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I Better understanding of subspaces

I Gives rise to interesting problems
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Intersection Problem

I The intersection of two subspaces of Rn is another subspace of
Rn.

I Consider

S1 = span
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I Problem: Find a basis for S1 ∩ S2.
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Relation Form

I Change to relation form

S1 = span

1
0
0
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0

 =


x1x2
x3

∣∣∣∣∣∣x3 = 0
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4
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x3

∣∣∣∣∣∣2x1 − 13x2 + 8x3 = 0

 .

I Therefore,
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x3

∣∣∣∣∣∣2x1 − 13x2 + 8x3 = 0, x3 = 0
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Relation Form to Span form

I To find S1 ∩ S2, we solve 2x1 − 13x2 + 8x3 = 0, x3 = 0:[
2 −13 8 0
0 0 1 0

]
∼
[

1 −13
2 0 0

0 0 1 0

]
,

so x2 is free, x1 = 13
2 x2, x3 = 0.

I Thus,

S1 ∩ S2 =


13
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I Solving a linear system is converting from relation form to span
form.



Relation Form to Span form

I To find S1 ∩ S2, we solve 2x1 − 13x2 + 8x3 = 0, x3 = 0:[
2 −13 8 0
0 0 1 0

]
∼
[

1 −13
2 0 0

0 0 1 0

]
,

so x2 is free, x1 = 13
2 x2, x3 = 0.

I Thus,

S1 ∩ S2 =


13

2 x2
x2
0

 = span

13
2
1
0

 .

I Solving a linear system is converting from relation form to span
form.



Span form to relation form

I How did we find

span
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2
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1 6 x1
2 4 x2
3 5 x3

 ∼
1 6 x1

0 −8 −2x1 + x2
0 0 2x1 − 13x2 + 8x3


has a solution, which is when 2x1 − 13x2 + 8x3 = 0.
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Why relation form?

I Easy to intersect subspaces

I Easy to test if an element lies in the subspace

I Many subspaces come expressed in relation form

I Disadvantage: Hard to say what the elements of the subspace
look like.
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Multi-augmented matrices

I Let augmented columns denote coefficients of each variable:

x1 x2 x3 x1 x2 x31 6 1 0 0
2 4 0 1 0
3 5 0 0 1

 ∼
1 6 1 0 0

0 −8 −2 1 0
0 0 2 −13 8



I This is a great way to understand finding inverses. If

T : R2 → R2 with [T ] =

[
1 2
3 4

]
, then

T

([
x1
x2

])
=

[
y1
y2

]
=⇒

[
1 2 1 0
3 4 0 1

]
∼
[

1 0 −2 1
0 1 3

2 −1
2

]
,

so [T−1] =

[
−2 1
3
2 −1

2

]
.
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Why intersect?

I Question: Suppose (~u1, . . . , ~uk) and (~v1, . . . , ~vm) are linearly
independent in Rn. In terms of

S1 = span(~u1, . . . , ~uk), S2 = span(~v1, . . . , ~vm),

when is (~u1, . . . , ~uk , ~v1, . . . , ~vm) linearly independent?

I Answer: (~u1, . . . , ~uk , ~v1, . . . , ~vm) is linearly independent if and
only if S1 ∩ S2 = {~0}. (Good proof question for students)

I For matrices A,B, ker

([
A
B

])
= ker(A) ∩ ker(B).
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Unioning Subspaces

I The union of two subpaces need not be a subspace:

span

([
1
0

])
∪ span

([
0
1

])
=

{[
x1
x2

]∣∣∣∣x1 = 0, or x2 = 0

}
.

I Want an analog of union for subspaces: sum. For subspaces
S1,S2, let S1 + S2 denote the smallest subspace containing S1
and S2.
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Summing Subspaces

I For subspaces S1, S2,

S1 + S2 = {~x + ~y | ~x ∈ S1, ~y ∈ S2}.

I Summing is easy in span form:

span(~u1, . . . , ~uk)+span(~v1, . . . , ~vm) = span(~u1, . . . , ~uk , ~v1, . . . , ~vm).

