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Examples to Motivate



Examples to motivate the entire course

• Good first day examples to motivate the entire course:
• Interesting

• Real

• Simple

• Involve (and thus introduce) several concepts

• Two uses of matrices:
• Array of coefficients

• Operator



A matrix as an array of coefficients:  
A nickel and dime problem
• A first day example.  Choose a certain number of nickels and dimes:

• Six coins

• Five times as many dimes as nickels

• 75 cents



A matrix as an array of coefficients:  
A nickel and dime problem
• A first day example.  Choose a certain number of nickels and dimes:

• Six coins

• Five times as many dimes as nickels

• 75 cents

Problem Condition(s) Values of (n, d)

1 1 …, (0,6), (1,5), …, (6,0), …

2 2 …, (0,0), (1,5), …, (2,10), …

3 3 …, (1,7), (3,6), …, (15,0), …

4 1, 2 (1,5)

5 1, 3 (-3, 9)

6 2, 3 (15/11, 75/11)

7 1, 2, 3 -



The case for mathematics

• More students are now more curious.

• They also have begun to see the need for mathematics:  
language, equations, how to solve a system of equations, etc.



The case for mathematics

• More students are now more curious.

• They also have begun to see the need for mathematics:  
language, equations, how to solve a system of equations, etc.

• There are a plethora of issues, observations and questions that 
arise in this simple problem.



• Students have some experience and ideas when # equations = # unknowns.         
Let’s build on what they already know.

• There are multiple ways to solve the system of equations.                                
Is there a preferred/best way?
• What if there is a single solution?  (What they are used to up to now.)

• What if there are multiple solutions?

• What if there is no solution?

Issues:  How to solve system of equations
𝑛 + 𝑑 = 6
5𝑛 − 𝑑 = 0
5𝑛 + 10𝑑 = 75



Issues:  Geometric/visualization

• Visualization is useful—we could plot the lines corresponding to                    
the equations.

• But what if there are more than two unknowns?                                               
With three unknowns it can be a bit clumsy and less obvious.                             
With four or more unknowns we simply cannot plot anything.



Issues:  # unknowns vs. # equations

• While not completely obvious in just this example, students have 
their first experience with the very important idea in general:
• # equations > # unknowns ⇒ no solution

• # equations = # unknowns ⇒ one solution

• # equations < # unknowns ⇒ infinite solutions

And if there is more than one solution, there is an infinite number.

• Can there be exceptions to the above “rule”? 
• If # equations > # unknowns , can there still be a solution?

• Can we end up with no solution if # equations = # unknowns ?

• Etc.



Other issues, observations, questions

• Pivots, pivot rows, pivot columns, etc.

• Linear combinations, span, column space, linear independence:

• In 𝐴 Ԧ𝑥 = 𝑏, can we build 𝑏 out of the columns of 𝐴.                                                      
That is, is 𝑏 in the column space of 𝐴.

• Do the columns of 𝐴 span all of 𝑅3?

• What conditions are necessary for the columns of 𝐴 to span 𝑅3?

• What conditions are sufficient for the columns of 𝐴 to span 𝑅3?

• If 𝑏 can be built out of the columns of 𝐴, is there more than one way to do so?  
If so, is this a “good” thing or a “bad” thing?



Other issues, observations, questions

• A “best” solution, if there is not an exact solution:
• What does a “best” solution even mean?

• Building a vector that is as close to the desired vector 𝑏 using the given vectors,        
that is, the columns of 𝐴.

• Projecting a vector onto the column space of a matrix or onto some other  
collection of vectors.

• Changing right hand side values possibly change existence and/or the 
number of solutions and the values of those solutions. 

• We don’t get into all of these issues right away, but all of these arise in this 
simple first day example, which we occasionally revisit throughout  the 
course.  A good first day example is one that is real, simple, interesting,  
and can be revisited later while/after learning additional concepts.



A matrix as an operator:  
A (slightly contrived) discrete dynamical system
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A number of issues and observations 

• A matrix “does” something to a vector to get another vector.

• Linear transformations.

• Rotational matrices.

• Complex eigenvectors/values.



Variation of problem

𝑥𝑘+1 = 𝐴𝑥𝑘 where   𝐴 =
1.5 1
0.5 1

, 𝑥0 =
−3
7

.

• After several iterations, what is this vector that seems to be a multiple (2 ×)       
of the previous vector, after multiplying by 𝐴?

• Where did this multiple of 2 come from?

• Why in the previous example did vectors rotate around origin, but not here?

• (We are also seeing a dominant eigenvalue and corresponding eigenvector.)

𝒌 𝟎 𝟏 𝟐 𝟑 𝟒 𝟓 ⋯ 𝟓𝟎 𝟓𝟏 𝟓𝟐

𝑥𝑘 −3.0
7.0

2.5
5.5

9.3
6.8

20.6
11.4

42.3
21.7

85.2
42.8

⋯
3.0𝐸15
1.5𝐸15

6.0𝐸15
3.0𝐸15

1.2𝐸16
6.0𝐸15



Examples to motivate a chapter or section

• Chapters are typically built around a central theme.  Why not give                
an example to motivate as much of the chapter as possible, without 
worrying too much about the details yet.

