Intersection and Sum of Subspaces

Connor Ahlbach

University of Washington, Seattle

January 17, 2019



Outline

> Intersecting Subspaces and Relation Form



Outline

> Intersecting Subspaces and Relation Form

» Summing Subspaces



Outline

> Intersecting Subspaces and Relation Form
» Summing Subspaces

» Favorite Problems



Outline

> Intersecting Subspaces and Relation Form
» Summing Subspaces
» Favorite Problems

» Complements and Projection Maps



Why?

» Subspaces interact with other subspaces!



Why?

» Subspaces interact with other subspaces!

» Better understanding of subspaces



Why?

» Subspaces interact with other subspaces!
» Better understanding of subspaces

P Gives rise to interesting problems



Why?

» Subspaces interact with other subspaces!
» Better understanding of subspaces
P Gives rise to interesting problems

» Preparation for more advanced STEM fields



Intersection Problem

» The intersection of two subspaces of R" is another subspace of
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Intersection Problem

» The intersection of two subspaces of R" is another subspace of

R,
» Consider
1 0 1 6
S;=span| |0], |1 , Sy =span| |2], |4
0 0 3 5

» Problem: Find a basis for 51 N S,.



Relation Form

» Change to relation form

0 X1
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Relation Form

» Change to relation form

1 0 X1

S1 = span 0f, |1 = x| |x3=0,,
10] |0} | X3 |
1] [6] [x1 ]

S> = span 2|, |4 = X2 |12x1 — 13x0 +8x3 =0
13] |5] | X3 |

» Therefore,
X1
55NS = X[ 12x1 —13x0 +8x3 =0,x3 =0

X3



Relation Form to Span form

» To find 51 N Sy, we solve 2x; — 13xp 4+ 8x3 = 0, x3 = O:

2 —13 8|0] [1 - o]0
0 0 1|0/ [0 0 1]0)°

so xo is free, x; = %XQ,X3 =0.

» Thus,
X2

5iNS = X = span
0

13
2

o~



Relation Form to Span form

» To find 51 N Sy, we solve 2x; — 13xp 4+ 8x3 = 0, x3 = O:

2 -13 8]0 1 -2 ofo
0 0 1|0 [0 0 10"

so xo is free, x; = %XQ,X3 =0.
» Thus,
13 13
2% 2
5iNS = X = span 1
0 0

» Solving a linear system is converting from relation form to span
form.



Span form to relation form
» How did we find
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2x1 — 13x0 + 8x3 = 0}?




Span form to relation form

» How did we find

1 6 X1
span 2|, |4 = Xo|12x1 —13x0 +8x3 =0 »7?

3 5 X3

X1 1 6]

> We have |x2| € span 20, [4 when

X3 3 5]

1 6|x1 1 6 X1

2 4 x|~ |0 -8 —2x1 + X2

3 5|x3 0 0 |2xg —13x + 8x3

has a solution, which is when 2x; — 13x, + 8x3 = 0.
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Why relation form?

P Easy to intersect subspaces
> Easy to test if an element lies in the subspace
> Many subspaces come expressed in relation form

» Disadvantage: Hard to say what the elements of the subspace
look like.



Multi-augmented matrices
P> Let augmented columns denote coefficients of each variable:

X1 X2 X3 X1 X2 X3
1 6(1 00 1 6 1 0 O
2 4/01 0|~|0 -8]-2 1 O
3 5|/0 01 0 0 2 -—13 38



Multi-augmented matrices
P> Let augmented columns denote coefficients of each variable:

X1 X2 X3 X1 Xo X3
1 6/1 00 1 6 1 0 O
2 4/0 1 0Of~ |0 —-8|-2 1 0
3 5/0 01 0 0 2 -—-13 8

» This is a great way to understand finding inverses. If

T :R2 - R2 with [T] = B ﬂ then
X1\ _ 7 1 2110 1 0/=2 1
T(LQD_[YJ - [3 410 1 0 1 % _% )

so [T71] = [_32 L ]

N
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» Question: Suppose (i1, ..., uk) and (vi,...,Vy) are linearly
independent in R". In terms of
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when is (a4,. .., Uk, Vi, ..., Vm) linearly independent?
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Why intersect?

» Question: Suppose (i1, ..., uk) and (vi,...,Vy) are linearly
independent in R". In terms of

Sy =span(ui,...,uk), Sz»=span(vi,...,Vm),
when is (a4,. .., Uk, Vi, ..., Vm) linearly independent?
» Answer: (a4, ..., Uk, Vi,...,Vm) is linearly independent if and

only if SN S, = {0}. (Good proof question for students)

» For matrices A, B, ker ({2]) = ker(A) N ker(B).
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Unioning Subspaces

» The union of two subpaces need not be a subspace:

oo (] oo () = {2

X1:0, OFXQZO}.

