Teaching Linear Algebra through its Applications

Minah Oh

James Madison University
ohmx@jmu.edu

January 17, 2019

A Simple Problem

- Find $u(x)$ that satisfies

$$
\begin{aligned}
-u^{\prime \prime}(x) & =4 \\
u(-2) & =0 x \in(-2,2), \\
& u(2)=0 .
\end{aligned}
$$

A Simple Problem

- Find $u(x)$ that satisfies

$$
\begin{array}{cl}
-u^{\prime \prime}(x)=4 & \forall x \in(-2,2) \\
u(-2)=0 & u(2)=0
\end{array}
$$

- Let's find a good approximation of $u(x)$ by using finite element methods.

A Neat Vector Space

- The mesh (split) of the domain $[-2,2]$:

A Neat Vector Space

- The mesh (split) of the domain [-2, 2]:

- Construct a vector space V_{h} associated with this mesh.

A Neat Vector Space

- The mesh (split) of the domain [-2,2]:

- Construct a vector space V_{h} associated with this mesh.
- $w_{h} \in V_{h}$ if and only if

1. $w_{h}(x)$ is continuous on $[-2,2]$ and $w_{h}(-2)=0=w_{h}(2)$.
2. $w_{h}(x)$ is piecewise linear on all subintervals in the mesh.

A Basis for V_{h}

(a) $\phi_{1}(x)$

(b) $\phi_{2}(x)$

(c) $\phi_{3}(x)$

$$
\phi_{i}\left(v_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

- $\left\{\phi_{1}(x), \phi_{2}(x), \phi_{3}(x)\right\}$ form a basis of V_{h}.

A Basis for V_{h}

(d) $\phi_{1}(x)$

(e) $\phi_{2}(x)$

(f) $\phi_{3}(x)$

$$
\phi_{i}\left(v_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

- $\left\{\phi_{1}(x), \phi_{2}(x), \phi_{3}(x)\right\}$ form a basis of V_{h}.

1. Linear Independence

$$
c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+3 \phi_{3}(x)=0 \rightarrow c_{1}=c_{2}=c_{3}=0
$$

A Basis for V_{h}

(g) $\phi_{1}(x)$

(h) $\phi_{2}(x)$

(i) $\phi_{3}(x)$

$$
\phi_{i}\left(v_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

- $\left\{\phi_{1}(x), \phi_{2}(x), \phi_{3}(x)\right\}$ form a basis of V_{h}.

1. Linear Independence

$$
c_{1} \phi_{1}(x)+c_{2} \phi_{2}(x)+3 \phi_{3}(x)=0 \rightarrow c_{1}=c_{2}=c_{3}=0
$$

2. Span $v_{h}(x)=v_{h}(-1) \phi_{1}(x)+v_{h}(0) \phi_{2}(x)+v_{h}(1) \phi_{3}(x)$.

The Simplest Finite Element Method for Everyone

- Find $u(x)$ that satisfies

$$
\begin{aligned}
-u^{\prime \prime}(x) & =4 \text { on }(-2,2) \\
u(-2) & =0 \text { and } u(2)=0 .
\end{aligned}
$$

The Simplest Finite Element Method for Everyone

- Find $u(x)$ that satisfies

$$
\begin{aligned}
-u^{\prime \prime}(x) & =4 \text { on }(-2,2), \\
u(-2) & =0 \text { and } u(2)=0 .
\end{aligned}
$$

- Let $w(x)$ be a "nice" function that satisfies $w(-2)=0=w(2)$.
- Find $u(x)$ such that

$$
\begin{gathered}
\int_{-2}^{2} u^{\prime}(x) w^{\prime}(x) d x=\int_{-2}^{2} 4 w(x) d x \quad \forall w(x) \\
u(-2)=0 \text { and } u(2)=0 .
\end{gathered}
$$

The Simplest Finite Element Method for Everyone

- Find $u(x)$ that satisfies

$$
\begin{aligned}
-u^{\prime \prime}(x) & =4 \text { on }(-2,2) \\
u(-2) & =0 \text { and } u(2)=0 .
\end{aligned}
$$

- Let $w(x)$ be a "nice" function that satisfies $w(-2)=0=w(2)$.
- Find $u(x)$ such that

$$
\begin{gathered}
\int_{-2}^{2} u^{\prime}(x) w^{\prime}(x) d x=\int_{-2}^{2} 4 w(x) d x \quad \forall w(x) \\
u(-2)=0 \text { and } u(2)=0 .
\end{gathered}
$$

- Find an approximation of $u(x)$ in V_{h}.

