28) we obtain the values 33 and
21, and if we take average differences of the original weights in pairs (50 and 16, and 14 and 28) we obtain
the values 17 and −7. We can treat the signal [33 21]T formed average of the pairs of the original weights
as a smaller copy of the original signal. The average difference of the entries of this new signal is 6. So
the weights in our final decomposition are obtained by differences between successive averages and certain
coefficients. The coefficients in our final decomposition 27φ0,0+6ψ0,0+17ψ1,0− 7ψ1,1 are called wavelet
coefficients. This is the idea that makes wavelets so useful for image compression. In many images, pixels
that are near to each other often have similar coloring or shading. These pixels are coded with numbers that
are close in value. In the differencing process, these numbers are replaced with numbers that are close to
0. If there is little difference in the shading of the adjacent pixels, the image will be changed only a little if
the shadings are made the same. This results in replacing these small wavelet coefficients with zeros. If the
processed vectors contain long strings of zeros, the vectors can be significantly compressed.

Once we have recognized the pattern in expressing our original function as an overall average and
wavelet coefficients we can perform these operations more quickly with matrices.

Project Activity 5. The process of averaging and differencing discussed in and following Project Activity
4 can be viewed as a matrix-vector problem. As we saw in Project Activity 4, we can translate the problem
of finding wavelet coefficients to the matrix world.

(a) Consider again the problem of finding the wavelet coefficients contained in the vector [27 6 17 −7]T
for the signal [50 16 14 28]T. Find the matrix A4 that has the property that A4[50 16 14 28]T =
[27 6 17 − 7]T. (You have already done part of this problem in Project Activity 4.) Explain how A4

performs the averaging and differencing discussed earlier.

(b) Repeat the process in part (a) to find the matrix A8 that converts a signal to its wavelet coefficients.

(c) The matrix Ai is called a forward wavelet transformation matrix and A−1i is the inverse wavelet
transform matrix. UseA8 to show that the wavelet coefficients for the data string [80 48 4 36 28 64 6 50]T

are contained in the vector [39.5 2.5 22 9 16 − 16 − 18 − 22]T.

6

Now we have all of the necessary background to discuss image compression. Suppose we want to store
an image. We partition the image vertically and horizontally and record the color or shade at each grid entry.
The grid entries will be our pixels. This gives a matrix, M , of colors, indexed by pixels or horizontal and
vertical position. To simplify our examples we will work in gray-scale, where our grid entries are integers
between 0 (black) and 255 (white). We can treat each column of our grid as a piecewise constant function.
As an example, the image matrix M that produced the picture at left in Figure 1 is given in (1).

We can then apply a 16 by 16 forward wavelet transformation matrix A16 to M to convert the columns
to averages and wavelet coefficients that will appear in the matrix A16M . These wavelet coefficients allow
us to compress the image – that is, create a smaller set of data that contains the essence of the original image.

Recall that the forward wavelet transformation matrix computes weighted differences of consecutive
entries in the columns of the image matrixM . If two entries inM are close in values, the weighted difference
in A16M will be close to 0. For our example, the matrix A16M is approximately

208.0 202.0 178.0 165.0 155.0 172.0 118.0 172.0 155.0 153.0 176.0 202.0 208.0 210.0 209.0 208.0
33.4 24.1 −0.625 0.938 −2.50 −5.94 42.8 −5.94 −2.50 12.8 0.938 24.7 30.6 33.4 32.5 31.6
−1.88 −13.8 19.4 2.50 0.0 −2.50 8.12 −2.50 0.0 2.50 19.4 −13.8 1.88 −3.75 −1.88 0.0
17.5 61.9 61.9 6.88 0.0 61.9 0.0 61.9 0.0 30.6 65.0 66.9 66.9 19.4 66.9 66.9
0.0 27.5 43.8 16.2 0.0 −11.2 16.2 −11.2 0.0 16.2 43.8 27.5 0.0 0.0 0.0 0.0
3.75 0.0 27.5 −11.2 0.0 −16.2 22.5 −16.2 0.0 −11.2 27.5 0.0 −3.75 −7.50 −3.75 0.0
47.5 0.0 0.0 13.8 82.5 0.0 0.0 0.0 82.5 13.8 0.0 3.75 3.75 51.2 3.75 3.75
82.5 41.2 41.2 82.5 82.5 41.2 0.0 41.2 82.5 35.0 35.0 35.0 35.0 82.5 35.0 35.0
0.0 0.0 0.0 55.0 −22.5 −22.5 55.0 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 55.0 −22.5 −22.5 22.5 0.0 −22.5 0.0 22.5 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0

