Two True/False Questions on Linear Independence and an Application to a Set Theory Problem

Fang Chen
Emory University/Oxford College
January 17, 2019

Support the Theme:

A beginning Linear Algebra course provides excellent opportunities to introduce inexperienced students to mathematical thinking and problem solving.

Background

- Course: fundamental topics and general structures; balance theories and applications.

Background

- Course: fundamental topics and general structures; balance theories and applications.
- Learning Goals:
- knowledge and knowhow;
- to think mathematically, to investigate and solve problems;
- important to pose good questions, kindle curiosities, explore connections and inspire interests.

Background

- Course: fundamental topics and general structures; balance theories and applications.
- Learning Goals:
- knowledge and knowhow;
- to think mathematically, to investigate and solve problems;
- important to pose good questions, kindle curiosities, explore connections and inspire interests.
- Students:
- first and second year students, liberal arts college;
- no experience in writing proofs or solving real problems;

Background

- Course: fundamental topics and general structures; balance theories and applications.
- Learning Goals:
- knowledge and knowhow;
- to think mathematically, to investigate and solve problems;
- important to pose good questions, kindle curiosities, explore connections and inspire interests.
- Students:
- first and second year students, liberal arts college;
- no experience in writing proofs or solving real problems;
- Textbook:
- Anton and Rorres: Elementary Linear Algebra, Applications Version.
- selected due to its content, approach and assignments.

CONTENTS

Data files for exercises requiring MATLAB, Mathematica and Maple can be found on the Student Companion
CHAPTER 1 Systems of Linear Equations and Matrices 1
1.1 Introduction to Systems of Linear Equations 2
1.2 Gaussian Elimination 11
1.3 Matrices and Matrix Operations 25
1.4 Inverses; Algebraic Properties of Matrices 39
1.5 Elementary Matrices and a Method for Finding $A^{-1} \quad 52$
1.6 More on Linear Systems and Invertible Matrices 61
1.7 Diagonal, Triangular, and Symmetric Matrices 67
1.8 Matrix Transformations 75
1.9 Applications of Linear Systems 84

- Network Analysis (Traffic Flow) 84
- Electrical Circuits 86
- Balancing Chemical Equations 88
- Polynomial Interpolation 91
1.10 Application: Leontief Input-Output Models . 96

CHAPTER 2 Determinants 105
2.1 Determinants by Cofactor Expansion 105
2.2 Evaluating Determinants by Row Reduction 113
2.3 Properties of Determinants; Cramer's Rule 118

CHAPTER 3 Euclidean Vector Spaces ${ }_{131}$
3.1 Vectors in 2 -Space, 3 -Space, and n-Space 131
3.2 Norm, Dot Product, and Distance in R^{n}
3.3 Orthogonality 155
3.4 The Geometry of Linear Systems 164
3.5 Cross Product 172

CHAPTER 4 General Vector Spaces 183
4.1 Real Vector Spaces 183
4.2 Subspaces 191
4.3 Linear Independence 202
4.4 Coordinates and Basis 212
4.5 Dimension 221
4.6 Change of Basis 229
4.7 Row Space, Column Space, and Null Space 237
4.8 Rank, Nullity, and the Fundamental Matrix Spaces 248
4.9 Basic Matrix Transformations in R^{2} and $R^{3} 259$
4.10 Properties of Matrix Transformations 270
4.11 Application: Geometry of Matrix Operators on $R^{2} \quad 280$

Fang Chen

CHAPTER 5 Eigenvalues and Eigenvectors 291
5.1 Eigenvalues and Eigenvectors 291
5.2 Diagonalization 302
5.3 Complex Vector Spaces 313
5.4 Application: Differential Equations 326
5.5 Application: Dynamical Systems and Markov Chains 332
CHAPTER 6 Inner Product Spaces 345
6.1 Inner Products 345
6.2 Angle and Orthogonality in Inner Product Spaces 355
6.3 Gram-Schmidt Process; $Q R$-Decomposition 364
6.4 Best Approximation; Least Squares 378
6.5 Application: Mathematical Modeling Using Least Squares 387
6.6 Application: Function Approximation; Fourier Series 394

C HAPTER 7 Diagonalization and Quadratic Forms 401
7.1 Orthogonal Matrices 401
7.2 Orthogonal Diagonalization 409
7.3 Quadratic Forms 417
7.4 Optimization Using Quadratic Forms 429
7.5 Hermitian, Unitary, and Normal Matrices 437