The Simplest Finite Element Method for Everyone

- Find $u(x)$ that satisfies

$$
\begin{aligned}
-u^{\prime \prime}(x) & =4 \text { on }(-2,2) \\
u(-2) & =0 \text { and } u(2)=0 .
\end{aligned}
$$

- Let $w(x)$ be a "nice" function that satisfies $w(-2)=0=w(2)$.
- Find $u(x)$ such that

$$
\begin{gathered}
\int_{-2}^{2} u^{\prime}(x) w^{\prime}(x) d x=\int_{-2}^{2} 4 w(x) d x \quad \forall w(x) \\
u(-2)=0 \text { and } u(2)=0 .
\end{gathered}
$$

- Find an approximation of $u(x)$ in V_{h}.
- The Discrete Problem: Find $u_{h}(x) \in V_{h}$ that satisfies

$$
\int_{-2}^{2} u_{h}^{\prime}(x) w_{h}^{\prime}(x) d x=\int_{-2}^{2} 4 w_{h}(x) d x \quad \forall w_{h}(x) \in V_{h}
$$

Finding the Finite Element Approximation $u_{h}(x)$

- The Discrete Problem: Find $u_{h}(x) \in V_{h}$ that satisfies

$$
\int_{-2}^{2} u_{h}^{\prime}(x) w_{h}^{\prime}(x) d x=\int_{-2}^{2} 4 w_{h}(x) d x \quad \forall w_{h}(x) \in V_{h}
$$

Finding the Finite Element Approximation $u_{h}(x)$

- The Discrete Problem: Find $u_{h}(x) \in V_{h}$ that satisfies

$$
\int_{-2}^{2} u_{h}^{\prime}(x) w_{h}^{\prime}(x) d x=\int_{-2}^{2} 4 w_{h}(x) d x \quad \forall w_{h}(x) \in V_{h}
$$

- $u_{h}(x)=\sum_{j=1}^{3} c_{j} \phi_{j}(x)$

Finding the Finite Element Approximation $u_{h}(x)$

- The Discrete Problem: Find $u_{h}(x) \in V_{h}$ that satisfies

$$
\int_{-2}^{2} u_{h}^{\prime}(x) w_{h}^{\prime}(x) d x=\int_{-2}^{2} 4 w_{h}(x) d x \quad \forall w_{h}(x) \in V_{h}
$$

- $u_{h}(x)=\sum_{j=1}^{3} c_{j} \phi_{j}(x)$

$$
\begin{aligned}
\int_{-2}^{2} \sum_{j=1}^{3} c_{j} \phi_{j}^{\prime}(x) w_{h}^{\prime}(x) d x & =\int_{-2}^{2} 4 w_{h}(x) d x & & \forall w_{h}(x) \in V_{h} \\
\sum_{j=1}^{3} c_{j} \int_{-2}^{2} \phi_{j}^{\prime}(x) \phi_{i}^{\prime}(x) d x & =\int_{-2}^{2} 4 \phi_{i}(x) d x & & \forall i=1,2,3, \quad \text { since } \phi_{i} \in V_{h}, \\
A c & =b & & 3 \times 3 \text { Matrix System } \\
A(i, j) & =\int_{-2}^{2} \phi_{j}^{\prime}(x) \phi_{i}^{\prime}(x) d x & & \forall i, j=1,2,3 \\
b_{i} & =\int_{-2}^{2} 4 \phi_{i}(x) d x & & \forall i=1,2,3
\end{aligned}
$$

Finding the Finite Element Approximation $u_{h}(x)$

- The Discrete Problem: Find $u_{h}(x) \in V_{h}$ that satisfies

$$
\int_{-2}^{2} u_{h}^{\prime}(x) w_{h}^{\prime}(x) d x=\int_{-2}^{2} 4 w_{h}(x) d x \quad \forall w_{h}(x) \in V_{h}
$$

