
Exploring Linear Algebra
through SageMath Labs

Joint Mathematics Meetings

William T. Jamieson∗ and Christina Starkey
Joint Work with Adam Gilbert and Megan Sawyer

January 11, 2018

∗w.jamieson@snhu.edu

w.jamieson@snhu.edu

Introduction

Motivation

Why create linear algebra labs?

• SNHU to teach out students from Daniel Webster College (9/16).

• DWC had existing four credit linear algebra course for CS.

• Fourth instructional hour necessary for ABET accreditation.

• Labs for Calculus I and II were also created.

1

Motivation

Why SageMath?

• Freeware.

• Inexpensive cloud based delivery ($9)
through Cocalc (formerly SageMathCloud).

• Exposure to/reinforcing Python skills.

2

Student Population

• 6 computer science, 2 math students. All CS students were
former DWC students.

• All had programming experience; none with Python.

• All were currently enrolled in a linear algebra class.

3

The Labs

The Labs

Goals

1. Introduce computer applications to linear algebra.

2. Reinforce concepts covered during class time*.

3. Give students exposure to SageMath/Python.

4

The Labs

1. Lights Out

2. Condition Numbers

3. Computer Graphics

4. (7, 4)-Hamming Codes

5. The Fibonacci Sequence

6. Google PageRank

Some labs inspired by Coding the Matrix

5

Lab Structure

1. Background

2. Mathematics

3. Goals

4. Helpful Sage Commands

5. Problems

6

Lab Example

MAT350: LAB #4
Hamming Codes

SNHU MATHEMATICS DEPARTMENT

1. Background and Assumptions

In this lab, we will be studying (7, 4)- Hamming Codes, which are a particular type of error correcting
code. When we use WiFi or our cell phones, data (a sequences of 0’s and 1’s) are transmitted over a noisy
channel, that is, there is a possibility that some of the 0’s and 1’s are being sent or read incorrectly. An
error correcting code is a method to send the data for which we can detect when an error has been made in
the data transmission, and then correct it.
Let’s consider the situation where Alice is sending a message to Bob. Using ASCII (American Standard Code
for Information Interchange), every letter and punctuation mark has an eight-digit code associated with it.
For example, if Alice wants to send the message A to Bob, she would transmit the message 01000001. We
will break this eight-digit message into two pieces, each piece containing four digits.
Now we will create a (7, 4)- Hamming Code for the first half of Alice’s message: x = 0100. We will name
the ith digit of this transmission di. We would like to create a system where we will know when an error in
transmission has been made. We will accomplish this with parity check digits. Rather than sending just
our four-digit message, we will also send an additional three digits p1, p2, and p3.

d1 d2
d4

d3

p1

p2 p3

The parity check digits are calculated by adding all of the digits that appear in the same circle as that parity
check digit in the Venn diagram above. For example, p1 = d1 + d2 + d4. All calculations are done modulo
2. The computation of the parity check digits can be made through a matrix multiplication by the code
generator matrix G:

G =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
1 1 0 1
1 0 1 1
0 1 1 1




.

1

Hamming Codes MAT350

For example, the (7, 4)- Hamming Code for x = 0100 will be

Gx =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 1
1 0 1 1
0 1 1 1







0
1
0
0


 =




0
1
0
0
1
0
1




.

Notice that the first four digits of the code is the message, and the last three are the parity check digits. We
will also need the parity-check matrix H:

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


 .

Multiplying the matrix H by Gx checks that the parity check digits are correct (recall once again that the
multiplication is taken modulo 2):




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1







d1
d2
d3
d4
p1
p2
p3




=




d1 + d2 + d4 + p1
d1 + d3 + d4 + p2
d2 + d3 + d4 + p3


 =




2p1
2p2
2p3


 =




0
0
0


 .