−7.50 0.0 −55.0 22.5 22.5 −22.5 0.0 −22.5 22.5 22.5 −55.0 0.0 7.50 0.0 0.0 0.0
0.0 0.0 0.0 0.0 22.5 −55.0 0.0 −55.0 22.5 0.0 0.0 0.0 −15.0 0.0 −7.50 0.0
0.0 0.0 0.0 −55.0 0.0 0.0 0.0 0.0 0.0 −55.0 0.0 7.50 7.50 7.50 7.50 7.50
95.0 0.0 0.0 −82.5 0.0 0.0 0.0 0.0 0.0 −82.5 0.0 0.0 0.0 95.0 0.0 0.0
0.0 −82.5 82.5 0.0 0.0 −82.5 0.0 −82.5 0.0 95.0 −95.0 95.0 −95.0 0.0 95.0 −95.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


.

Note that there are many wavelet coefficients that are quite small compared to others – the ones where
the weighted averages are close to 0. In a sense, the weighted differences tell us how much “detail” about
the whole that each piece of information contains. If a piece of information contains only a small amount of
information about the whole, then we shouldn’t sacrifice much of the picture if we ignore the small “detail”
coefficients. One way to ignore the small “detail” coefficients is to use thresholding.

With thresholding (this is hard thresholding or keep or kill), we decide on how much of the detail we
want to remove (this is called the tolerance). So we set a tolerance and then replace each entry in our matrix
A16M whose absolute value is below the tolerance with 0 to obtain a new matrix M1. In our example, if
you use a threshold value of 10 we obtain the new matrix M1:

208.0 202.0 178.0 165.0 155.0 172.0 118.0 172.0 155.0 153.0 176.0 202.0 208.0 210.0 209.0 208.0
33.4 24.1 0.0 0.0 0.0 0.0 42.8 0.0 0.0 12.8 0.0 24.7 30.6 33.4 32.5 31.6
0.0 −13.8 19.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.4 −13.8 0.0 0.0 0.0 0.0
17.5 61.9 61.9 0.0 0.0 61.9 0.0 61.9 0.0 30.6 65.0 66.9 66.9 19.4 66.9 66.9
0.0 27.5 43.8 16.2 0.0 −11.2 16.2 −11.2 0.0 16.2 43.8 27.5 0.0 0.0 0.0 0.0
0.0 0.0 27.5 −11.2 0.0 −16.2 22.5 −16.2 0.0 −11.2 27.5 0.0 0.0 0.0 0.0 0.0
47.5 0.0 0.0 13.8 82.5 0.0 0.0 0.0 82.5 13.8 0.0 0.0 0.0 51.2 0.0 0.0
82.5 41.2 41.2 82.5 82.5 41.2 0.0 41.2 82.5 35.0 35.0 35.0 35.0 82.5 35.0 35.0
0.0 0.0 0.0 55.0 −22.5 −22.5 55.0 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 55.0 −22.5 −22.5 22.5 0.0 −22.5 0.0 22.5 −22.5 −22.5 55.0 0.0 0.0 0.0 0.0
0.0 0.0 −55.0 22.5 22.5 −22.5 0.0 −22.5 22.5 22.5 −55.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 22.5 −55.0 0.0 −55.0 22.5 0.0 0.0 0.0 −15.0 0.0 0.0 0.0
0.0 0.0 0.0 −55.0 0.0 0.0 0.0 0.0 0.0 −55.0 0.0 0.0 0.0 0.0 0.0 0.0
95.0 0.0 0.0 −82.5 0.0 0.0 0.0 0.0 0.0 −82.5 0.0 0.0 0.0 95.0 0.0 0.0
0.0 −82.5 82.5 0.0 0.0 −82.5 0.0 −82.5 0.0 95.0 −95.0 95.0 −95.0 0.0 95.0 −95.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


.