I range(
[
A B

]
) = range(A) + range(B).
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Dimension Formula

I For subspaces S1, S2,

dim(S1 + S2) = dim(S1) + dim(S2)− dim(S1 ∩ S2).

I Analog of |X ∪ Y | = |X |+ |Y | − |X ∩ Y |.

I Proof outline:

(i) Prove S1 ∩ S2 = {~0} case first.
(ii) Extending a basis of S1 ∩ S2 to S1 lets us write

S1 = (S1 ∩ S2) + V , with V ∩ S2 = {0}.

(iii) Since V ∩ S2 = {~0}, we can apply the formula.
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Favorite Problems

I Find a linear map T : R3 → R with

ker(T ) =


x1x2
x3

∣∣∣∣∣∣x1 + 4x2 + 3x3 = 0

 .

I Suppose (~u1, . . . , ~uk) is linearly independent in S1,
~w1, . . . , ~wk ∈ S2, and S1 ∩ S2 = {~0}. Show that

(~u1 + ~w1, . . . , ~uk + ~wk) is linearly independent.

I Suppose S1 ∩ S2 = {~0}. Show that every ~v ∈ S1 + S2 can be
written as ~v = ~x + ~y for some unique ~x ∈ S1 and ~y ∈ S2.



Challenge Problem

Suppose subspaces S1, . . . ,Sk have bases B1, . . . ,Bk , respectively.
Show that the following are equivalent:

1. If ~v1 + · · ·+ ~vk = ~0 with ~v1 ∈ S1, . . . , ~vk ∈ Sk , then
~v1 = 0, . . . , ~vk = 0.

2. Every ~x ∈ S1 + · · ·+ Sk can be written as ~x = ~v1 + · · ·+ ~vk
with ~v1 ∈ S1, . . . , ~vk ∈ Sk in a unique way.

3. B1 ∪ · · · ∪ Bk is linearly independent.

4. dim(S1 + · · ·+ Sk) = dim(S1) + · · ·+ dim(Sk).

5. Si ∩ (S1 + · · ·+ Si−1 + Si+1 + · · ·+ Sk) = {~0} for all
i = 1, . . . , k .

These are properties of eigenspaces of a linear map.
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Complementary Subspaces

I Two sets X ,Y are complementary in a universe U is

X ∪ Y = U, X ∩ Y = ∅.

I Subspaces S1,S2 of Rn are complementary if

S1 + S2 = Rn, S1 ∩ S2 = {~0}.

I When we transition to subspaces, complements lose uniquess.
For example, any two different lines through ~0 in R2 are
complementary.
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Complement Decomposition and Projections

I If S1,S2 are complementary subspaces of Rn, then every
~v ∈ Rn can be written as

~v = ~x + ~y

for some unique ~x ∈ S1, ~y ∈ S2.

I We can then define the projection map πS1,S2 : Rn → S1 by

πS1,S2(~x + ~y) = ~x for all ~x ∈ S1, ~y ∈ S2.
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Properties of Projections

For complementary subspaces S1,S2 of Rn, the projection
πS1,S2 : Rn → S1 satisfies

I πS1,S2 is linear.

I range(πS1,S2) = S1,

I ker(πS1,S2) = S2.

I πS1,S2(~x) = ~x for all ~x ∈ S1.

I π2S1,S2 = πS1,S2 .
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Favorite Problems

I If S1,S2 ⊆ Rn are complementary subspaces, and
T1 : S1 → Rm,T2 : S2 → Rm are linear maps, then there exists
a unique linear map T : Rn → Rm so that

T |S1= T1,T |S2= T2.

I If P : Rn → Rn is linear with P2 = P, then P is a projection
map.

I For any subspace S and complementary subspaces S1,S2,

πS1,S2(S) = (S + S2) ∩ S1,

π−1
S1,S2

(S) = (S ∩ S1) + S2.



Conclusion

I The operations of sum and intersection show that subspaces
interact in interesting and useful ways and gives rise to good
problems.

I If you only have time to include one new idea, introduce
relation form and converting between relation and span form.

I For more details and problems, see
https://sites.math.washington.edu/∼ahlbach/linaltextbook/

I ahlbach@uw.edu

https://sites.math.washington.edu/~ahlbach/linaltextbook/
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