Intersection and Sum of Subspaces

Connor Ahlbach

University of Washington, Seattle
January 17, 2019

Outline

- Intersecting Subspaces and Relation Form

Outline

- Intersecting Subspaces and Relation Form
- Summing Subspaces

Outline

- Intersecting Subspaces and Relation Form
- Summing Subspaces
- Favorite Problems

Outline

- Intersecting Subspaces and Relation Form
- Summing Subspaces
- Favorite Problems
- Complements and Projection Maps

Why?

- Subspaces interact with other subspaces!

Why?

- Subspaces interact with other subspaces!
- Better understanding of subspaces

Why?

- Subspaces interact with other subspaces!
- Better understanding of subspaces
- Gives rise to interesting problems

Why?

- Subspaces interact with other subspaces!
- Better understanding of subspaces
- Gives rise to interesting problems
- Preparation for more advanced STEM fields

Intersection Problem

- The intersection of two subspaces of \mathbb{R}^{n} is another subspace of \mathbb{R}^{n}.

Intersection Problem

- The intersection of two subspaces of \mathbb{R}^{n} is another subspace of \mathbb{R}^{n}.
- Consider

$$
S_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right), \quad S_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
4 \\
5
\end{array}\right]\right) .
$$

Intersection Problem

- The intersection of two subspaces of \mathbb{R}^{n} is another subspace of \mathbb{R}^{n}.
- Consider

$$
S_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right), \quad S_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
4 \\
5
\end{array}\right]\right) .
$$

- Problem: Find a basis for $S_{1} \cap S_{2}$.

Relation Form

- Change to relation form

$$
\begin{aligned}
& S_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{3}=0\right\}, \\
& S_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
4 \\
5
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 2 x_{1}-13 x_{2}+8 x_{3}=0\right\} .
\end{aligned}
$$

Relation Form

- Change to relation form

$$
\begin{aligned}
& S_{1}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{3}=0\right\}, \\
& S_{2}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
4 \\
5
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 2 x_{1}-13 x_{2}+8 x_{3}=0\right\} .
\end{aligned}
$$

- Therefore,

$$
S_{1} \cap S_{2}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 2 x_{1}-13 x_{2}+8 x_{3}=0, x_{3}=0\right\}
$$

Relation Form to Span form

- To find $S_{1} \cap S_{2}$, we solve $2 x_{1}-13 x_{2}+8 x_{3}=0, x_{3}=0$:

$$
\left[\begin{array}{ccc|c}
2 & -13 & 8 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & -\frac{13}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],
$$

so x_{2} is free, $x_{1}=\frac{13}{2} x_{2}, x_{3}=0$.

- Thus,

$$
S_{1} \cap S_{2}=\left\{\left[\begin{array}{c}
\frac{13}{2} x_{2} \\
x_{2} \\
0
\end{array}\right]\right\}=\operatorname{span}\left(\left[\begin{array}{c}
\frac{13}{2} \\
1 \\
0
\end{array}\right]\right) .
$$

Relation Form to Span form

- To find $S_{1} \cap S_{2}$, we solve $2 x_{1}-13 x_{2}+8 x_{3}=0, x_{3}=0$:

$$
\left[\begin{array}{ccc|c}
2 & -13 & 8 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & -\frac{13}{2} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],
$$

so x_{2} is free, $x_{1}=\frac{13}{2} x_{2}, x_{3}=0$.

- Thus,

$$
S_{1} \cap S_{2}=\left\{\left[\begin{array}{c}
\frac{13}{2} x_{2} \\
x_{2} \\
0
\end{array}\right]\right\}=\operatorname{span}\left(\left[\begin{array}{c}
\frac{13}{2} \\
1 \\
0
\end{array}\right]\right) .
$$

- Solving a linear system is converting from relation form to span form.