We now have introduced many zeros in our matrix. This is where we compress the image. To store the
original image, we need to store every pixel. Once we introduce strings of zeros we can identify a new code
(say 256) that indicates we have a string of zeros. We can then follow that code with the number of zeros
in the string. So if we had a string of 15 zeros in a signal, we could store that information in 2 bytes rather
than 15 and obtain significant savings in storage. This process removes some detail from our picture, but
only the small detail. To convert back to an image, we just undo the forward processing by multiplying our

7

thresholded matrixM1 byA−116 . The ultimate goal is to obtain significant compression but still haveA−116 M1

retain all of the essence of the original image.

In our example using M1, the reconstructed image matrix is A−116 M1 (rounded to the nearest whole
number) is 

242 240 241 237 132 138 232 138 132 238 239 240 238 244 242 240
242 240 241 127 178 183 122 183 178 128 239 240 238 244 242 240
242 240 131 127 178 183 122 183 178 128 129 240 238 244 242 240
242 130 176 172 132 183 167 183 132 172 174 130 238 244 242 240
242 240 131 177 178 133 183 133 178 178 129 240 238 244 242 240
242 240 241 132 132 178 183 178 132 132 239 240 238 244 242 240
242 240 131 177 178 133 138 133 178 178 129 240 223 244 242 240
242 240 131 177 132 243 138 243 132 178 129 240 253 244 242 240
240 240 239 124 238 234 75 234 238 130 241 244 244 248 244 244
240 240 239 234 238 234 75 234 238 240 241 244 244 248 244 244
240 240 239 69 73 234 75 234 73 75 241 244 244 240 244 244
50 240 239 234 73 234 75 234 73 240 241 244 244 50 244 244
240 75 239 248 238 69 75 69 238 240 51 240 50 240 240 50
240 240 74 248 238 234 75 234 238 50 241 50 240 240 50 240
75 75 74 83 73 69 75 69 73 75 76 75 75 75 75 75
75 75 74 83 73 69 75 69 73 75 76 75 75 75 75 75



.

We convert this into a gray-scale image and obtain the image at right in Figure 1. Compare this image
to the original at right in Figure 1. It is difficult to tell the difference.

There is a Sage file you can use at http://faculty.gvsu.edu/schlicks/Wavelets_Sage.
html that allows you to create your own 16 by 16 image and process, process your image with the Haar
wavelets in R16, apply thresholding, and reconstruct the compressed image. matrix. You can create your
own image, experiment with several different threshold levels, and choose the one that you feel gives the
best combination of strings of 0s while reproducing a reasonable copy of the original image.

8

http://faculty.gvsu.edu/schlicks/Wavelets_Sage.html
http://faculty.gvsu.edu/schlicks/Wavelets_Sage.html

Wavelets Sage cells

This page contains a series of Sage cells that can be used to create a 16 by 16 grayscale image, process the image with wavelets, apply hard thresholding,
and construct compressed images. Provided this page is not reloaded, results from one cell may be used in another. A cell can be evaluated using the
Evaluate (Sage) button or by pressing Shift-Enter in a cell. In the first cell, enter the grayscale levels for your image in a 16 by 16 matrix A. Executing this
cell will enter the matrix A into memory and print it to the screen. Enter the matrix as a list of vectors as indicated.

The next cell creates the 16 by 16 grayscale image defined by your matrix A. The name given to the image is g, and you can save this image as an eps (or
png, svg, pdf) file with the command g.save('filename.eps'), where filename is whatever name you want to assign to the file. (Use a png, pdf, svg extension
to save to other formats.) There is a blank Sage input line at the end of this file that you can use for this purpose.

The next cell creates the 16 by 16 wavelet matrix and its inverse for computational purposes, then applies wavelets to produce the matrix of wavelet
coefficients. This matrix is the output that you see.

