Two True/False Questions on Linear Independence and an Application to a Set Theory Problem

Fang Chen

Emory University/Oxford College

January 17, 2019

Fang Chen Two True/False Questions on Linear Independence

Support the Theme:

A beginning Linear Algebra course provides excellent opportunities to introduce inexperienced students to mathematical thinking and problem solving. • Course: fundamental topics and general structures; balance theories and applications.

э

- Course: fundamental topics and general structures; balance theories and applications.
- Learning Goals:
 - knowledge and knowhow;
 - to think mathematically, to investigate and solve problems;
 - important to pose good questions, kindle curiosities, explore connections and inspire interests.

- Course: fundamental topics and general structures; balance theories and applications.
- Learning Goals:
 - knowledge and knowhow;
 - to think mathematically, to investigate and solve problems;
 - important to pose good questions, kindle curiosities, explore connections and inspire interests.
- Students:
 - first and second year students, liberal arts college;
 - no experience in writing proofs or solving real problems;

- Course: fundamental topics and general structures; balance theories and applications.
- Learning Goals:
 - knowledge and knowhow;
 - to think mathematically, to investigate and solve problems;
 - important to pose good questions, kindle curiosities, explore connections and inspire interests.
- Students:
 - first and second year students, liberal arts college;
 - no experience in writing proofs or solving real problems;
- Textbook:
 - Anton and Rorres: *Elementary Linear Algebra, Applications Version.*
 - selected due to its content, approach and assignments.

伺 ト イ ヨ ト イ ヨ

CONTENTS

Data files for exercises requiring MATLAB, Mathematica and Maple can be found on the Student Companion

C H A P T E R 1 Systems of Linear Equations and Matrices 1

- 1.1 Introduction to Systems of Linear Equations 2
- 1.2 Gaussian Elimination 11
- 1.3 Matrices and Matrix Operations 25
- 1.4 Inverses; Algebraic Properties of Matrices 39
- 1.5 Elementary Matrices and a Method for Finding A⁻¹ 52
- 1.6 More on Linear Systems and Invertible Matrices 61
- 1.7 Diagonal, Triangular, and Symmetric Matrices 67
- 1.8 Matrix Transformations 75
- 1.9 Applications of Linear Systems 84
 - Network Analysis (Traffic Flow) 84
 - Electrical Circuits 86
 - Balancing Chemical Equations 88
 - Polynomial Interpolation 91
- 1.10 Application: Leontief Input-Output Models 96

CHAPTER 2 Determinants 105

- 2.1 Determinants by Cofactor Expansion 105
- 2.2 Evaluating Determinants by Row Reduction 113
- 2.3 Properties of Determinants; Cramer's Rule 118

CHAPTER 3 Euclidean Vector Spaces 131

- 3.1 Vectors in 2-Space, 3-Space, and n-Space 131
- 3.2 Norm, Dot Product, and Distance in Re 142
- 3.3 Orthogonality 155
- 3.4 The Geometry of Linear Systems 164
- 3.5 Cross Product 172

CHAPTER 4 General Vector Spaces 183

- 4.1 Real Vector Spaces 183
- 4.2 Subspaces 191
- 4.3 Linear Independence 202
- 4.4 Coordinates and Basis 212
- 4.5 Dimension 221
- 4.6 Change of Basis 229
- 4.7 Row Space, Column Space, and Null Space 237
- 4.8 Rank, Nullity, and the Fundamental Matrix Spaces 248
- 4.9 Basic Matrix Transformations in R2 and R3 259
- 4.10 Properties of Matrix Transformations 270
- 4.11 Application: Geometry of Matrix Operators on R2 280

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Contents xi

CHAPTER 5 Eigenvalues and Eigenvectors 291

- 5.1 Eigenvalues and Eigenvectors 291
- 5.2 Diagonalization 302
- 5.3 Complex Vector Spaces 313
- 5.4 Application: Differential Equations 326
- 5.5 Application: Dynamical Systems and Markov Chains 332