- $u_{h}(x)=\sum_{j=1}^{3} c_{j} \phi_{j}(x)$

$$
\begin{aligned}
\int_{-2}^{2} \sum_{j=1}^{3} c_{j} \phi_{j}^{\prime}(x) w_{h}^{\prime}(x) d x & =\int_{-2}^{2} 4 w_{h}(x) d x & & \forall w_{h}(x) \in V_{h} \\
\sum_{j=1}^{3} c_{j} \int_{-2}^{2} \phi_{j}^{\prime}(x) \phi_{i}^{\prime}(x) d x & =\int_{-2}^{2} 4 \phi_{i}(x) d x & & \forall i=1,2,3, \quad \text { since } \phi_{i} \in V_{h}, \\
A c & =b & & 3 \times 3 \text { Matrix System } \\
A(i, j) & =\int_{-2}^{2} \phi_{j}^{\prime}(x) \phi_{i}^{\prime}(x) d x & & \forall i, j=1,2,3 \\
b_{i} & =\int_{-2}^{2} 4 \phi_{i}(x) d x & & \forall i=1,2,3
\end{aligned}
$$

- Solve $A c=b \Rightarrow u_{h}(x)=\sum_{j=1}^{3} c_{j} \phi_{j}(x)$

Finding the Finite Element Approximation $u_{h}(x)$

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad c=\left[\begin{array}{l}
6 \\
8 \\
6
\end{array}\right]
$$

Finding the Finite Element Approximation $u_{h}(x)$

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad c=\left[\begin{array}{l}
6 \\
8 \\
6
\end{array}\right]
$$

- A is invertible, so $A c=b$ has a unique solution.

Finding the Finite Element Approximation $u_{h}(x)$

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad c=\left[\begin{array}{l}
6 \\
8 \\
6
\end{array}\right]
$$

- A is invertible, so $A c=b$ has a unique solution.
- Finite Element Approximation $u_{h}(x)=6 \phi_{1}(x)+8 \phi_{2}(x)+6 \phi_{3}(x)$

Finding the Finite Element Approximation $u_{h}(x)$

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad c=\left[\begin{array}{l}
6 \\
8 \\
6
\end{array}\right]
$$

- A is invertible, so $A c=b$ has a unique solution.
- Finite Element Approximation $u_{h}(x)=6 \phi_{1}(x)+8 \phi_{2}(x)+6 \phi_{3}(x)$

Finding the Finite Element Approximation $u_{h}(x)$

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad c=\left[\begin{array}{l}
6 \\
8 \\
6
\end{array}\right]
$$

- A is invertible, so $A c=b$ has a unique solution.
- Finite Element Approximation $u_{h}(x)=6 \phi_{1}(x)+8 \phi_{2}(x)+6 \phi_{3}(x)$

- Exact Solution $u(x)=-2 x^{2}+8$

Finite Element Methods in One-Dimension

- u_{h} becomes a better approximation of u as h gets smaller.

Finite Element Methods in One-Dimension

- u_{h} becomes a better approximation of u as h gets smaller.
- Example FEM Approximations (left) vs Exact Solution (right)

Finite Element Methods in Two-Dimensions

Finite Element Methods in Two-Dimensions

- Poisson equation: find $u(x, y)$ such that

$$
\begin{aligned}
-\Delta u & =f \\
u & =0
\end{aligned}
$$

$$
\text { in } \Omega=(-1,1) \times(-1,1)
$$

$$
\text { on } \partial \Omega \text {. }
$$

Finite Element Methods in Two-Dimensions

- Poisson equation: find $u(x, y)$ such that

$$
\begin{aligned}
-\Delta u & =f \\
u & =0
\end{aligned}
$$

$$
\text { in } \Omega=(-1,1) \times(-1,1) \text {, }
$$

$$
\text { on } \partial \Omega \text {. }
$$

- Find $u(x, y) \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \nabla w d A=\int_{\Omega} f w d A \quad \forall w \in H_{0}^{1}(\Omega) .
$$

Finite Element Methods in Two-Dimensions

- Poisson equation: find $u(x, y)$ such that

$$
\begin{aligned}
-\Delta u & =f \\
u & =0
\end{aligned}
$$

$$
\text { in } \Omega=(-1,1) \times(-1,1) \text {, }
$$

$$
\text { on } \partial \Omega \text {. }
$$

- Find $u(x, y) \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \nabla w d A=\int_{\Omega} f w d A \quad \forall w \in H_{0}^{1}(\Omega) .
$$