• We briefly revisit the example as we proceed through the chapter,             
as students are learning the ideas.  We also revisit the example at            
the conclusion of the chapter, once students have learned all of             
the pertinent concepts and can fully work the problem.



Least squares problem

• So we want to find the solution to a system of equations, for example,

𝑛 + 𝑑 = 6
5𝑛 − 𝑑 = 0
5𝑛 + 10𝑑 = 75

,   i.e.   
1 1
5 −1
5 10

𝑛
𝑑

=
6
0
75

,  i.e.  𝑛
1
5
5
+ 𝑑

1
−1
10

=
6
0
75

(There are plenty of simple yet motivating real life examples of data fitting.)

• In finding a solution to  𝐴 Ԧ𝑥 = 𝑏 we are trying to find how much  Ԧ𝑥 of each 
column in  𝐴 is needed in order to build  𝑏.  

• What if  𝑏 cannot be built from the columns of  𝐴?                                                   

We build the vector  

𝑏 that is close as possible to  𝑏 using the columns of  𝐴.

• So how do we do this?





Least squares problem:  visual explanation

• In finding a solution to  𝐴 Ԧ𝑥 = 𝑏 we are trying to find how much  Ԧ𝑥
of each column in  𝐴 to build  𝑏.  

• What if  𝑏 cannot be built from the columns of  𝐴?  We build the vector  

𝑏

that is close as possible to  𝑏 using the columns of  𝐴.

• So how do we do this?



Least squares problem:  visual explanation

• So how can we tell which vector 

𝑏 is the one that is closest to  𝑏?                            

It’s the vector “underneath” it.

• What do we mean by “underneath”?                                                                                      

The difference  𝑏 −

𝑏 is orthogonal to  𝐶𝑜𝑙 𝐴.

• So how can we tell when this is happening, especially in higher dimensions?                                                  

• And so on…



Least squares problem

• So we will have motivated several ideas that will come up in this 
chapter which culminates in solving least squares problems:
• Properties of vectors, including orthogonality

• Orthogonal projections

• Projecting a vector onto the column space of a matrix

• Least squares solutions

• Extensions of these ideas to functions and other non-vectors

• The point is to give some reason, to help students see the need, as to 
why we want to learn about these various ideas.  

• With some thought, I think we can do this with every chapter.



Meaning and Context



Meaning of homogeneous solution

• Solution Ԧ𝑥ℎ to  𝐴 Ԧ𝑥 = 0.

• Where  𝐴 Ԧ𝑥𝑝 = 𝑏, is part of general solution  Ԧ𝑥𝑝 + 𝑐 Ԧ𝑥ℎ to 𝐴 Ԧ𝑥 = 𝑏.

• Both true, but not very motivating to most students.



Meaning of homogeneous solution: traffic flow

𝑥1 + 400 = 𝑥2 + 700

𝑥2 + 700 = 𝑥3 + 𝑥6
𝑥3 + 800 = 𝑥4 + 700

𝑥4+ 𝑥6 = 𝑥5 + 600

𝑥5 + 800 = 𝑥1 + 700



Meaning of homogeneous solution: traffic flow

1 −1 0 0 0 0
0 1 −1 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 1
1 0 0 0 −1 0

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

=

300
−700
−100
600
100

One possible description of solution:

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

=

300
0
600
700
200
100

+ 𝑥5

1
1
1
1
1
0

+ 𝑥6

0
0

−1
−1
0
1



Meaning of homogeneous solution: traffic flow

• The homogeneous solution is any linear combination of  

1
1
1
1
1
0

and  

0
0

−1
−1
0
1

.  

For example, their sum  

1
1
0
0
1
1

is also a homogenous solution.



Meaning of homogeneous solution: traffic flow

• So what’s so special about

1
1
1
1
1
0

,  

0
0

−1
−1
0
1

and  

1
1
0
0
1
1

?

• (This is also a living example                                                                                         
of a vector space.)



Meaning of homogeneous solution: investments

• Three investments  𝑥1, 𝑥2 and 𝑥3 where
𝑥1 + 𝑥2 + 𝑥3 = 10,000

. 05𝑥1 + .10𝑥2 + .25𝑥3 = 1,000

which has general solution
𝑥1
𝑥2
𝑥3

=
0

10,000
0

+ 𝑐
3

−4
1

.

• The homogeneous solution is the amounts each investment much 
change to still satisfy the given conditions.

• Simple, but again worth noting.



Summary

• I doubt any of today’s examples are new to anyone.

• The point is, to make more effective and fuller use of examples and 
applications to motivate concepts that students will learn to give the 
students more motivation to learn those concepts.

• Also, more context and meaning for those concepts will enrich the 
learning.  The concepts do not exist in a vacuum.  They come from                   
and are evident in many real situations and problems.  



Thanks for your time
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