CHAPTER 6 Inner Product Spaces 345

- 6.1 Inner Products 345
- 6.2 Angle and Orthogonality in Inner Product Spaces 355
- 6.3 Gram-Schmidt Process; QR-Decomposition 364
- 6.4 Best Approximation; Least Squares 378
- 6.5 Application: Mathematical Modeling Using Least Squares 387
- 6.6 Application: Function Approximation; Fourier Series 394

CHAPTER 7 Diagonalization and Quadratic Forms 401

- 7.1 Orthogonal Matrices 401
- 7.2 Orthogonal Diagonalization 409
- 7.3 Quadratic Forms 417
- 7.4 Optimization Using Quadratic Forms 429
- 7.5 Hermitian, Unitary, and Normal Matrices 437

CHAPTER 8 General Linear Transformations 447

- 8.1 General Linear Transformations 447
- 8.2 Compositions and Inverse Transformations 458
- 8.3 Isomorphism 466
- 8.4 Matrices for General Linear Transformations 472
- 8.5 Similarity 481

CHAPTER 9 Numerical Methods 491

- 9.1 LU-Decompositions 491
- 9.2 The Power Method 501
- 9.3 Comparison of Procedures for Solving Linear Systems 509
- 9.4 Singular Value Decomposition 514
- 9.5 Application: Data Compression Using Singular Value Decomposition 521

CHAPTER 10 Applications of Linear Algebra 527

Constructing Curves and Surfaces Through Specified Points 528
 The Earliest Applications of Linear Algebra 533
 Cubic Spline Interpolation 540

Fang Chen Two True/False Questions on Linear Independence

(日) (同) (三) (三)

э

True-False Questions

 on homework and tests; either prove or disprove a statement with an argument or a counterexample;

True-False Questions

- on homework and tests; either prove or disprove a statement with an argument or a counterexample;
- students found them challenging and interesting;
- an effective tool to realize many of the course goals.

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Initial reaction: It's true, by definition.

Definition from the textbook: a set of 2 or more vectors is linearly dependent if at least one is a linear combination of the others.

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Initial reaction: It's true, by definition. Definition from the textbook: a set of 2 or more vectors is linearly dependent if at least one is a linear combination of the others. *Reasoning: flawed.* typical for students at this level:

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Initial reaction: It's true, by definition.

Definition from the textbook: a set of 2 or more vectors is linearly dependent if at least one is a linear combination of the others. *Reasoning: flawed.* typical for students at this level:

- ignoring v_k expressed as a linear combination of the previous vectors: v₁,..., v_{k-1}.
- ignoring uniqueness.
- ignoring the condition "nonzero", used or not.

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Intervention: make sure the meaning of the statement is understood.

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Intervention: make sure the meaning of the statement is understood.

Second reaction: It's false!

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Intervention: make sure the meaning of the statement is understood.

Second reaction: It's false!

- insufficient understanding of linear dependence/independence;
- jump to conclusions based on wrong intuition;
- little or almost no evidence.

True/False Question on Linear Independence/Dependence

Class Discussion

• Let them think and discuss;

- Let them think and discuss;
- Prove or find a counterexample;

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is linearly dependent \Rightarrow there are coefficients c_1, \ldots, c_n not all zero such that $c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$.

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is linearly dependent \Rightarrow there are coefficients c_1, \ldots, c_n not all zero such that $c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$.
- Question: what's good about having a non-zero coefficient? If $c_m \neq 0$, then \mathbf{v}_m can be expressed as a linear combination of the others.

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is linearly dependent \Rightarrow there are coefficients c_1, \ldots, c_n not all zero such that $c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$.
- Question: what's good about having a non-zero coefficient? If $c_m \neq 0$, then \mathbf{v}_m can be expressed as a linear combination of the others.
- An idea: let *m* be the largest index such that $c_m \neq 0$.

- Let them think and discuss;
- Prove or find a counterexample;
- Suggestion: argue for existence first.
- Hint: use the equivalent statement of linearly dependent: $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is linearly dependent \Rightarrow there are coefficients c_1, \ldots, c_n not all zero such that $c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$.
- Question: what's good about having a non-zero coefficient? If $c_m \neq 0$, then \mathbf{v}_m can be expressed as a linear combination of the others.
- An idea: let *m* be the largest index such that $c_m \neq 0$.
- Caution: take care of details: m ≤ n, why? m ≥ 2, why? justify and see how the conditions are used.

