Linear Algebra in Digital World

Naima Naheed Benedict College Columbia, SC

Mathematics and Animation

Dinosaurs of the Jurassic Park
Wonders of the Lord of the Rings
Star turn of Gollum
3D computer games

Bézier Curves

- A polynomial is said to interpolate a set of data points if it passes through those points
- Bézier curve is an example which interpolates only first and last points
- Smooth and specified in terms of few points
- Bézier curves are independent of its dimension

Formation of Bézier Curves

P. Bézier got the idea during his work for Renault automobile company.

Any point on a curve must be given by a parametric function of the following form

$$p(u) = \sum_{i=0}^{n} p_i C_i(u) \text{ for } u \in [0,1]$$

$$p_i \longrightarrow n+1 \text{ vertices}$$

$$C_i(u) \longrightarrow \text{ basis functions}$$

Matrix form of a Bézier Curve

If C_i are Bernstein polynomials,

$$\boldsymbol{p}(u) = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 \end{bmatrix} \begin{bmatrix} B_0^3(u) \\ B_1^3(u) \\ B_2^3(u) \\ B_3^3(u) \end{bmatrix}$$

$$\boldsymbol{p}(u) = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 \end{bmatrix} \begin{bmatrix} (1-u)^3 \\ 3(1-u)^2 u \\ 3(1-u)u^2 \\ u^3 \end{bmatrix}$$

Matrix form and Monomials

A cubic Bézier curve

$$p(u) = (1-u)^3 p_0 + 3(1-u)^2 u p_1 + 3(1-u)u^2 p_2 + u^3 p_3$$

Monomials 1, u, u^2 , u^3

$$p(u) = \begin{bmatrix} p_0 & p_1 & p_2 & p_3 \end{bmatrix} \begin{bmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ u \\ u^2 \\ u^3 \end{bmatrix}$$

Properties of Bézier Curves

Properties

 $\triangleright p(u) \longrightarrow$ four control points

 \succ Starts from p_0 in the direction of p_1

Ends at p_3 coming from the direction of p_2

>Only two control points lie on p(u)

- >Other 2 control points pull on the curve
- > p(u) acts as a flexible and stretchable curve

Cubic Bézier Curves

Properties

Degree 3 Bézier curve can be expressed as

$$p(u) = B_0(u)p_0+B_1(u)p_1+B_2(u)p_2+B_3(u)p_3$$

The derivative

$$p'(u) = B'_0(u)p_0 + B'_1(u)p_1 + B'_2(u)p_2 + B'_3(u)p_3$$

At the beginning: $p'(0) = 3(p_1 - p_0)$

At the end $p'(1) = 3(p_3 - p_2)$

Bernstein polynomial affects the control point

At u=0, weight of p_0 =1

At u=1/3, weight of p_1 = max

At u=2/3, weight of p_2 = max

At u=1, weight of p_3 =1

Sum of four functions are always one

Degree Elevation

$$p(u) = (1-u)^2 p_0 + 2(1-u)up_1 + u^2 p_2$$

Trick is to multiply by [u + (1 - u)]

$$p(u) = (1-u)^3 p_0 + 3(1-u)^2 u \left[\frac{1}{3}p_0 + \frac{2}{3}p_1\right] + 3(1-u)u^2 \left[\frac{2}{3}p_1 + \frac{1}{3}p_2\right] + u^3 p_2$$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 \\ 0 & \frac{2}{3} & \frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_2 \end{bmatrix}$$
$$C = DP$$

A degree four Bézier curve, degree elevated up to degree 50

Degree Reduction

In degree elevation, we were given P, we obtained C.

C=DP

In Degree reduction, C is given, Find P DP=C

$D^T D P = D^T C$

We have a linear system for the unknown P, with a square coefficient matrix $D^T D$. Solution is straightforward $D^T D$ is invertible

An example

Self-intersecting Bézier curve

A Bézier curve with 2 inflection points

Piecewise Bézier Curves

- A single degree three Bézier curve has only a limited range of shapes
- Our letters and numbers are more complicated than a single degree 3 Bézier curve
- Higher degree Bézier curve can be used to draw more complicated curves, but it is not easy to work with
- It is better to combine multiple Bézier curves to form a complicated curve

Example

Benefits of using Bézier curves

Letters and numbers piecewise Bézier curves

Easy to rescale (Application of Linear Algebra)

✤If pixel maps of the fonts are used, resizing → aliasing effects.

Local Coordinates

Local to Global

From local coordinate system (d) to global coordinate system (e)

Change of basis

Local interval [0, 1] to global interval $[min_1, max_1]$

•
$$e_1 = min_1 + (max_1 - min_1)d_1$$
; $d_2 \to e_2$

$$\bullet \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = \begin{bmatrix} \min_1 \\ \min_2 \end{bmatrix} + \begin{bmatrix} \max_1 - \min_1 & 0 \\ 0 & \max_2 - \min_2 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

D is mapped from local to global coordinates

Initial stage of an animated character

Model of a dog

Hi tech Animated movie

The dog coordinates

CMM (coordinate measuring machine)

CMM's arm touch x, y, z coordinates

Repeated hundred times

This process is called digitizing

References

- Farin, G. & Hansford, D. (2005). *Practical Linear Algebra: a geometry toolbox*. Wellesley, MA: A K Peters Ltd.
- Farin, G (2002). Curves and surfaces for CAGD. (5th ed.)San Diego, CA: Morgan Kaufman Publishers
- Farin, G. & Hansford, D (2006). *The essentials of CAGD*. Natick, MA: A K Peters Ltd.
- Mortenson, M.E. (1997). *Geometric Modeling* (2nd ed.): John Wiley & Sons, Inc.
- Buss, S. R. (2003). 3-D Computer Graphics. New York, NY: Cambridge University Press.
- Sauer, T. (2012). *Numerical Analysis* (2nd ed.). Boston, MA: Pearson
- Linear Algebra applications in Geometry, source: Internet <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.9754&rep=rep1&type=pdf</u>

Acknowledgements

Benedict College
NSF Grant #1436222
JMM 2018

Thank You