> Want an analog of union for subspaces: sum. For subspaces
51,5, let 51 + S, denote the smallest subspace containing S;
and S,.
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51+52:{>?+)7\>?651,)7€52}.
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Summing Subspaces

» For subspaces 51, Sy,

Si+S={X+y|X€S,ye€ S}

» Summing is easy in span form:

span(ui, ..., ug)+span(vi,...,vm) =span(ui, ..., Uk, Vi, ...

> range([A B]) = range(A) + range(B).



Dimension Formula
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Dimension Formula

» For subspaces 51, 5y,

dim(S1 + S2) = dim(S1) + dim(S2) — dim(S51 N S2).

» Analog of [ XUY|=|X|+|Y]—-|XNY]|

» Proof outline:
(i) Prove $; NS, = {0} case first.
(i) Extending a basis of S; NS, to S; lets us write

5 = (51 N 52) + V, with vns, = {0}

(iii) Since V N S, = {0}, we can apply the formula.



Favorite Problems

» Find a linear map T : R3 — R with

X1
ker(T) = X | |x1 +4x+3x3=0
X3

» Suppose (ui, ..., Uk) is linearly independent in Sy,
Wi, ..., Wk € Sy, and 51 NSy = {0}. Show that
(01 + wA, ..., Uk + wy) is linearly independent.

» Suppose 51N S, = {6} Show that every vV € S; + S, can be
written as V = X + ¥ for some unique X € S; and y € S,.



Challenge Problem

Suppose subspaces Si, ..., Sk have bases By, ..., By, respectively.
Show that the following are equivalent:
1. fVi+---+vi=0with vi € S1,...,Vi € Sk, then
vi=0,...,vi =0.
2. Every X € 51 + --- + S can be written as X = vi + - - - + Vi
with vi € 51,...,vi € S in a unique way.

3. BiU---U By is linearly independent.
4. dim(S1+ -+ + Sk) =dim(51) + - - - + dim(Sk).

5. SiN(St+-+Si—1+ Siy1+ -+ Sk) = {0} for all
i=1,... k.



Challenge Problem

Suppose subspaces Si, ..., Sk have bases By, ..., By, respectively.
Show that the following are equivalent:
1. fVi+---+vi=0with vi € S1,...,Vi € Sk, then
vi=0,...,vi =0.
2. Every X € 51 + --- + S can be written as X = vi + - - - + Vi
with vi € 51,...,vi € S in a unique way.

3. BiU---U By is linearly independent.
4. dim(S1+ -+ + Sk) =dim(51) + - - - + dim(Sk).

5. SiN(St+-+Si—1+ Siy1+ -+ Sk) = {0} for all
i=1,... k.

These are properties of eigenspaces of a linear map.
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Complementary Subspaces

> Two sets X, Y are complementary in a universe U is

XUY=U, XNY=0g.

» Subspaces 51, S, of R" are complementary if

51+ 5 =R", S1NS = {6}

» When we transition to subspaces, complements lose uniquess.
For example, any two different lines through 0 in R? are
complementary.
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Complement Decomposition and Projections

> If 51,5, are complementary subspaces of R”, then every
v € R” can be written as

V=X+y
for some unique X € 51,y € S».

» We can then define the projection map 7s, s, : R" — 51 by

7T51752()_('—|—_)7) =X for all X € 51’)7 & 52_



Properties of Projections

For complementary subspaces 51, S, of R”, the projection
75,5, - R" — S1 satisfies

> 7s,.s, is linear.
> range(ns, s,) = S1,

> ker(7T51752) =5,.
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Properties of Projections

For complementary subspaces 51, S, of R”, the projection
75,5, - R" — S1 satisfies

> 7s,.s, is linear.

> range(s,s,) = S,

> ker(ms, 5,) = So.

> 7T51752()?) =X for all X € 5;.

2 —
> 7T51752 — 7T517S2.



Favorite Problems

If S1,5> C R"” are complementary subspaces, and
T1:5 — R™ Ty :5 — R™ are linear maps, then there exists
a unique linear map T : R” — R so that

Tls,=Ti, T |s,= To.

If P:R"” — R" is linear with P?> = P, then P is a projection
map.

For any subspace S and complementary subspaces S;, S»,

7T51752(5) = (5 + 52) NSy,
515, (S) = (SN S1) + 5.



Conclusion

» The operations of sum and intersection show that subspaces
interact in interesting and useful ways and gives rise to good
problems.
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Conclusion

The operations of sum and intersection show that subspaces
interact in interesting and useful ways and gives rise to good
problems.

If you only have time to include one new idea, introduce
relation form and converting between relation and span form.

For more details and problems, see
https://sites.math.washington.edu/~ahlbach/linaltextbook/

ahlbach@uw.edu
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