.

True/False Question on Linear Independence/Dependence

What about uniqueness?

• Recall the usual way to argue uniqueness of an expression;

- Recall the usual way to argue uniqueness of an expression;
- existence \iff dependence, uniqueness \iff independence;

- Recall the usual way to argue uniqueness of an expression;
- existence \iff dependence, uniqueness \iff independence;
- Difficulty: do not know $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{m-1}\}$ is independent;

Suggestion:

- Recall the usual way to argue uniqueness of an expression;
- existence \iff dependence, uniqueness \iff independence;
- Difficulty: do not know $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{m-1}\}$ is independent;

Suggestion:

• We have started from the entire set and considered the dependence of the subsets;

- Recall the usual way to argue uniqueness of an expression;
- existence \iff dependence, uniqueness \iff independence;
- Difficulty: do not know $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{m-1}\}$ is independent;

Suggestion:

- We have started from the entire set and considered the dependence of the subsets;
- What about starting from the beginning and considering the independence of the subsets?

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

 starting with {v₁}, is it independent/dependent, why? they see "nonzero" is used.

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

- starting with {v₁}, is it independent/dependent, why? they see "nonzero" is used.
- consider $\{\mathbf{v}_1, \mathbf{v}_2\}$, easy to see it can be independent or dependent;

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

Let them think and discuss

- starting with {v₁}, is it independent/dependent, why? they see "nonzero" is used.
- consider $\{\mathbf{v}_1, \mathbf{v}_2\}$, easy to see it can be independent or dependent;
- remembering the entire set $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$ is dependent.

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

An idea!

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

An idea!

• There is a transition, a moment when the sets first become dependent.

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

An idea!

- There is a transition, a moment when the sets first become dependent.
- Stating it mathematically, let k be the smallest index such that {v₁, v₂, · · · , v_k} is dependent;
- Observe $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{k-1}\}$ is independent;
- Show the statement holds for this k.

A T/F question from homework (Exercise 4.3 in the textbook):

If $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent nonzero vectors, then at least one vector \mathbf{v}_k is a unique linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_{k-1}$.

An idea!

- There is a transition, a moment when the sets first become dependent.
- Stating it mathematically, let k be the smallest index such that {v₁, v₂, · · · , v_k} is dependent;
- Observe $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_{k-1}\}$ is independent;
- Show the statement holds for this k.
- Remind them to justify that such a k exists, and find out its range: 2 ≤ k ≤ n.

通 と イ ヨ と イ ヨ と

True/False Question on Linear Independence/Dependence

Wrapping up:

• Complete the argument;

True/False Question on Linear Independence/Dependence

- Complete the argument;
- Present in class and discuss;

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.
 - Extremal argument: extremal choice reveals more information.

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.
 - Extremal argument: extremal choice reveals more information.
 - Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.
 - Extremal argument: extremal choice reveals more information.
 - Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
 - How would one think of doing it this way?

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.
 - Extremal argument: extremal choice reveals more information.
 - Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
 - How would one think of doing it this way?
 - experience;

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.
 - Extremal argument: extremal choice reveals more information.
 - Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
 - How would one think of doing it this way?
 - experience;
 - work from what one knows, what one is familiar with;

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.
 - Extremal argument: extremal choice reveals more information.
 - Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
 - How would one think of doing it this way?
 - experience;
 - work from what one knows, what one is familiar with;
 - if stuck, go back to the problem and analyze it more carefully;

- Complete the argument;
- Present in class and discuss;
- Summarize and emphasize:
 - Understand dependence/independence better: connection to existence/uniqueness.
 - Extremal argument: extremal choice reveals more information.
 - Same "trick" used elsewhere: e.g., proof of eigenvectors corresponding to distinct eigenvalues are independent.
 - How would one think of doing it this way?
 - experience;
 - work from what one knows, what one is familiar with;
 - if stuck, go back to the problem and analyze it more carefully;
 - see what the problem requires, not what's convenient for you or what you have decided to do.

