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A Simple Problem

Find u(x) that satisfies

−u′′(x) = 4 ∀x ∈ (−2, 2),

u(−2) = 0 u(2) = 0.

Let’s find a good approximation of u(x) by using finite element methods.
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A Neat Vector Space

The mesh (split) of the domain [−2, 2]:

Construct a vector space Vh associated with this mesh.

wh ∈ Vh if and only if
1. wh(x) is continuous on [−2, 2] and wh(−2) = 0 = wh(2).
2. wh(x) is piecewise linear on all subintervals in the mesh.
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A Basis for Vh
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First basis function   φ
1
(x)

(a) φ1(x)
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Second basis function   φ
2
(x) 

(b) φ2(x)
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Third basis function   φ
3
(x)

(c) φ3(x)

φi (vj ) =

{
0 if i 6= j
1 if i = j

{φ1(x), φ2(x), φ3(x)} form a basis of Vh.

1. Linear Independence
c1φ1(x) + c2φ2(x) + 3φ3(x) = 0→ c1 = c2 = c3 = 0

2. Span vh(x) = vh(−1)φ1(x) + vh(0)φ2(x) + vh(1)φ3(x).
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The Simplest Finite Element Method for Everyone

Find u(x) that satisfies

−u′′(x) = 4 on (−2, 2),

u(−2) = 0 and u(2) = 0.

Let w(x) be a “nice” function that satisfies w(−2) = 0 = w(2).

Find u(x) such that ∫ 2

−2
u′(x)w ′(x)dx =

∫ 2

−2
4w(x)dx ∀w(x)

u(−2) = 0 and u(2) = 0.

Find an approximation of u(x) in Vh.

The Discrete Problem: Find uh(x) ∈ Vh that satisfies∫ 2

−2
u′h(x)w ′h(x)dx =

∫ 2

−2
4wh(x)dx ∀wh(x) ∈ Vh.
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Finding the Finite Element Approximation uh(x)

The Discrete Problem: Find uh(x) ∈ Vh that satisfies∫ 2

−2
u′h(x)w ′h(x)dx =

∫ 2

−2
4wh(x)dx ∀wh(x) ∈ Vh.

uh(x) =
∑3

j=1 cjφj (x)

∫ 2

−2

3∑
j=1

cjφ
′
j (x)w ′h(x)dx =

∫ 2

−2
4wh(x)dx ∀wh(x) ∈ Vh,

3∑
j=1

cj

∫ 2

−2
φ′j (x)φ′i (x)dx =

∫ 2

−2
4φi (x)dx ∀i = 1, 2, 3, since φi ∈ Vh,

Ac = b 3× 3 Matrix System

A(i , j) =

∫ 2

−2
φ′j (x)φ′i (x)dx ∀i , j = 1, 2, 3

bi =

∫ 2

−2
4φi (x)dx ∀i = 1, 2, 3

Solve Ac = b ⇒ uh(x) =
∑3

j=1 cjφj (x)
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Finding the Finite Element Approximation uh(x)

A =

 2 −1 0
−1 2 −1
0 −1 2

 b =

4
4
4

 c =

6
8
6



A is invertible, so Ac = b has a unique solution.
Finite Element Approximation uh(x) = 6φ1(x) + 8φ2(x) + 6φ3(x)
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Finite Element Methods in One-Dimension

uh becomes a better approximation of u as h gets smaller.

Example
FEM Approximations (left) vs Exact Solution (right)
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Finite Element Methods in Two-Dimensions
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Poisson equation: find u(x , y) such that

−∆u = f in Ω = (−1, 1)× (−1, 1),

u = 0 on ∂Ω.

Find u(x , y) ∈ H1
0 (Ω) such that∫
Ω

∇u∇wdA =

∫
Ω

fwdA ∀w ∈ H1
0 (Ω).

Find uh(x , y) ∈ Vh such that∫
Ω

∇uh∇whdA =

∫
Ω

fwhdA ∀wh ∈ Vh.
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Finite Element Methods in Two-Dimensions
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Finite Element Methods in Two-Dimensions

The mesh (triangulation) of the domain:

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

wh(x , y) ∈ Vh if and only if
1. wh is continuous on Ω, and wh = 0 on ∂Ω.
2. wh is piecewise linear on each triangle.
Basis of Vh:
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Dimension of Vh for this mesh: 1
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Finite Element Methods in Two-Dimensions

Another mesh (triangulation) of the domain:
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FEMs for the Axisymmetric Maxwell Equations:
Hepatic Microwave Ablation

An alternative treatment to liver cancer.

An experimental procedure in which an antenna is inserted through the skin or
during surgery to induce cell necrosis through the heating of deep-seated tumors.

Design of antennas : The electromagnetic power pattern should be highly
localized near the tip of the antenna.

Approximate the solution to the Axisymmetric Maxwell Equations to get an
approximate electromagnetic power distribution for different antenna designs.
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FEMs for the Axisymmetric Maxwell Equations

Electromagnetic Power Distribution for Antenna Design:
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Singular Value Decomposition and Image Compression

Singular Value Decomposition

Am×n = Um×m · Σm×n · V T
n×n

U and V : orthogonal matrices
Σ: “diagonal” matrix with diagonal entries

σ1 ≥ σ2 ≥ ...σp ≥ 0, p = min(m, n).
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Singular Value Decomposition and Image Compression

A = σ1 · −→u1 · −→v1
T + σ2 · −→u2 · −→v2

T · · ·+σn · −→un · −→vn
T

Minah Oh (James Madison University) January 17, 2019 15 / 17



Singular Value Decomposition and Image Compression
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Thank you!
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