Span form to relation form

- How did we find

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
4 \\
5
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 2 x_{1}-13 x_{2}+8 x_{3}=0\right\} ?
$$

Span form to relation form

- How did we find

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
4 \\
5
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, 2 x_{1}-13 x_{2}+8 x_{3}=0\right\} ?
$$

- We have $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \operatorname{span}\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}6 \\ 4 \\ 5\end{array}\right]\right)$ when

$$
\left[\begin{array}{ll|l}
1 & 6 & x_{1} \\
2 & 4 & x_{2} \\
3 & 5 & x_{3}
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 6 & x_{1} \\
0 & -8 & -2 x_{1}+x_{2} \\
0 & 0 & 2 x_{1}-13 x_{2}+8 x_{3}
\end{array}\right]
$$

has a solution, which is when $2 x_{1}-13 x_{2}+8 x_{3}=0$.

Why relation form?

- Easy to intersect subspaces

Why relation form?

- Easy to intersect subspaces
- Easy to test if an element lies in the subspace

Why relation form?

- Easy to intersect subspaces
- Easy to test if an element lies in the subspace
- Many subspaces come expressed in relation form

Why relation form?

- Easy to intersect subspaces
- Easy to test if an element lies in the subspace
- Many subspaces come expressed in relation form
- Disadvantage: Hard to say what the elements of the subspace look like.

Multi-augmented matrices

- Let augmented columns denote coefficients of each variable:

$$
\left. x_{3} . \quad \begin{array}{ll|l|lll}
1 & 6 & 1 & 0 & 0 \\
2 & 4 & 0 & 1 & 0 \\
3 & 5 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cc|ccc}
1 & 6 & 1 & 0 & 0 \\
0 & -8 & -2 & 1 & 0 \\
0 & 0 & 2 & -13 & 8
\end{array}\right]
$$

Multi-augmented matrices

- Let augmented columns denote coefficients of each variable:

$$
\left. x_{3} . \quad \begin{array}{ll|l|lll}
1 & 6 & 1 & 0 & 0 \\
2 & 4 & 0 & 1 & 0 \\
3 & 5 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cc|ccc}
1 & 6 & 1 & 0 & 0 \\
0 & -8 & -2 & 1 & 0 \\
0 & 0 & 2 & -13 & 8
\end{array}\right]
$$

- This is a great way to understand finding inverses. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $[T]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \Longrightarrow\left[\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cc|cc}
1 & 0 & -2 & 1 \\
0 & 1 & \frac{3}{2} & -\frac{1}{2}
\end{array}\right], \\
& \text { so }\left[T^{-1}\right]=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

Why intersect?

- Question: Suppose ($\left.\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right)$ and $\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ are linearly independent in \mathbb{R}^{n}. In terms of

$$
S_{1}=\operatorname{span}\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right), \quad S_{2}=\operatorname{span}\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)
$$

when is $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ linearly independent?

Why intersect?

- Question: Suppose $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right)$ and $\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ are linearly independent in \mathbb{R}^{n}. In terms of

$$
S_{1}=\operatorname{span}\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right), \quad S_{2}=\operatorname{span}\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)
$$

when is $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ linearly independent?

- Answer: $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ is linearly independent if and only if $S_{1} \cap S_{2}=\{\overrightarrow{0}\}$. (Good proof question for students)

Why intersect?

- Question: Suppose $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right)$ and $\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ are linearly independent in \mathbb{R}^{n}. In terms of

$$
S_{1}=\operatorname{span}\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right), \quad S_{2}=\operatorname{span}\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)
$$

when is $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ linearly independent?

- Answer: $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$ is linearly independent if and only if $S_{1} \cap S_{2}=\{\overrightarrow{0}\}$. (Good proof question for students)
- For matrices A, B, $\operatorname{ker}\left(\left[\begin{array}{l}A \\ B\end{array}\right]\right)=\operatorname{ker}(A) \cap \operatorname{ker}(B)$.

Unioning Subspaces

- The union of two subpaces need not be a subspace:

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \cup \operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}=0, \text { or } x_{2}=0\right\} .
$$

Unioning Subspaces

- The union of two subpaces need not be a subspace:

$$
\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \cup \operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, x_{1}=0, \text { or } x_{2}=0\right\} .
$$

- Want an analog of union for subspaces: sum. For subspaces S_{1}, S_{2}, let $S_{1}+S_{2}$ denote the smallest subspace containing S_{1} and S_{2}.