- Find $u_{h}(x, y) \in V_{h}$ such that

$$
\int_{\Omega} \nabla u_{h} \nabla w_{h} d A=\int_{\Omega} f w_{h} d A \quad \forall w_{h} \in V_{h} .
$$

Finite Element Methods in Two-Dimensions

- The mesh (triangulation) of the domain:

Finite Element Methods in Two-Dimensions

- The mesh (triangulation) of the domain:

- $w_{h}(x, y) \in V_{h}$ if and only if

1. w_{h} is continuous on Ω, and $w_{h}=0$ on $\partial \Omega$.
2. w_{h} is piecewise linear on each triangle.

Finite Element Methods in Two-Dimensions

- The mesh (triangulation) of the domain:

- $w_{h}(x, y) \in V_{h}$ if and only if

1. w_{h} is continuous on Ω, and $w_{h}=0$ on $\partial \Omega$.
2. w_{h} is piecewise linear on each triangle.

- Basis of V_{h} :

Finite Element Methods in Two-Dimensions

- The mesh (triangulation) of the domain:

- $w_{h}(x, y) \in V_{h}$ if and only if

1. w_{h} is continuous on Ω, and $w_{h}=0$ on $\partial \Omega$.
2. w_{n} is piecewise linear on each triangle.

- Basis of V_{h} :

- Dimension of V_{h} for this mesh: 1

Finite Element Methods in Two-Dimensions

- Another mesh (triangulation) of the domain:

Finite Element Methods in Two-Dimensions

- Another mesh (triangulation) of the domain:

- Dimension of V_{h} for this mesh: 5

Finite Element Methods in Two-Dimensions

- Another mesh (triangulation) of the domain:

- Dimension of V_{h} for this mesh: 5
- Some basis function pictures of V_{h} :

FEMs for the Axisymmetric Maxwell Equations: Hepatic Microwave Ablation

- An alternative treatment to liver cancer.

FEMs for the Axisymmetric Maxwell Equations: Hepatic Microwave Ablation

- An alternative treatment to liver cancer.
- An experimental procedure in which an antenna is inserted through the skin or during surgery to induce cell necrosis through the heating of deep-seated tumors.

FEMs for the Axisymmetric Maxwell Equations: Hepatic Microwave Ablation

- An alternative treatment to liver cancer.
- An experimental procedure in which an antenna is inserted through the skin or during surgery to induce cell necrosis through the heating of deep-seated tumors.
- Design of antennas : The electromagnetic power pattern should be highly localized near the tip of the antenna.

FEMs for the Axisymmetric Maxwell Equations: Hepatic Microwave Ablation

- An alternative treatment to liver cancer.
- An experimental procedure in which an antenna is inserted through the skin or during surgery to induce cell necrosis through the heating of deep-seated tumors.
- Design of antennas : The electromagnetic power pattern should be highly localized near the tip of the antenna.
- Approximate the solution to the Axisymmetric Maxwell Equations to get an approximate electromagnetic power distribution for different antenna designs.

FEMs for the Axisymmetric Maxwell Equations

Electromagnetic Power Distribution for Antenna Design:

Singular Value Decomposition and Image Compression

- Singular Value Decomposition

$$
A_{m \times n}=U_{m \times m} \cdot \Sigma_{m \times n} \cdot V_{n \times n}^{\top}
$$

U and V : orthogonal matrices
Σ : "diagonal" matrix with diagonal entries

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{p} \geq 0, p=\min (m, n)
$$

\xrightarrow{A}

Singular Value Decomposition and Image Compression

$$
A=\sigma_{1} \cdot{\overrightarrow{u_{1}}}_{1} \cdot{\overrightarrow{v_{1}}}^{T}+\sigma_{2} \cdot \overrightarrow{u_{2}} \cdot{\overrightarrow{v_{2}}}^{T} \cdots+\sigma_{n} \cdot \vec{u}_{n} \cdot{\overrightarrow{v_{n}}}^{T}
$$

Singular Value Decomposition and Image Compression

Thank you!

