Linear Algebra in Digital World

Naima Naheed
Benedict College
Columbia, SC

Mathematics and Animation

* Dinosaurs of the Jurassic Park W Wonders of the Lord of the Rings
*Star turn of Gollum
\&3D computer games

Bézier Curves

- A polynomial is said to interpolate a set of data points if it passes through those points
- Bézier curve is an example which interpolates only first and last points
- Smooth and specified in terms of few points
- Bézier curves are independent of its dimension

Formation of Bézier Curves

P. Bézier got the idea during his work for Renault automobile company.

Any point on a curve must be given by a parametric function of the following form

$$
\begin{gathered}
p(u)=\sum_{i=0}^{n} p_{i} C_{i}(u) \text { for } u \in[0,1] \\
p_{i} \\
C_{i}(u)
\end{gathered}
$$

Matrix form of a Bézier Curve

If C_{i} are Bernstein polynomials,

$$
\begin{aligned}
& \boldsymbol{p}(u)=\left[\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{l}
B_{0}^{3}(u) \\
B_{1}^{3}(u) \\
B_{2}^{3}(u) \\
B_{3}^{3}(u)
\end{array}\right] \\
& \boldsymbol{p}(u)=\left[\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{c}
(1-u)^{3} \\
3(1-u)^{2} u \\
3(1-u) u^{2} \\
u^{3}
\end{array}\right]
\end{aligned}
$$

Matrix form and Monomials

A cubic Bézier curve

$$
p(u)=(1-u)^{3} p_{0}+3(1-u)^{2} u p_{1}+3(1-u) u^{2} p_{2}+u^{3} p_{3}
$$

Monomials $1, u, u^{2}, u^{3}$

$$
p(u)=\left[\begin{array}{llll}
p_{0} & p_{1} & p_{2} & p_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
u \\
u^{2} \\
u^{3}
\end{array}\right]
$$

Properties of Bézier Curves

Properties

$>\boldsymbol{p}(u) \longrightarrow$ four control points
$>$ Starts from p_{0} in the direction of p_{1}
$>$ Ends at p_{3} coming from the direction of p_{2}
$>$ Only two control points lie on $\boldsymbol{p}(u)$
$>$ Other 2 control points pull on the curve
$>\boldsymbol{p}(u)$ acts as a flexible and stretchable curve

Cubic Bézier Curves

Properties

Degree 3 Bézier curve can be expressed as

$$
p(u)=B_{0}(u) p_{0}+B_{1}(u) p_{1}+B_{2}(u) p_{2}+B_{3}(u) p_{3}
$$

The derivative

$$
p^{\prime}(u)={B^{\prime}}_{0}(u) p_{0}+{B^{\prime}}_{1}(u) p_{1}+B_{2}^{\prime}(u) p_{2}+B_{3}^{\prime}(u) p_{3}
$$

At the beginning:

$$
p^{\prime}(0)=3\left(p_{1}-p_{0}\right)
$$

At the end

$$
p^{\prime}(1)=3\left(p_{3}-p_{2}\right)
$$

Bernstein polynomial affects the control point

* At $u=0$, weight of $p_{0}=1$
$\&$ At $u=1 / 3$, weight of $p_{1}=\max$
* At $\mathrm{u}=2 / 3$, weight of $p_{2}=\max$
\& At $u=1$, weight of $p_{3}=1$
* Sum of four functions are

0

Degree Elevation

$$
p(u)=(1-u)^{2} p_{0}+2(1-u) u p_{1}+u^{2} p_{2}
$$

Trick is to multiply by $[u+(1-u)]$

$$
p(u)=(1-u)^{3} p_{0}+3(1-u)^{2} u\left[\frac{1}{3} p_{0}+\frac{2}{3} p_{1}\right]+3(1-u) u^{2}\left[\frac{2}{3} p_{1}+\frac{1}{3} p_{2}\right]+u^{3} p_{2}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 2 / 3 & 0 \\
0 & 2 / 3 & 1 / 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2}
\end{array}\right]} \\
C=D P
\end{gathered}
$$

A degree four Bézier curve, degree elevated up to degree 50

Degree Reduction

In degree elevation, we were given P, we obtained C.

$$
\begin{gathered}
C=D P \\
\text { In Degree reduction, } \mathrm{C} \text { is given, Find } \mathrm{P} \\
D P=C \\
D^{T} D P=D^{T} C
\end{gathered}
$$

We have a linear system for the unknown P , with a square coefficient matrix $D^{T} D$. Solution is straightforward $D^{T} D$ is invertible

An example

Degree 10

Degree 3

Self -intersecting Bézier curve

A Bézier curve with 2 inflection points

Piecewise Bézier Curves

- A single degree three Bézier curve has only a limited range of shapes
- Our letters and numbers are more complicated than a single degree 3 Bézier curve
- Higher degree Bézier curve can be used to draw more complicated curves, but it is not easy to work with
- It is better to combine multiple Bézier curves to form a complicated curve

Example

Benefits of using Bézier curves

Letters and numbers \longrightarrow piecewise Bézier curves
\& Easy to rescale (Application of Linear Algebra)
※If pixel maps of the fonts are used, resizing \longrightarrow aliasing effects.

Local Coordinates

Local to Global

\&From local coordinate system (d) to global coordinate system (e)
\& Change of basis
\$Local interval [0, 1] to global interval $\left[\min _{1}, \max _{1}\right]$

Matrix form

$$
\frac{d_{1}-0}{1-0}=\frac{e_{1}-\min _{1}}{\max _{1}-\min _{1}}
$$

- $e_{1}=\min _{1}+\left(\max _{1}-\min _{1}\right) d_{1} \quad ; \quad d_{2} \rightarrow e_{2}$
$\cdot\left[\begin{array}{l}e_{1} \\ e_{2}\end{array}\right]=\left[\begin{array}{l}\min _{1} \\ \min _{2}\end{array}\right]+\left[\begin{array}{cc}\max _{1}-\min _{1} & 0 \\ 0 & \max _{2}-\min _{2}\end{array}\right]\left[\begin{array}{l}d_{1} \\ d_{2}\end{array}\right]$

D is mapped from local to global coordinates

Initial stage of an animated character

*Model of a dog

* Hi tech Animated movie

The dog \longrightarrow coordinates
\& CMM (coordinate measuring machine)
\star CMM's arm touch $\longrightarrow x, y, z$ coordinates
\otimes Repeated hundred times
*This process is called digitizing

References

- Farin, G. \& Hansford, D. (2005). Practical Linear Algebra: a geometry toolbox. Wellesley, MA: A K Peters Ltd.
- Farin, G (2002). Curves and surfaces for CAGD. (5 ${ }^{\text {th }}$ ed.)San Diego, CA: Morgan Kaufman Publishers
- Farin,G. \& Hansford,D (2006). The essentials of CAGD. Natick, MA: A K Peters Ltd.
- Mortenson, M.E. (1997). Geometric Modeling (2 ${ }^{\text {nd }}$ ed.): John Wiley \& Sons, Inc.
- Buss, S. R. (2003). 3-D Computer Graphics. New York, NY: Cambridge University Press.
- Sauer, T. (2012). Numerical Analysis (2 ${ }^{\text {nd }}$ ed.). Boston, MA: Pearson
- Linear Algebra applications in Geometry, source: Internet http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.396.9754\&rep=re p1\&type= pdf

Acknowledgements
*Benedict College
*NSF Grant \#1436222
*JMM 2018

Thank You