CHAPTER 8 General Linear Transformations 447
8.1 General Linear Transformations 447
8.2 Compositions and Inverse Transformations 45
8.3 Isomorphism 466
8.4 Matrices for General Linear Transformations 472
8.5 Similarity 481

CHAPTER 9 Numerical Methods 491
9.1 LU-Decompositions 491
9.2 The Power Method 501
9.3 Comparison of Procedures for Solving Linear Systems 509
9.4 Singular Value Decomposition 514
9.5 Application: Data Compression Using Singular Value Decomposition 521

[^0]
Background

True-False Questions

- on homework and tests; either prove or disprove a statement with an argument or a counterexample;

Background

True-False Questions

- on homework and tests; either prove or disprove a statement with an argument or a counterexample;
- students found them challenging and interesting;
- an effective tool to realize many of the course goals.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):
If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Initial reaction: It's true, by definition.
Definition from the textbook: a set of 2 or more vectors is linearly dependent if at least one is a linear combination of the others.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Initial reaction: It's true, by definition.
Definition from the textbook: a set of 2 or more vectors is linearly dependent if at least one is a linear combination of the others. Reasoning: flawed. typical for students at this level:

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Initial reaction: It's true, by definition.
Definition from the textbook: a set of 2 or more vectors is linearly dependent if at least one is a linear combination of the others.
Reasoning: flawed. typical for students at this level:

- ignoring \mathbf{v}_{k} expressed as a linear combination of the previous vectors: $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.
- ignoring uniqueness.
- ignoring the condition "nonzero", used or not.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Intervention: make sure the meaning of the statement is understood.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Intervention: make sure the meaning of the statement is understood.
Second reaction: It's false!

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Intervention: make sure the meaning of the statement is understood.
Second reaction: It's false!

- insufficient understanding of linear dependence/independence;
- jump to conclusions based on wrong intuition;
- little or almost no evidence.

True/False Question on Linear Independence/Dependence

Class Discussion

- Let them think and discuss;

True/False Question on Linear Independence/Dependence

Class Discussion

- Let them think and discuss;
- Prove or find a counterexample;

True/False Question on Linear Independence/Dependence

Class Discussion

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.

True/False Question on Linear Independence/Dependence

Class Discussion

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is linearly dependent \Rightarrow there are coefficients c_{1}, \ldots, c_{n} not all zero such that $c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}$.

True/False Question on Linear Independence/Dependence

Class Discussion

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is linearly dependent \Rightarrow there are coefficients c_{1}, \ldots, c_{n} not all zero such that $c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}$.
- Question: what's good about having a non-zero coefficient? If $c_{m} \neq 0$, then \mathbf{v}_{m} can be expressed as a linear combination of the others.

True/False Question on Linear Independence/Dependence

Class Discussion

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is linearly dependent \Rightarrow there are coefficients c_{1}, \ldots, c_{n} not all zero such that $c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}$.
- Question: what's good about having a non-zero coefficient? If $c_{m} \neq 0$, then \mathbf{v}_{m} can be expressed as a linear combination of the others.
- An idea: let m be the largest index such that $c_{m} \neq 0$.

True/False Question on Linear Independence/Dependence

Class Discussion

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is linearly dependent \Rightarrow there are coefficients c_{1}, \ldots, c_{n} not all zero such that $c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0}$.
- Question: what's good about having a non-zero coefficient? If $c_{m} \neq 0$, then \mathbf{v}_{m} can be expressed as a linear combination of the others.
- An idea: let m be the largest index such that $c_{m} \neq 0$.
- Caution: take care of details: $m \leq n$, why? $m \geq 2$, why? justify and see how the conditions are used.

True/False Question on Linear Independence/Dependence

What about uniqueness?

True/False Question on Linear Independence/Dependence

What about uniqueness?

- Recall the usual way to argue uniqueness of an expression;

True/False Question on Linear Independence/Dependence

What about uniqueness?

- Recall the usual way to argue uniqueness of an expression;
- existence \Longleftrightarrow dependence, uniqueness \Longleftrightarrow independence;

True/False Question on Linear Independence/Dependence

What about uniqueness?

- Recall the usual way to argue uniqueness of an expression;
- existence \Longleftrightarrow dependence, uniqueness \Longleftrightarrow independence;
- Difficulty: do not know $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m-1}\right\}$ is independent;

Suggestion:

True/False Question on Linear Independence/Dependence

What about uniqueness?