Summing Subspaces

- For subspaces S_{1}, S_{2},

$$
S_{1}+S_{2}=\left\{\vec{x}+\vec{y} \mid \vec{x} \in S_{1}, \vec{y} \in S_{2}\right\} .
$$

Summing Subspaces

- For subspaces S_{1}, S_{2},

$$
S_{1}+S_{2}=\left\{\vec{x}+\vec{y} \mid \vec{x} \in S_{1}, \vec{y} \in S_{2}\right\} .
$$

- Summing is easy in span form:

$$
\operatorname{span}\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right)+\operatorname{span}\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)=\operatorname{span}\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right) .
$$

Summing Subspaces

- For subspaces S_{1}, S_{2},

$$
S_{1}+S_{2}=\left\{\vec{x}+\vec{y} \mid \vec{x} \in S_{1}, \vec{y} \in S_{2}\right\} .
$$

- Summing is easy in span form:
$\operatorname{span}\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right)+\operatorname{span}\left(\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)=\operatorname{span}\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}, \overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}\right)$.
$-\operatorname{range}\left(\left[\begin{array}{ll}A & B\end{array}\right]\right)=\operatorname{range}(A)+\operatorname{range}(B)$.

Dimension Formula

- For subspaces S_{1}, S_{2},

$$
\operatorname{dim}\left(S_{1}+S_{2}\right)=\operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right)-\operatorname{dim}\left(S_{1} \cap S_{2}\right) .
$$

- Analog of $|X \cup Y|=|X|+|Y|-|X \cap Y|$.

Dimension Formula

- For subspaces S_{1}, S_{2},

$$
\operatorname{dim}\left(S_{1}+S_{2}\right)=\operatorname{dim}\left(S_{1}\right)+\operatorname{dim}\left(S_{2}\right)-\operatorname{dim}\left(S_{1} \cap S_{2}\right) .
$$

- Analog of $|X \cup Y|=|X|+|Y|-|X \cap Y|$.
- Proof outline:
(i) Prove $S_{1} \cap S_{2}=\{\overrightarrow{0}\}$ case first.
(ii) Extending a basis of $S_{1} \cap S_{2}$ to S_{1} lets us write

$$
S_{1}=\left(S_{1} \cap S_{2}\right)+V, \quad \text { with } \quad V \cap S_{2}=\{0\} .
$$

(iii) Since $V \cap S_{2}=\{\overrightarrow{0}\}$, we can apply the formula.

Favorite Problems

- Find a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with

$$
\operatorname{ker}(T)=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}+4 x_{2}+3 x_{3}=0\right\} .
$$

- Suppose $\left(\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}\right)$ is linearly independent in S_{1}, $\overrightarrow{w_{1}}, \ldots, \overrightarrow{w_{k}} \in S_{2}$, and $S_{1} \cap S_{2}=\{\overrightarrow{0}\}$. Show that $\left(\overrightarrow{u_{1}}+\overrightarrow{w_{1}}, \ldots, \overrightarrow{u_{k}}+\overrightarrow{w_{k}}\right)$ is linearly independent.
- Suppose $S_{1} \cap S_{2}=\{\overrightarrow{0}\}$. Show that every $\vec{v} \in S_{1}+S_{2}$ can be written as $\vec{v}=\vec{x}+\vec{y}$ for some unique $\vec{x} \in S_{1}$ and $\vec{y} \in S_{2}$.

