Discovering Ill-Conditioned Systems Via Plane Deformations

J. Donato Fortin

Who?

- Quantitative Analysis (Math: Algebra, Linear Systems, Calculus)
- •B.S. in Business Administration
- •Background: Algebra I and armed with TI83/84

Why?

- Quantitative Analysis for Management (Business).
- •Play with vector and matrix algebra.

Intro Problem

$$209(0.5) + 472(0.5) = 340.5$$
$$56(0.5) + 125(0.5) = 90.5$$
$$209x + 472y = 340$$
$$56x + 125y = 90$$

Intro Problem

ORIGINAL

$$209x + 472y = 340.5$$
$$56x + 125y = 90.5$$

$$x = 0.5 cup$$
$$y = 0.5 cup$$

PERTURBED

$$209x + 472y = 340$$
$$56x + 125y = 90$$

$$x = -0.065 cup$$
$$y = 0.749 cup$$

Intro Problem

ORIGINAL

$$209x + 472y = 340.5$$
$$56x + 125y = 90.5$$

$$x = 0.5 cup$$
$$y = 0.5 cup$$

PERTURBED

$$209x + 472y = 339.5$$
$$56x + 125y = 90.25$$

$$x = 0.523 \ cup$$

 $y = 0.488 \ cup$

Not so much the size, but the "direction" of change may make a difference:

$$\begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$
 versus $\begin{pmatrix} -1 \\ -0.25 \end{pmatrix}$

1:1 change versus 4:1 change

The plan:

- Test 2×2 systems for ill-conditioning.
- Check if small perturbations of the RHS result in big perturbations to the solution.
- Do it with a TI83/84.

Test by perturbing the RHS in "all" directions:

ORIGINAL

PERTURBED

$$Ax = b$$

$$x0 = A^{-1}b$$

$$Ax = b + \Delta b \Leftarrow$$

$$\Delta x = x - x0$$

TI83/84:

- •Enter the Δb 's (=D's) in the matrix $[K]_{2\times 24}=\begin{bmatrix} \Delta b_x \\ \Delta b_y \end{bmatrix}$
- •Create the matrix $[I]_{2\times 24} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- •Create the matrix $[J]_{2\times24} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

TI83/84:

Enter the coefficient matrix [A]

For
$$b = \begin{pmatrix} b_x \\ b_y \end{pmatrix}$$
, calculate $[A]^{-1}(b_x[I] + b_y[J] + [K])$

Analysis:

- •Calculate the Δx 's and their lengths.
- •Identify the "longest" Δx and corresponding Δb .
- •Identify the "shortest" Δx and corresponding Δb .
- •Graph the Δx 's to assess distance from the solution.

Example 1 (joint effort)

$$x + y = 100$$
$$8x - 2y = 100$$

$$b = \binom{100}{100}$$

$$x0 = \binom{x}{y} = \binom{30}{70}$$

Direction	Δχ	Δγ	length
D1	0.2	0.8	0.825
D2	0.219	0.747	0.778
D3	0.22	0.58	0.620
D4	0.212	0.495	0.539
*	*	*	*
D24	0.167	0.799	0.816

$$b = \binom{100}{100}$$

$$x0 = \binom{x}{y} = \binom{30}{70}$$

Direction	Δχ	Δγ	length
D1	0.2	0.8	0.825 (max)
*	*	*	*
D7	0.1	-0.1	0.141 (min)
*	*	*	*

Business Result

For
$$b = \binom{100}{100}$$

- •0.7% change in *b*.
- •Up to 1.1% change in the solution.

Example 2

$$0.8x - 0.3y = 45$$

$$0.6x + 0.4y = 35$$

$$b = \binom{45}{35}$$

$$x0 = {x \choose y} = {57 \choose 2}$$

Direction	Δχ	Δγ	length
*	*	*	*
D3 *	1 *	0 *	1 (min) *
D9 *	0 *	2 *	2 (max) *

Business Result

For
$$b = \binom{45}{35}$$

- •1.8% change *b*.
- •Up to 3.5% change in the solution.

Example 3

$$209x + 472y = 340.5$$
$$56x + 125y = 90.5$$

Example 3
$$b = {340.5 \choose 90.5}$$
 $x0 = {x \choose y} = {0.5 \choose 0.5}$

Direction	Δχ	Δγ	length
*	*	*	*
D2 *	0.005	0.000	0.005 (min) *
D8 *	1.590 *	-0.705 *	1.740 (max) *

Business Result

For
$$b = {340.5 \choose 90.5}$$

- •0.2% change in *b*.
- •Up to 87.4% change in the solution.

If you have the unit vectors that map to the vectors representing the major and minor axes,

$$Av_1 = s_1 u_1$$
$$Av_2 = s_2 u_2$$

then you can construct A via the Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

$$A = USV^t$$

$$A = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} (v_1 \quad v_2)^t$$

Did they get it? Yes!

- No problems with matrix manipulations and technology.
- •Stronger students wanted to do more.

Did they get it? Yes!

- •Graphing was the big hurdle.
- •Students had trouble with the "business result."

Next Time:

- •More perturbations?
- •Supply the graph?
- •Forward Problem (Δx) or Backward Problem (Δb)?