- Recall the usual way to argue uniqueness of an expression;
- existence \Longleftrightarrow dependence, uniqueness \Longleftrightarrow independence;
- Difficulty: do not know $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m-1}\right\}$ is independent;

Suggestion:

- We have started from the entire set and considered the dependence of the subsets;

True/False Question on Linear Independence/Dependence

What about uniqueness?

- Recall the usual way to argue uniqueness of an expression;
- existence \Longleftrightarrow dependence, uniqueness \Longleftrightarrow independence;
- Difficulty: do not know $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m-1}\right\}$ is independent;

Suggestion:

- We have started from the entire set and considered the dependence of the subsets;
- What about starting from the beginning and considering the independence of the subsets?

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

- starting with $\left\{\mathbf{v}_{1}\right\}$, is it independent/dependent, why? they see "nonzero" is used.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

- starting with $\left\{\mathbf{v}_{1}\right\}$, is it independent/dependent, why? they see "nonzero" is used.
- consider $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, easy to see it can be independent or dependent;

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

- starting with $\left\{\mathbf{v}_{1}\right\}$, is it independent/dependent, why? they see "nonzero" is used.
- consider $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, easy to see it can be independent or dependent;
- remembering the entire set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ is dependent.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):
If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

An idea!

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

An idea!

- There is a transition, a moment when the sets first become dependent.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

An idea!

- There is a transition, a moment when the sets first become dependent.
- Stating it mathematically, let k be the smallest index such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ is dependent;
- Observe $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k-1}\right\}$ is independent;
- Show the statement holds for this k.

True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_{k} is a unique linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}$.

An idea!

- There is a transition, a moment when the sets first become dependent.
- Stating it mathematically, let k be the smallest index such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ is dependent;
- Observe $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k-1}\right\}$ is independent;
- Show the statement holds for this k.
- Remind them to justify that such a k exists, and find out its range: $2 \leq k \leq n$.

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.
- Extremal argument: extremal choice reveals more information.

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.
- Extremal argument: extremal choice reveals more information.
- Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.
- Extremal argument: extremal choice reveals more information.
- Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
- How would one think of doing it this way?

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.
- Extremal argument: extremal choice reveals more information.
- Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
- How would one think of doing it this way?
- experience;

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.
- Extremal argument: extremal choice reveals more information.
- Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
- How would one think of doing it this way?
- experience;
- work from what one knows, what one is familiar with;

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.
- Extremal argument: extremal choice reveals more information.
- Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
- How would one think of doing it this way?
- experience;
- work from what one knows, what one is familiar with;
- if stuck, go back to the problem and analyze it more carefully;

True/False Question on Linear Independence/Dependence

Wrapping up:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
- Understand dependence/independence better: connection to existence/uniqueness.
- Extremal argument: extremal choice reveals more information.
- Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
- How would one think of doing it this way?
- experience;
- work from what one knows, what one is familiar with;
- if stuck, go back to the problem and analyze it more carefully;
- see what the problem requires, not what's convenient for you or what you have decided to do.

Summary:
Apart from the content (independence/dependence) and technique (extremal argument), leading students through thinking and solving this problem gives them a taste of how one might approach a problem, analyze it, solve it and how to better organize a proof after reaching a rough argument. It also gives them the confidence that they can solve problems.

Collecting Examples and Problems

Examples and Problems that

- integrate fundamental concepts;
- illustrate style of arguments and introduce techniques;
- specific incidences \rightarrow general(abstract) theories.
e.g.,

Collecting Examples and Problems

Examples and Problems that

- integrate fundamental concepts;
- illustrate style of arguments and introduce techniques;
- specific incidences \rightarrow general(abstract) theories.
e.g.,
- The Dimension Theorem for matrix transformations (linear transformations on R^{n}) for general linear transformations
- Every n-dimensional vector space is isomorphic to R^{n}.
- Cauchy-Schwarz Inequality (for R^{n}, for general inner product spaces, and its connection to projection, linear dependence/independence)

Collecting Examples and Problems

Examples and Problems that

- integrate fundamental concepts;
- illustrate style of arguments and introduce techniques;
- specific incidences \rightarrow general(abstract) theories.

Utilizing such Examples and Problems

- intentional about exposing examples and assigning exercises throughout the course;
- let the students see the ideas in action in similar and diverse specific situations;
- general (abstract) observation would surface naturally and inevitably.

True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

- good to be on the test after discussing general vector spaces:
- concepts involved: dimension, span, subspaces, basis, etc.;
- the key is a construction of such a basis;
- the proof is a good practice of standard arguments about basis.