Challenge Problem

Suppose subspaces S_{1}, \ldots, S_{k} have bases B_{1}, \ldots, B_{k}, respectively. Show that the following are equivalent:

1. If $\overrightarrow{v_{1}}+\cdots+\overrightarrow{v_{k}}=\overrightarrow{0}$ with $\overrightarrow{v_{1}} \in S_{1}, \ldots, \overrightarrow{v_{k}} \in S_{k}$, then $\overrightarrow{v_{1}}=0, \ldots, \overrightarrow{v_{k}}=0$.
2. Every $\vec{x} \in S_{1}+\cdots+S_{k}$ can be written as $\vec{x}=\overrightarrow{v_{1}}+\cdots+\overrightarrow{v_{k}}$ with $\overrightarrow{v_{1}} \in S_{1}, \ldots, \overrightarrow{v_{k}} \in S_{k}$ in a unique way.
3. $B_{1} \cup \cdots \cup B_{k}$ is linearly independent.
4. $\operatorname{dim}\left(S_{1}+\cdots+S_{k}\right)=\operatorname{dim}\left(S_{1}\right)+\cdots+\operatorname{dim}\left(S_{k}\right)$.
5. $S_{i} \cap\left(S_{1}+\cdots+S_{i-1}+S_{i+1}+\cdots+S_{k}\right)=\{\overrightarrow{0}\}$ for all $i=1, \ldots, k$.

Challenge Problem

Suppose subspaces S_{1}, \ldots, S_{k} have bases B_{1}, \ldots, B_{k}, respectively. Show that the following are equivalent:

1. If $\overrightarrow{v_{1}}+\cdots+\overrightarrow{v_{k}}=\overrightarrow{0}$ with $\overrightarrow{v_{1}} \in S_{1}, \ldots, \overrightarrow{v_{k}} \in S_{k}$, then $\overrightarrow{v_{1}}=0, \ldots, \overrightarrow{v_{k}}=0$.
2. Every $\vec{x} \in S_{1}+\cdots+S_{k}$ can be written as $\vec{x}=\overrightarrow{v_{1}}+\cdots+\overrightarrow{v_{k}}$ with $\overrightarrow{v_{1}} \in S_{1}, \ldots, \overrightarrow{v_{k}} \in S_{k}$ in a unique way.
3. $B_{1} \cup \cdots \cup B_{k}$ is linearly independent.
4. $\operatorname{dim}\left(S_{1}+\cdots+S_{k}\right)=\operatorname{dim}\left(S_{1}\right)+\cdots+\operatorname{dim}\left(S_{k}\right)$.
5. $S_{i} \cap\left(S_{1}+\cdots+S_{i-1}+S_{i+1}+\cdots+S_{k}\right)=\{\overrightarrow{0}\}$ for all $i=1, \ldots, k$.
These are properties of eigenspaces of a linear map.

Complementary Subspaces

- Two sets X, Y are complementary in a universe U is

$$
X \cup Y=U, \quad X \cap Y=\varnothing
$$

Complementary Subspaces

- Two sets X, Y are complementary in a universe U is

$$
X \cup Y=U, \quad X \cap Y=\varnothing
$$

- Subspaces S_{1}, S_{2} of R^{n} are complementary if

$$
S_{1}+S_{2}=\mathbb{R}^{n}, \quad S_{1} \cap S_{2}=\{\overrightarrow{0}\} .
$$

Complementary Subspaces

- Two sets X, Y are complementary in a universe U is

$$
X \cup Y=U, \quad X \cap Y=\varnothing
$$

- Subspaces S_{1}, S_{2} of R^{n} are complementary if

$$
S_{1}+S_{2}=\mathbb{R}^{n}, \quad S_{1} \cap S_{2}=\{\overrightarrow{0}\} .
$$

- When we transition to subspaces, complements lose uniquess. For example, any two different lines through $\overrightarrow{0}$ in \mathbb{R}^{2} are complementary.

Complement Decomposition and Projections

- If S_{1}, S_{2} are complementary subspaces of \mathbb{R}^{n}, then every $\vec{v} \in \mathbb{R}^{n}$ can be written as

$$
\vec{v}=\vec{x}+\vec{y}
$$

for some unique $\vec{x} \in S_{1}, \vec{y} \in S_{2}$.