伺 ト イ ヨ ト イ ヨ ト

Summary:

Apart from the content (independence/dependence) and technique (extremal argument), leading students through thinking and solving this problem gives them a taste of how one might approach a problem, analyze it, solve it and how to better organize a proof after reaching a rough argument. It also gives them the confidence that they *can* solve problems.

Collecting Examples and Problems

Examples and Problems that

- integrate fundamental concepts;
- illustrate style of arguments and introduce techniques;
- specific incidences \rightarrow general(abstract) theories.

e.g.,

Collecting Examples and Problems

Examples and Problems that

- integrate fundamental concepts;
- illustrate style of arguments and introduce techniques;
- specific incidences \rightarrow general(abstract) theories.

e.g.,

• The Dimension Theorem

for matrix transformations (linear transformations on R^n)

for general linear transformations

- Every *n*-dimensional vector space is isomorphic to R^n .
- Cauchy-Schwarz Inequality (for *Rⁿ*, for general inner product spaces, and its connection to projection, linear dependence/independence)

Collecting Examples and Problems

Examples and Problems that

- integrate fundamental concepts;
- illustrate style of arguments and introduce techniques;
- specific incidences \rightarrow general(abstract) theories.

Utilizing such Examples and Problems

- intentional about exposing examples and assigning exercises throughout the course;
- let the students see the ideas in action in similar and diverse specific situations;
- general (abstract) observation would surface naturally and inevitably.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

- good to be on the test after discussing general vector spaces:
 - concepts involved: dimension, span, subspaces, basis, etc.;
 - the key is a construction of such a basis;
 - the proof is a good practice of standard arguments about basis.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

- difficult for the students:
 - to understand the statement correctly, requires one to be clear about definitions and concepts;
 - not easy to arrive at a correct guess: most of them would have the wrong intuition;
 - situation is abstract (general), hard for them to get a grip on.

同 ト イ ヨ ト イ ヨ ト

Let V be an *n*-dimensional vector space and L an *m*-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in \mathbb{R}^n to get an intuition.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^n to get an intuition.

• In the course: R^2 and $R^3
ightarrow R^n
ightarrow$ general vector spaces

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^n to get an intuition.

- In the course: R^2 and $R^3 o R^n o$ general vector spaces
- Let V be R^2 and L be any line through origin, clearly there are bases of R^2 that contain no vectors from L the line.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in R^n to get an intuition.

- In the course: R^2 and $R^3 \rightarrow R^n \rightarrow$ general vector spaces
- Let V be R^2 and L be any line through origin, clearly there are bases of R^2 that contain no vectors from L the line.
- Observation in R^n suggests that the statement is True.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Technique: Think in \mathbb{R}^n to get an intuition.

- In the course: R^2 and $R^3 \rightarrow R^n \rightarrow$ general vector spaces
- Let V be R^2 and L be any line through origin, clearly there are bases of R^2 that contain no vectors from L the line.
- Observation in R^n suggests that the statement is True.
- Not easy for students to construct a basis in the general case.

Every basis of P_4 contains at least one polynomial of degree 3 or less. (P_n is the vector space of polynomials of degree at most n.)

• familiar with standard basis of P_4 : $\{1, x, x^2, x^3, x^4\}$;

- familiar with standard basis of P_4 : $\{1, x, x^2, x^3, x^4\}$;
- understand what it means for the statement to be True/False;

- familiar with standard basis of P_4 : $\{1, x, x^2, x^3, x^4\}$;
- understand what it means for the statement to be True/False;
- not hard to arrive at a counterexample, a basis of P_4 : {1 + x^4 , $x + x^4$, $x^2 + x^4$, $x^3 + x^4$, x^4 };

- familiar with standard basis of P_4 : $\{1, x, x^2, x^3, x^4\}$;
- understand what it means for the statement to be True/False;
- not hard to arrive at a counterexample, a basis of P_4 : { $1 + x^4, x + x^4, x^2 + x^4, x^3 + x^4, x^4$ };
- students feel the work is done once the problem is solved.

Every basis of P_4 contains at least one polynomial of degree 3 or less.

Every basis of P_4 contains at least one polynomial of degree 3 or less.

Push further, ask questions like why, how, and what about?

• Q: why the original false statement stated this way?