Evaluate (Sage)

Help | Powered by SageMath

[240 240 240 240 130 130 240 130 130 240 240 240 240 240 240 240]
[240 240 240 130 175 175 130 175 175 130 240 240 240 240 240 240]
[240 240 130 130 175 175 130 175 175 130 130 240 240 240 240 240]
[240 130 175 175 130 175 175 175 130 175 175 130 240 240 240 240]
[240 240 130 175 175 130 175 130 175 175 130 240 240 240 240 240]
[255 240 240 130 130 175 175 175 130 130 240 240 225 240 240 240]
[240 240 130 175 175 130 130 130 175 175 130 240 225 255 240 240]
[240 240 130 175 130 240 130 240 130 175 130 240 255 255 255 240]
[240 240 240 130 240 240 75 240 240 130 240 255 255 255 255 255]
[240 240 240 240 240 240 75 240 240 240 240 240 240 240 240 240]
[240 240 240 75 75 240 75 240 75 75 240 240 240 240 240 240]
[50 240 240 240 75 240 75 240 75 240 240 240 240 50 240 240]
[240 75 240 240 240 75 75 75 240 240 50 240 50 240 240 50]
[240 240 75 240 240 240 75 240 240 50 240 50 240 240 50 240]
[75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75]
[75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75]

Evaluate (Sage)

Help | Powered by SageMath

A=matrix(QQ,[[240,240,240,240,130,130,240,130,130,240,240,240,240,240,240,240],
[240,240,240,130,175,175,130,175,175,130,240,240,240,240,240,240],
[240,240,130,130,175,175,130,175,175,130,130,240,240,240,240,240],
[240,130,175,175,130,175,175,175,130,175,175,130,240,240,240,240],
[240,240,130,175,175,130,175,130,175,175,130,240,240,240,240,240],
[255,240,240,130,130,175,175,175,130,130,240,240,225,240,240,240],
[240,240,130,175,175,130,130,130,175,175,130,240,225,255,240,240],
[240,240,130,175,130,240,130,240,130,175,130,240,255,255,255,240],
[240,240,240,130,240,240,75,240,240,130,240,255,255,255,255,255],
[240,240,240,240,240,240,75,240,240,240,240,240,240,240,240,240],
[240,240,240,75,75,240,75,240,75,75,240,240,240,240,240,240],
[50,240,240,240,75,240,75,240,75,240,240,240,240,50,240,240],
[240,75,240,240,240,75,75,75,240,240,50,240,50,240,240,50],

g=Graphics()
for i in range(15):

for j in range(15):
p=polygon2d([[i,16-j], [i+1,16-j], [i+1,16-j-1], [i,16-j-1]],

rgbcolor=(A[j][i]/255,A[j][i]/255,A[j][i]/255), axes=false)
g=g+p

show(g)

1
2
3
4
5
6
7
8
9
10
11
12
13

1
2 ▾
3 ▾
4 ▾
5
6
7

!

!

Sage Cells file:///Users/schlicks/Documents/TALKS/JMM Baltimore 2019/W...

1 of 3 1/16/19, 8:34 PM

The next cell inputs the threshold level (as the variable `thresh'). The default is set at 10. This is the one cell where you should feel free to change the
value and re-execute several times to test different threshold levels. The cells after this one will produce the thresholded matrix for you to view and the
compressed image.

The following cell calculates and prints the thresholded matrix using the threshold value of thresh for you to view.

Finally, executing this last cell shows the compressed image (saved as h, you can save a copy of h as a graphics file as directed earlier with g.)

Evaluate (Sage)