Complement Decomposition and Projections

- If S_{1}, S_{2} are complementary subspaces of \mathbb{R}^{n}, then every $\vec{v} \in \mathbb{R}^{n}$ can be written as

$$
\vec{v}=\vec{x}+\vec{y}
$$

for some unique $\vec{x} \in S_{1}, \vec{y} \in S_{2}$.

- We can then define the projection map $\pi_{S_{1}, S_{2}}: \mathbb{R}^{n} \rightarrow S_{1}$ by

$$
\pi_{S_{1}, S_{2}}(\vec{x}+\vec{y})=\vec{x} \text { for all } \vec{x} \in S_{1}, \vec{y} \in S_{2} .
$$

Properties of Projections

For complementary subspaces S_{1}, S_{2} of \mathbb{R}^{n}, the projection $\pi_{S_{1}, S_{2}}: \mathbb{R}^{n} \rightarrow S_{1}$ satisfies

- $\pi_{S_{1}, S_{2}}$ is linear.
$-\operatorname{range}\left(\pi_{S_{1}, S_{2}}\right)=S_{1}$,
- $\operatorname{ker}\left(\pi_{S_{1}, S_{2}}\right)=S_{2}$.

Properties of Projections

For complementary subspaces S_{1}, S_{2} of \mathbb{R}^{n}, the projection $\pi_{S_{1}, S_{2}}: \mathbb{R}^{n} \rightarrow S_{1}$ satisfies

- $\pi_{S_{1}, S_{2}}$ is linear.
$-\operatorname{range}\left(\pi_{S_{1}, S_{2}}\right)=S_{1}$,
$-\operatorname{ker}\left(\pi_{S_{1}, S_{2}}\right)=S_{2}$.
- $\pi_{S_{1}, S_{2}}(\vec{x})=\vec{x}$ for all $\vec{x} \in S_{1}$.

Properties of Projections

For complementary subspaces S_{1}, S_{2} of \mathbb{R}^{n}, the projection $\pi_{S_{1}, S_{2}}: \mathbb{R}^{n} \rightarrow S_{1}$ satisfies

- $\pi_{S_{1}, S_{2}}$ is linear.
$-\operatorname{range}\left(\pi_{S_{1}, S_{2}}\right)=S_{1}$,
$-\operatorname{ker}\left(\pi_{S_{1}, S_{2}}\right)=S_{2}$.
- $\pi_{S_{1}, S_{2}}(\vec{x})=\vec{x}$ for all $\vec{x} \in S_{1}$.
$-\pi_{S_{1}, S_{2}}^{2}=\pi_{S_{1}, S_{2}}$.

Favorite Problems

- If $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ are complementary subspaces, and $T_{1}: S_{1} \rightarrow \mathbb{R}^{m}, T_{2}: S_{2} \rightarrow \mathbb{R}^{m}$ are linear maps, then there exists a unique linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ so that

$$
\left.T\right|_{S_{1}}=T_{1},\left.T\right|_{S_{2}}=T_{2}
$$

- If $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear with $P^{2}=P$, then P is a projection map.
- For any subspace S and complementary subspaces S_{1}, S_{2},

$$
\begin{aligned}
& \pi_{S_{1}, S_{2}}(S)=\left(S+S_{2}\right) \cap S_{1}, \\
& \pi_{S_{1}, S_{2}}^{-1}(S)=\left(S \cap S_{1}\right)+S_{2} .
\end{aligned}
$$

Conclusion

- The operations of sum and intersection show that subspaces interact in interesting and useful ways and gives rise to good problems.

Conclusion

- The operations of sum and intersection show that subspaces interact in interesting and useful ways and gives rise to good problems.
- If you only have time to include one new idea, introduce relation form and converting between relation and span form.

Conclusion

- The operations of sum and intersection show that subspaces interact in interesting and useful ways and gives rise to good problems.
- If you only have time to include one new idea, introduce relation form and converting between relation and span form.
- For more details and problems, see https://sites.math.washington.edu/~ahlbach/linaltextbook/
- ahlbach@uw.edu