Every basis of P_4 contains at least one polynomial of degree 3 or less.

- Q: why the original false statement stated this way?
- A: due to the standard basis.

Every basis of P_4 contains at least one polynomial of degree 3 or less.

- Q: why the original false statement stated this way?
- A: due to the standard basis.
- Q: how is the standard basis formed?

Every basis of P_4 contains at least one polynomial of degree 3 or less.

- Q: why the original false statement stated this way?
- A: due to the standard basis.
- Q: how is the standard basis formed?
- A: by including vectors which are not in the span of the existing ones: P₃ ⊆ P₄; to grow a basis:

$$\{1, x, x^2, x^3\} \stackrel{\text{add } x^4}{\longrightarrow} \{1, x, x^2, x^3, x^4\}$$

Push further, ask questions like why, how, and what about?

• Q: how about $\{1, x, x^2, x^3\} \longrightarrow \{1 + x^4, x + x^4, x^2 + x^4, x^3 + x^4, x^4\}?$

- Q: how about $\{1, x, x^2, x^3\} \longrightarrow \{1 + x^4, x + x^4, x^2 + x^4, x^3 + x^4, x^4\}?$
- A little thinking leads to: translating by a vector which is not in the span of the existing ones.

- Q: how about $\{1, x, x^2, x^3\} \longrightarrow \{1 + x^4, x + x^4, x^2 + x^4, x^3 + x^4, x^4\}?$
- A little thinking leads to: translating by a vector which is not in the span of the existing ones.
- $\{1, x, x^2, x^3, x^4\}$ versus $\{1 + x^4, x + x^4, x^2 + x^4, x^3 + x^4, x^4\}$ two ways of growing a basis.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Result:

 most realized that the statement is true, thinking in Rⁿ or remembering the homework problem and class discussion, a few attempted to prove the statement in its generality.

Let V be an n-dimensional vector space and L an m-dimensional subspace where 0 < m < n. Then there is a basis for V such that it contains no vectors from L.

Result:

- most realized that the statement is true, thinking in Rⁿ or remembering the homework problem and class discussion, a few attempted to prove the statement in its generality.
- more successful at impressing them that they could always think in Rⁿ first—a way to approach and touch a problem, to think and develop intuition, based on what they know.

伺 ト イ ヨ ト イ ヨ ト

The subsets A_1, \ldots, A_k of $\{1, 2, \ldots, n\}$ are all different and such that $|A_i \cap A_j| = 1$ for $i \neq j$. Prove that $k \leq n$.

@▶ ◀ ⋽ ▶ ◀ ⋽

The subsets A_1, \ldots, A_k of $\{1, 2, \ldots, n\}$ are all different and such that $|A_i \cap A_j| = 1$ for $i \neq j$. Prove that $k \leq n$.

 standard technique: translate it into a linear algebra problem of linear independence;

The subsets A_1, \ldots, A_k of $\{1, 2, \ldots, n\}$ are all different and such that $|A_i \cap A_j| = 1$ for $i \neq j$. Prove that $k \leq n$.

- standard technique: translate it into a linear algebra problem of linear independence;
- a couple of nontrivial twists;

The subsets A_1, \ldots, A_k of $\{1, 2, \ldots, n\}$ are all different and such that $|A_i \cap A_j| = 1$ for $i \neq j$. Prove that $k \leq n$.

- standard technique: translate it into a linear algebra problem of linear independence;
- a couple of nontrivial twists;
- a good exercise when considering the degenerate cases;

The subsets A_1, \ldots, A_k of $\{1, 2, \ldots, n\}$ are all different and such that $|A_i \cap A_j| = 1$ for $i \neq j$. Prove that $k \leq n$.

- standard technique: translate it into a linear algebra problem of linear independence;
- a couple of nontrivial twists;
- a good exercise when considering the degenerate cases;
- good to assign as homework the "dual" problem: The subsets A₁,..., A_k of [n] = {1,2,..., n} are different from [n] and such that every pair of elements of [n] is contained in exactly one A_j. Prove that k ≥ n.

伺下 イヨト イヨト

Thank You

Fang Chen Two True/False Questions on Linear Independence

э

э