Help | Powered by SageMath

[208.44 202.19 177.50 165.31 155.00 172.19 117.81 172.19 155.00 153.44 175.94 201.56 207.50 210.31 209.38 208.44]
[33.438 24.062 -0.62500 0.93750 -2.5000 -5.9375 42.812 -5.9375 -2.5000 12.812 0.93750 24.688 30.625 33.438 32.500 31.562]
[-1.8750 -13.750 19.375 2.5000 0.00000 -2.5000 8.1250 -2.5000 0.00000 2.5000 19.375 -13.750 1.8750 -3.7500 -1.8750 0.00000]
[17.500 61.875 61.875 6.8750 0.00000 61.875 0.00000 61.875 0.00000 30.625 65.000 66.875 66.875 19.375 66.875 66.875]
[0.00000 27.500 43.750 16.250 0.00000 -11.250 16.250 -11.250 0.00000 16.250 43.750 27.500 0.00000 0.00000 0.00000 0.00000]
[3.7500 0.00000 27.500 -11.250 0.00000 -16.250 22.500 -16.250 0.00000 -11.250 27.500 0.00000 -3.7500 -7.5000 -3.7500 0.00000]
[47.500 0.00000 0.00000 13.750 82.500 0.00000 0.00000 0.00000 82.500 13.750 0.00000 3.7500 3.7500 51.250 3.7500 3.7500]
[82.500 41.250 41.250 82.500 82.500 41.250 0.00000 41.250 82.500 35.000 35.000 35.000 35.000 82.500 35.000 35.000]
[0.00000 0.00000 0.00000 55.000 -22.500 -22.500 55.000 -22.500 -22.500 55.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000]
[0.00000 55.000 -22.500 -22.500 22.500 0.00000 -22.500 0.00000 22.500 -22.500 -22.500 55.000 0.00000 0.00000 0.00000 0.00000]
[-7.5000 0.00000 -55.000 22.500 22.500 -22.500 0.00000 -22.500 22.500 22.500 -55.000 0.00000 7.5000 0.00000 0.00000 0.00000]
[0.00000 0.00000 0.00000 0.00000 22.500 -55.000 0.00000 -55.000 22.500 0.00000 0.00000 0.00000 -15.000 0.00000 -7.5000 0.00000]
[0.00000 0.00000 0.00000 -55.000 0.00000 0.00000 0.00000 0.00000 0.00000 -55.000 0.00000 7.5000 7.5000 7.5000 7.5000 7.5000]
[95.000 0.00000 0.00000 -82.500 0.00000 0.00000 0.00000 0.00000 0.00000 -82.500 0.00000 0.00000 0.00000 95.000 0.00000 0.00000]
[0.00000 -82.500 82.500 0.00000 0.00000 -82.500 0.00000 -82.500 0.00000 95.000 -95.000 95.000 -95.000 0.00000 95.000 -95.000]
[0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000]

Evaluate (Sage)

Help | Powered by SageMath

10

Evaluate (Sage)

Help | Powered by SageMath

[208.44 202.19 177.50 165.31 155.00 172.19 117.81 172.19 155.00 153.44 175.94 201.56 207.50 210.31 209.38 208.44]
[33.438 24.062 0.00000 0.00000 0.00000 0.00000 42.812 0.00000 0.00000 12.812 0.00000 24.688 30.625 33.438 32.500 31.562]
[0.00000 -13.750 19.375 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 19.375 -13.750 0.00000 0.00000 0.00000 0.00000]
[17.500 61.875 61.875 0.00000 0.00000 61.875 0.00000 61.875 0.00000 30.625 65.000 66.875 66.875 19.375 66.875 66.875]
[0.00000 27.500 43.750 16.250 0.00000 -11.250 16.250 -11.250 0.00000 16.250 43.750 27.500 0.00000 0.00000 0.00000 0.00000]
[0.00000 0.00000 27.500 -11.250 0.00000 -16.250 22.500 -16.250 0.00000 -11.250 27.500 0.00000 0.00000 0.00000 0.00000 0.00000]
[47.500 0.00000 0.00000 13.750 82.500 0.00000 0.00000 0.00000 82.500 13.750 0.00000 0.00000 0.00000 51.250 0.00000 3.7500]
[82.500 41.250 41.250 82.500 82.500 41.250 0.00000 41.250 82.500 35.000 35.000 35.000 35.000 82.500 35.000 35.000]
[0.00000 0.00000 0.00000 55.000 -22.500 -22.500 55.000 -22.500 -22.500 55.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000]
[0.00000 55.000 -22.500 -22.500 22.500 0.00000 -22.500 0.00000 22.500 -22.500 -22.500 55.000 0.00000 0.00000 0.00000 0.00000]
[0.00000 0.00000 -55.000 22.500 22.500 -22.500 0.00000 -22.500 22.500 22.500 -55.000 0.00000 0.00000 0.00000 0.00000 0.00000]
[0.00000 0.00000 0.00000 0.00000 22.500 -55.000 0.00000 -55.000 22.500 0.00000 0.00000 0.00000 -15.000 0.00000 0.00000 0.00000]
[0.00000 0.00000 0.00000 -55.000 0.00000 0.00000 0.00000 0.00000 0.00000 -55.000 0.00000 0.00000 0.00000 0.00000 0.00000 7.5000]
[95.000 0.00000 0.00000 -82.500 0.00000 0.00000 0.00000 0.00000 0.00000 -82.500 0.00000 0.00000 0.00000 95.000 0.00000 0.00000]
[0.00000 -82.500 82.500 0.00000 0.00000 -82.500 0.00000 -82.500 0.00000 95.000 -95.000 95.000 -95.000 0.00000 95.000 -95.000]
[0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000]

