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Support the Theme:
A beginning Linear Algebra course provides excellent
opportunities to introduce inexperienced students to
mathematical thinking and problem solving.
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Background

Course: fundamental topics and general structures; balance
theories and applications.

Learning Goals:

knowledge and knowhow;
to think mathematically, to investigate and solve problems;
important to pose good questions, kindle curiosities, explore
connections and inspire interests.

Students:

first and second year students, liberal arts college;
no experience in writing proofs or solving real problems;

Textbook:

Anton and Rorres: Elementary Linear Algebra, Applications
Version.
selected due to its content, approach and assignments.
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Background

True-False Questions

on homework and tests; either prove or disprove a statement
with an argument or a counterexample;

students found them challenging and interesting;

an effective tool to realize many of the course goals.
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True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If v1, . . . , vn are linearly dependent nonzero vectors, then at least
one vector vk is a unique linear combination of v1, . . . , vk−1.

Initial reaction: It’s true, by definition.
Definition from the textbook: a set of 2 or more vectors is linearly
dependent if at least one is a linear combination of the others.
Reasoning: flawed. typical for students at this level:

ignoring vk expressed as a linear combination of the previous
vectors: v1, . . . , vk−1.

ignoring uniqueness.

ignoring the condition “nonzero”, used or not.
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True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If v1, . . . , vn are linearly dependent nonzero vectors, then at least
one vector vk is a unique linear combination of v1, . . . , vk−1.

Intervention: make sure the meaning of the statement is
understood.

Second reaction: It’s false!

insufficient understanding of linear dependence/independence;

jump to conclusions based on wrong intuition;

little or almost no evidence.
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True/False Question on Linear Independence/Dependence

Class Discussion

Let them think and discuss;

Prove or find a counterexample;

Suggestion: argue for existence first.

Hint: use the equivalent statement of linearly dependent:
{v1, v2, · · · , vn} is linearly dependent ⇒ there are coefficients
c1, . . . , cn not all zero such that c1v1 + · · ·+ cnvn = 0.

Question: what’s good about having a non-zero coefficient?
If cm 6= 0, then vm can be expressed as a linear combination
of the others.

An idea: let m be the largest index such that cm 6= 0.

Caution: take care of details: m ≤ n, why? m ≥ 2, why?
justify and see how the conditions are used.
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True/False Question on Linear Independence/Dependence

What about uniqueness?

Recall the usual way to argue uniqueness of an expression;

existence ⇐⇒ dependence, uniqueness ⇐⇒ independence;

Difficulty: do not know {v1, v2, · · · , vm−1} is independent;

Suggestion:

We have started from the entire set and considered the
dependence of the subsets;

What about starting from the beginning and considering the
independence of the subsets?
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True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If v1, . . . , vn are linearly dependent nonzero vectors, then at least
one vector vk is a unique linear combination of v1, . . . , vk−1.

Let them think and discuss

starting with {v1}, is it independent/dependent, why? they
see “nonzero” is used.

consider {v1, v2}, easy to see it can be independent or
dependent;

remembering the entire set {v1, v2, · · · , vn} is dependent.
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True/False Question on Linear Independence/Dependence

A T/F question from homework (Exercise 4.3 in the textbook):

If v1, . . . , vn are linearly dependent nonzero vectors, then at least
one vector vk is a unique linear combination of v1, . . . , vk−1.

An idea!

There is a transition, a moment when the sets first become
dependent.

Stating it mathematically, let k be the smallest index such
that {v1, v2, · · · , vk} is dependent;

Observe {v1, v2, · · · , vk−1} is independent;

Show the statement holds for this k.

Remind them to justify that such a k exists, and find out its
range: 2 ≤ k ≤ n.
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True/False Question on Linear Independence/Dependence

Wrapping up:

Complete the argument;

Present in class and discuss;

Summarize and emphasize:

Understand dependence/independence better: connection to
existence/uniqueness.
Extremal argument: extremal choice reveals more information.
Same “trick” used elsewhere: e.g., proof of eigenvectors
corresponding to distinct eigenvalues are independent.
How would one think of doing it this way?

experience;
work from what one knows, what one is familiar with;
if stuck, go back to the problem and analyze it more carefully;
see what the problem requires, not what’s convenient for you
or what you have decided to do.
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corresponding to distinct eigenvalues are independent.
How would one think of doing it this way?

experience;

work from what one knows, what one is familiar with;
if stuck, go back to the problem and analyze it more carefully;
see what the problem requires, not what’s convenient for you
or what you have decided to do.
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True/False Question on Linear Independence/Dependence

Summary:
Apart from the content (independence/dependence) and technique
(extremal argument), leading students through thinking and
solving this problem gives them a taste of how one might approach
a problem, analyze it, solve it and how to better organize a proof
after reaching a rough argument. It also gives them the confidence
that they can solve problems.
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Collecting Examples and Problems

Examples and Problems that

integrate fundamental concepts;

illustrate style of arguments and introduce techniques;

specific incidences → general(abstract) theories.

e.g.,

The Dimension Theorem

for matrix transformations (linear transformations on Rn)
↓

for general linear transformations

Every n-dimensional vector space is isomorphic to Rn.