True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

- difficult for the students:
- to understand the statement correctly, requires one to be clear about definitions and concepts;
- not easy to arrive at a correct guess: most of them would have the wrong intuition;
- situation is abstract (general), hard for them to get a grip on.

True/False Question on Basis

A T/F question on a test:
Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^{n} to get an intuition.

True/False Question on Basis

A T / F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^{n} to get an intuition.

- In the course: R^{2} and $R^{3} \rightarrow R^{n} \rightarrow$ general vector spaces

True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^{n} to get an intuition.

- In the course: R^{2} and $R^{3} \rightarrow R^{n} \rightarrow$ general vector spaces
- Let V be R^{2} and L be any line through origin, clearly there are bases of R^{2} that contain no vectors from L the line.

True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^{n} to get an intuition.

- In the course: R^{2} and $R^{3} \rightarrow R^{n} \rightarrow$ general vector spaces
- Let V be R^{2} and L be any line through origin, clearly there are bases of R^{2} that contain no vectors from L the line.
- Observation in R^{n} suggests that the statement is True.

True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^{n} to get an intuition.

- In the course: R^{2} and $R^{3} \rightarrow R^{n} \rightarrow$ general vector spaces
- Let V be R^{2} and L be any line through origin, clearly there are bases of R^{2} that contain no vectors from L the line.
- Observation in R^{n} suggests that the statement is True.
- Not easy for students to construct a basis in the general case.

True/False Question on Basis

An observation from a related homework T/F question:
Every basis of P_{4} contains at least one polynomial of degree 3 or less. (P_{n} is the vector space of polynomials of degree at most n.)

True/False Question on Basis

An observation from a related homework T/F question:
Every basis of P_{4} contains at least one polynomial of degree 3 or less. (P_{n} is the vector space of polynomials of degree at most n.)

- familiar with standard basis of $P_{4}:\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$;

True/False Question on Basis

An observation from a related homework T/F question:
Every basis of P_{4} contains at least one polynomial of degree 3 or less. (P_{n} is the vector space of polynomials of degree at most n.)

- familiar with standard basis of $P_{4}:\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$;
- understand what it means for the statement to be True/False;

True/False Question on Basis

An observation from a related homework T / F question:

Every basis of P_{4} contains at least one polynomial of degree 3 or less. (P_{n} is the vector space of polynomials of degree at most n.)

- familiar with standard basis of $P_{4}:\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$;
- understand what it means for the statement to be True/False;
- not hard to arrive at a counterexample, a basis of P_{4} :

$$
\left\{1+x^{4}, x+x^{4}, x^{2}+x^{4}, x^{3}+x^{4}, x^{4}\right\}
$$

True/False Question on Basis

An observation from a related homework T / F question:

Every basis of P_{4} contains at least one polynomial of degree 3 or less. (P_{n} is the vector space of polynomials of degree at most n.)

- familiar with standard basis of $P_{4}:\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$;
- understand what it means for the statement to be True/False;
- not hard to arrive at a counterexample, a basis of P_{4} :

$$
\left\{1+x^{4}, x+x^{4}, x^{2}+x^{4}, x^{3}+x^{4}, x^{4}\right\}
$$

- students feel the work is done once the problem is solved.

True/False Question on Basis

An observation from a related homework T/F question:
Every basis of P_{4} contains at least one polynomial of degree 3 or less.

Push further, ask questions like why, how, and what about?

True/False Question on Basis

An observation from a related homework T/F question:
Every basis of P_{4} contains at least one polynomial of degree 3 or less.

Push further, ask questions like why, how, and what about?

- Q: why the original false statement stated this way?

True/False Question on Basis

An observation from a related homework T/F question:
Every basis of P_{4} contains at least one polynomial of degree 3 or less.

Push further, ask questions like why, how, and what about?

- Q: why the original false statement stated this way?
- A: due to the standard basis.

True/False Question on Basis

An observation from a related homework T/F question:
Every basis of P_{4} contains at least one polynomial of degree 3 or less.

Push further, ask questions like why, how, and what about?

- Q: why the original false statement stated this way?
- A: due to the standard basis.
- Q: how is the standard basis formed?

True/False Question on Basis

An observation from a related homework T/F question:

Every basis of P_{4} contains at least one polynomial of degree 3 or less.

Push further, ask questions like why, how, and what about?