Evaluate (Sage)

WM = matrix(QQ,[[1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0],
[1, 1, -1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[1, 1, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0],
[1, 1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
[1, 1, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0],
[1, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[1, -1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0],
[1, -1, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0],
[1, -1, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, -1, 0, 0],
[1, -1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0],
[1, -1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0],

thresh=10
print(thresh)

TestPA=copy(PA)
for i in range(15):

for j in range(15):
if abs(PA[i,j]) <= thresh:

TestPA[i,j]=0
TestPA.n(digits=5)

newA=WM*TestPA
h=Graphics()
for i in range(15):

for j in range(15):
p=polygon2d([[i,16-j], [i+1,16-j], [i+1,16-j-1], [i,16-j-1]],

rgbcolor=(newA[j][i]/255,newA[j][i]/255,newA[j][i]/255), axes=false)
h=h+p

show(h)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
2

1
2 ▾
3 ▾
4 ▾
5
6

1
2
3 ▾
4 ▾
5 ▾
6
7
8

!

!

!

!

Sage Cells file:///Users/schlicks/Documents/TALKS/JMM Baltimore 2019/W...

2 of 3 1/16/19, 8:34 PM

Use this cell to save image files or for whatever other commands you might want to implement. If you save a file as, say, g.save('figure.eps'), you should
see an output of figure.eps (perhaps followed by an Updated 0 time(s)] message). Click on flower.eps to see the image you saved.

Help | Powered by SageMath

Evaluate (Sage)

1
!

Sage Cells file:///Users/schlicks/Documents/TALKS/JMM Baltimore 2019/W...

3 of 3 1/16/19, 8:34 PM

Examples of Applications

I The Principal Axis Theorem: The Tennis Racket Theorem

Application: The Tennis Racket Effect

Try an experiment with a tennis racket (or a squash racket, or a ping pong paddle). Assume that the origin
is at the center of the racket. Let u1 be the vector from the origin to the handle, u2 a vector in the plane
of the head perpendicular to u1 as in Figure 1. Let u3 be a vector through the origin perpendicular to the
plane of the head of the racket. Hold the racket by the handle and spin it to make one rotation around
the u1 axis. This is pretty easy. Now toss the racket into the air to make one complete rotation around
the axis of the vector u2 and catch the handle. Repeat this several times. You should notice that in most
instances, the racket will also have made a half rotation around the u1 axis so that the other face of the
racket now points up. It is not difficult to throw the racket so that it rotates around the u3 axis without the
added half rotation we see around the u2 axis. A good video that illustrates this behavior can be seen at
https://www.youtube.com/watch?v=4dqCQqI-Gis.

Figure 1: Two principal axes of a tennis racket.

This effect is a result in classical mechanics that describes the rotational movement of a rigid body
in space, called the tennis racket effect (or the Dzhanibekov effect, after the Russian cosmonaut Vladimir
Dzhanibekov who discovered the theorem’s consequences while in zero gravity in space – you can see
an illustration of this in the video at https://www.youtube.com/watch?v=L2o9eBl_Gzw). The
result is simple to see in practice, but is difficult to intuitively understand why the behavior is different
around the intermediate axis. There is a story of a student who asked the famous physicist Richard Feynman
if there is any intuitive way to understand the result; Feynman supposedly went into deep thought for about
10 or 15 seconds and answered, ”no.” As we will see later in this section, we can understand this effect using
the principal axes of a rigid body.