Cauchy-Schwarz Inequality
(for Rn, for general inner product spaces, and its connection
to projection, linear dependence/independence)
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Collecting Examples and Problems

Examples and Problems that

integrate fundamental concepts;

illustrate style of arguments and introduce techniques;

specific incidences → general(abstract) theories.

Utilizing such Examples and Problems

intentional about exposing examples and assigning exercises
throughout the course;

let the students see the ideas in action in similar and diverse
specific situations;

general (abstract) observation would surface naturally and
inevitably.
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True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional
subspace where 0 < m < n. Then there is a basis for V such that
it contains no vectors from L.
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True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional
subspace where 0 < m < n. Then there is a basis for V such that
it contains no vectors from L.

good to be on the test after discussing general vector spaces:

concepts involved: dimension, span, subspaces, basis, etc.;
the key is a construction of such a basis;
the proof is a good practice of standard arguments about basis.

difficult for the students:

to understand the statement correctly, requires one to be clear
about definitions and concepts;
not easy to arrive at a correct guess: most of them would have
the wrong intuition;
situation is abstract (general), hard for them to get a grip on.
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True/False Question on Basis

A T/F question on a test:

Let V be an n-dimensional vector space and L an m-dimensional
subspace where 0 < m < n. Then there is a basis for V such that
it contains no vectors from L.

Technique: Think in Rn to get an intuition.

In the course: R2 and R3 → Rn → general vector spaces

Let V be R2 and L be any line through origin, clearly there
are bases of R2 that contain no vectors from L the line.

Observation in Rn suggests that the statement is True.

Not easy for students to construct a basis in the general case.
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True/False Question on Basis

An observation from a related homework T/F question:

Every basis of P4 contains at least one polynomial of degree 3 or
less. (Pn is the vector space of polynomials of degree at most n.)

familiar with standard basis of P4: {1, x , x2, x3, x4};
understand what it means for the statement to be True/False;

not hard to arrive at a counterexample, a basis of P4:
{1 + x4, x + x4, x2 + x4, x3 + x4, x4};
students feel the work is done once the problem is solved.
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True/False Question on Basis

An observation from a related homework T/F question:

Every basis of P4 contains at least one polynomial of degree 3 or
less.

Push further, ask questions like why, how, and what about?

Q: why the original false statement stated this way?

A: due to the standard basis.

Q: how is the standard basis formed?

A: by including vectors which are not in the span of the
existing ones: P3 ⊆ P4; to grow a basis:

{1, x , x2, x3} add x4−→ {1, x , x2, x3, x4}
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True/False Question on Basis

Push further, ask questions like why, how, and what about?

Q: how about
{1, x , x2, x3} −→ {1 + x4, x + x4, x2 + x4, x3 + x4, x4}?

A little thinking leads to: translating by a vector which is not
in the span of the existing ones.

{1, x , x2, x3, x4} versus {1 + x4, x + x4, x2 + x4, x3 + x4, x4}
two ways of growing a basis.
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True/False Question on Basis

A question on a test:

Let V be an n-dimensional vector space and L an m-dimensional
subspace where 0 < m < n. Then there is a basis for V such that
it contains no vectors from L.

Result:

most realized that the statement is true, thinking in Rn or
remembering the homework problem and class discussion, a
few attempted to prove the statement in its generality.

more successful at impressing them that they could always
think in Rn first—a way to approach and touch a problem, to
think and develop intuition, based on what they know.
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An application to a set theory question

A question about sets

The subsets A1, . . . ,Ak of {1, 2, . . . , n} are all different and such
that |Ai ∩ Aj | = 1 for i 6= j . Prove that k ≤ n.

standard technique: translate it into a linear algebra problem
of linear independence;

a couple of nontrivial twists;

a good exercise when considering the degenerate cases;

good to assign as homework the “dual” problem:
The subsets A1, . . . ,Ak of [n] = {1, 2, . . . , n} are different
from [n] and such that every pair of elements of [n] is
contained in exactly one Aj . Prove that k ≥ n.
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Thank You
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