- Q: why the original false statement stated this way?
- A: due to the standard basis.
- Q: how is the standard basis formed?
- A: by including vectors which are not in the span of the existing ones: $P_{3} \subseteq P_{4}$; to grow a basis:

$$
\left\{1, x, x^{2}, x^{3}\right\} \xrightarrow{\text { add } x^{4}}\left\{1, x, x^{2}, x^{3}, x^{4}\right\}
$$

True/False Question on Basis

Push further, ask questions like why, how, and what about?

- Q: how about

$$
\left\{1, x, x^{2}, x^{3}\right\} \longrightarrow\left\{1+x^{4}, x+x^{4}, x^{2}+x^{4}, x^{3}+x^{4}, x^{4}\right\} ?
$$

True/False Question on Basis

Push further, ask questions like why, how, and what about?

- Q: how about $\left\{1, x, x^{2}, x^{3}\right\} \longrightarrow\left\{1+x^{4}, x+x^{4}, x^{2}+x^{4}, x^{3}+x^{4}, x^{4}\right\} ?$
- A little thinking leads to: translating by a vector which is not in the span of the existing ones.

True/False Question on Basis

Push further, ask questions like why, how, and what about?

- Q: how about

$$
\left\{1, x, x^{2}, x^{3}\right\} \longrightarrow\left\{1+x^{4}, x+x^{4}, x^{2}+x^{4}, x^{3}+x^{4}, x^{4}\right\} ?
$$

- A little thinking leads to: translating by a vector which is not in the span of the existing ones.
- $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ versus $\left\{1+x^{4}, x+x^{4}, x^{2}+x^{4}, x^{3}+x^{4}, x^{4}\right\}$ two ways of growing a basis.

True/False Question on Basis

A question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

Result:

- most realized that the statement is true, thinking in R^{n} or remembering the homework problem and class discussion, a few attempted to prove the statement in its generality.

True/False Question on Basis

A question on a test:

Let V be an n-dimensional vector space and L an m-dimensional subspace where $0<m<n$. Then there is a basis for V such that it contains no vectors from L.

Result:

- most realized that the statement is true, thinking in R^{n} or remembering the homework problem and class discussion, a few attempted to prove the statement in its generality.
- more successful at impressing them that they could always think in R^{n} first—a way to approach and touch a problem, to think and develop intuition, based on what they know.

An application to a set theory question

A question about sets

The subsets A_{1}, \ldots, A_{k} of $\{1,2, \ldots, n\}$ are all different and such that $\left|A_{i} \cap A_{j}\right|=1$ for $i \neq j$. Prove that $k \leq n$.

An application to a set theory question

A question about sets

The subsets A_{1}, \ldots, A_{k} of $\{1,2, \ldots, n\}$ are all different and such that $\left|A_{i} \cap A_{j}\right|=1$ for $i \neq j$. Prove that $k \leq n$.

- standard technique: translate it into a linear algebra problem of linear independence;

An application to a set theory question

A question about sets

The subsets A_{1}, \ldots, A_{k} of $\{1,2, \ldots, n\}$ are all different and such that $\left|A_{i} \cap A_{j}\right|=1$ for $i \neq j$. Prove that $k \leq n$.

- standard technique: translate it into a linear algebra problem of linear independence;
- a couple of nontrivial twists;

An application to a set theory question

A question about sets

The subsets A_{1}, \ldots, A_{k} of $\{1,2, \ldots, n\}$ are all different and such that $\left|A_{i} \cap A_{j}\right|=1$ for $i \neq j$. Prove that $k \leq n$.

- standard technique: translate it into a linear algebra problem of linear independence;
- a couple of nontrivial twists;
- a good exercise when considering the degenerate cases;

An application to a set theory question

A question about sets

The subsets A_{1}, \ldots, A_{k} of $\{1,2, \ldots, n\}$ are all different and such that $\left|A_{i} \cap A_{j}\right|=1$ for $i \neq j$. Prove that $k \leq n$.

- standard technique: translate it into a linear algebra problem of linear independence;
- a couple of nontrivial twists;
- a good exercise when considering the degenerate cases;
- good to assign as homework the "dual" problem: The subsets A_{1}, \ldots, A_{k} of $[n]=\{1,2, \ldots, n\}$ are different from $[n]$ and such that every pair of elements of $[n]$ is contained in exactly one A_{j}. Prove that $k \geq n$.

Thank You

[^0]: CHAPTER 10 Applications of Linear Algebra 527
 10.1 Constructing Curves and Surfaces Through Specified Points 528
 10.2 The Earliest Applications of Linear Algebra 633
 10.3 Cubic Spline Interpolation 540