1

https://www.youtube.com/watch?v=4dqCQqI-Gis
https://www.youtube.com/watch?v=L2o9eBl_Gzw

Project: The Tennis Racket Theorem

If a particle of mass m and velocity v is moving in a straight line, its kinetic energy KE is given by
KE = 1

2mv2. If, instead, the particle rotates around an axis with angular velocity ω (in radians per unit
of time), its linear velocity is v = rω, where r is the radius of the particle’s circular path. Substituting into
the kinetic energy formula shows that the kinetic energy of the rotating particle is then KE = 1

2

(
mr2

)
ω2.

The quantity rm2 is called the moment of inertia of the particle and is denoted by I . So KE = 1
2Iω

2 for
a rotating particle. Notice that the larger the value of r, the larger the inertia. You can imagine this with a
figure skater. When a skater spins along their major axis with their arms outstretched, the speed at which
they rotate is lower than when they bring their arms into their bodies. The moment of inertia for rotational
motion plays a role similar to the mass in linear motion. Essentially, the inertia tells us how resistant the
particle is to rotation.

To understand the tennis racket effect, we are interested in rigid bodies as they move through space. Any
rigid body in three space has three principal axes about which it likes to spin. These axes are at right angles
to each other and pass through the center of mass. Think of enclosing the object in an ellipsoid – the longest
axis is the primary axis, the middle axis is the intermediate axis, and the third axis is the third axis. As a
rigid body moves through space, it rotates around these axes and there is inertia along each axis. Just like
with a tennis racket, if you were to imagine an axle along any of the principal axes and spin the object along
that axel, it will either rotate happily with no odd behavior like flipping, or it won’t. The former behavior
is that of a stable axis and the latter an unstable axis. The Tennis Racket Theorem is a statement about
the rotation of the body. Essentially, the Tennis Racket Theorem states that the rotation of a rigid object
around its primary and third principal axes is stable, while rotation around its intermediate axis is not. To
understand why this is so, we need to return to moments of inertia.

Assume that we have a rigid body moving through space. Assume that I1, I2, and I3 are the moments
of inertia around the primary, intermediate, and third principal axes with I1 > I2 > I3. Also assume that
ω1, ω2, and ω3 are the components of the angular velocity along each axis. Euler’s equation tell us that

I1ω̇1 = (I2 − I3)ω2ω3 (1)

I2ω̇2 = (I3 − I1)ω3ω1 (2)

I3ω̇3 = (I1 − I2)ω1ω2. (3)

(The dots indicate a derivative with respect to time, which is common notation in physics.) We will use
Euler’s equations to understand the Tennis Racket Theorem.

Project Activity 1. To start, we consider rotation around the first principal axis. Our goal is to show that
rotation around this axis is stable. That is, small perturbations angular velocity will have only small effects
on the rotation of the object. So we assume that ω2 and ω3 are small. In general, the product of two small
quantities will be much smaller, so (1) implies that ω̇1 must be very small. So we can disregard ω̇1 in our
calculations.

(a) Differentiate (2) with respect to time to explain why

I2ω̈2 ≈ (I3 − I1)ω̇3ω1.

(b) Substitute for ω̇3 from (3) to show that ω2 is an approximate solution to

ω̈2 = −kω2 (4)

for some positive constant k.

2

(c) The equation (4) is a differential equation because it is an equation that involves derivatives of a
function. Show by differentiating twice that, if

ω2 = A cos
(√

kt+B
)

(5)

(where A and B are any scalars), then ω2 is a solution to (4). (In fact, ω2 = A cos
(√

kt+B
)

is
the general solution to (4), which is verified in just about any course in differential equations.)

Equation 5 shows that ω2 is is bounded, so that any slight perturbations in angular velocity have a limited
effect on ω2. A similar argument can be made for ω3. This implies that the rotation around the principal
axes is stable – slight changes in angular velocity have limited effects on the rotations around the other axes.

We can make a similar argument for rotation around the third principal axes.

Project Activity 2. In this activity, repeat the process from Project Activity to show that rotation around the
third principal axis is stable. So assume that ω1 and ω3 are small, which implies by (3) implies that ω̇3 must
be very small and can be disregarded in calculations.

Now the issue is why is rotation around the second principal axis different.

Project Activity 3. Now assume that ω1 and ω3 are small. Thus, ω̇2 is very small by (2), and we consider
ω̇2 to be negligible.

(a) Differentiate (1) to show that
I1ω̈1 ≈ (I2 − I3)ω2ω̇3.

(b) Substitute for ω̇3 from (3) to show that ω1 is an approximate solution to

ω̈1 = kω1 (6)

for some positive scalar k.

(c) The fact that the constant multiplier in (6) is positive instead of negative as in (4) completely changes
the type of solution. Show that

ω1 = Ae
√
kt+B (7)

(where A and B are any scalars) is a solution to (6) (and, in fact, is the general solution). Explain
why this shows that rotation around the second principal axis is not stable.

3

Linear Algebra and Applications
Section Title Application
1. Introduction to Systems of
Linear Equations

Electrical Circuits and the
Wheatstone Bridge

2. The Matrix Representation
of a Linear System

A Polynomial Fitting Applica-
tion: Simpson’s Rule

3. Row Echelon Forms Modeling a Chemical Reaction
4. Vector Representation Analyzing Knight Moves (G)
5. The Matrix-Vector Form of a
Linear System

An Input-Output Model in Eco-
nomics

6. Linear Dependence and Inde-
pendence

Generating Bézier Curves (G)

7. Matrix Transformations The Geometry of Matrix Trans-
formations (G)

8. Matrix Operations Strassen’s Algorithm
9. Introduction to Eigenvalues
and Eigenvectors

The Google PageRank Algo-
rithm (G)

10. The Inverse of a Matrix The Richardson Arms Race
Model

Linear Algebra and Applications
Section Title Application
11. The Invertible Matrix The-
orem

None

12. The Structure of Rn Connecting GDP and Consump-
tion in Economics

13. The Null Space and Column
Space of a Matrix

Solving the Lights Out Game
(G)

14. Eigenspaces of a Matrix Modeling Population Migration
15. Bases and Dimension Lattice Based Cryptography
16. The Determinant Area and Volume using Deter-

minants
17. The Characteristic Equation The Ehrenfest Model of Second

Law of Thermodynamics
18. Diagonalization Binet’s Formula for the Fi-

bonacci Numbers
19. Approximating Eigenvalues
and Eigenvectors

Leslie Matrices and Population
Modeling (G)

20. Complex Eigenvalues The Gershgorin Disk Theorem

Linear Algebra and Applications

Section Title Application
21. Properties of Determinants None
22. Vector Spaces Hamming Codes and the Hat

Puzzle
23. Bases for Vector Spaces Image Compression with

Wavelets (S)
24. The Dimension of a Vector
Space

Principal Component Analysis

25. Coordinate Vectors and Co-
ordinate Transformations

Finding Formulas for Sums of
Powers

26. Change of Basis Describing Orbits of Planets
27. The Dot Product in Rn Back-Face Culling
28. Orthogonal and Orthonor-
mal Bases in Rn

Rotations in 3-Space (G)

29. Inner Products Fourier Series and Musical
Tones

Linear Algebra and Applications
Section Title Application
30. The Gram-Schmidt Process Gaussian Quadrature and Leg-

endre Polynomials
31. Orthogonal Diagonalization The Multivariable Second

Derivative Test
32. Quadratic Forms and the
Principal Axis Theorem

The Tennis Racket Effect

33. The Singular Value Decom-
position

Latent Semantic Indexing

34. Applications of the Singular
Value Decomposition

The Global Positioning System

35. Linear Transformations Fractals and Iterated Function
Systems (S)

36. The Matrix of a Linear
Transformation

Shamir’s Secret Sharing and La-
grange Polynomials

37. Eigenvalues of Linear Trans-
formations

Second Order Linear Differential
Equations

End

Linear Algebra and Applications: An Inquiry-Based Approach,
Feryal Alayont and Steven Schlicker

Contact information

alayontf@gvsu.edu
schlicks@gvsu.edu

Thank you for listening!

End

Linear Algebra and Applications: An Inquiry-Based Approach,
Feryal Alayont and Steven Schlicker

Contact information

alayontf@gvsu.edu
schlicks@gvsu.edu

Thank you for listening!

	Overview
	Background
	Applications
	Applications
	Applications
	The Big Picture
	The Big Picture
	The Big Picture
	The Big Picture