If HGx 6= [0 0 0], then we know that there has been an error in the transmission of the message. Further, if
only one digit has an error in it (by far the most likely scenario, since we are only transmitting seven digits),
then we can identify which digit the error occured in. For example, let’s consider the scenario when an error
occurs in the transmission of the fourth digit of the message:




0
1
0
0
1
0
1




→




0
1
0
1
1
0
1




.

If we multiply the parity check matrix by our new message,

H




0
1
0
1
1
0
1




=




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1







0
1
0
1
1
0
1




=




1
1
1


 ,

so we know that an error has occured. Since d4 appears in every entry of HGx, we know that the error must
have occured in the fourth digit. The following table identifies the error digit and the corresponding value

Edited by Dr. William T. Jamieson 2 Updated: November 7, 2017

7

Lab Example

Hamming Codes MAT350

of HGx:
Digit with Error HGx

1
[

1 1 0
]

2
[

1 0 1
]

3
[

0 1 1
]

4
[

1 1 1
]

5
[

1 0 0
]

6
[

0 1 0
]

7
[

0 0 1
]

Notice that the values of HGx correspond to the columns of H.

2. Lab Summary

After reading through this project, you should be prepared to:

• Define the parity-check matrix in Sage
• Identify any errors in the transmission of a message
• Implement the (7, 4)- Hamming Code to automatically error correct messages

3. Helpful Sage commands

In addition to commands defined in previous worksheets, the following commands will be helpful as you
complete this assignment.

• M = MatrixSpace(GF(2),n,m)
This command defines a function M() that creates an n × m matrix whose entries are calcu-
lated modulo 2. For example, running the commands M = MatrixSpace(GF(2),2,2) and then
M([[1,2],[3,4]]) returns the matrix [[1,0],[1,0]].

• list()
This command converts an object into a list. Be sure to convert any objects that you want to
flatten into lists first.

• flatten()
This command takes the elements from a list of lists, and creates a single list of those elements. For
example, flatten([[1,2],[3,4]]) returns [1,2,3,4].

• str()
This command converts an object to a string.

• str(0) + str(1) = ’01’
To concatenate two strings, simply add the strings together.

• [f(i) for i in range(n)]
This command returns the list [f(0), f(1), f(2), ... , f(n-1)].

• vector()
This command converts a list into a vector.

• if
An if statement runs lines of code only if a condition is true. For example,
x = 2
if x<3:

print 1

Edited by Dr. William T. Jamieson 3 Updated: November 7, 2017

Hamming Codes MAT350

will return 1, but
x = 4
if x<3:

print 1
will return nothing. Since 4 < 3 is false, the print command was never run.

• from sage.crypto.util import bin_to_ascii
This command loads the function bin_to_ascii(), which converts an eight-digit binary string to its
corresponding letter or punctuation mark. For example, bin_to_ascii(’010110010110010101110011’)
returns ’Yes’.

4. Problems

Important Note

To complete Lab 4, rename the Sage Worksheet Lab4.sagews on CoCalc.com with the file naming
convention:

LastName_FirstName_Lab4.sagews
and perform the following tasks. Utilize appropriate commenting and structure in your worksheet.

Alice has sent you a message with three characters, which is provided in the hamming_codes_student.sagews
file.

Problem 1. Load the bin_to_ascii function. Define the matrix

R =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




and use loops to multiply R by each seven-digit subset of the message. The result is only the first four
digits of each subset (since we don’t want to read the parity-check digits as part of the message). To create
a string which consists of the digits from Alice’s message, first flatten() the message, define an empty
string s = ’’, and then use loops to concatenate the digits from the message to s one by one. Use the
bin_to_ascii() function to convert the message from binary to ASCII. Do you believe that there have
been any errors in the transmission of the message?

Problem 2. Define the parity-check matrix H. Calculate Hx for each seven-digit subset x of the message.
Be careful that x needs to be a vector (tuple) in order to perform the multiplication. Which seven-digit
subsets of the transmission contain an error?

Problem 3. Correct any errors that you discovered in Problem 2, and convert the message to ASCII.

Problem 4. Alice sent you a new message, which is much larger than the original one. The message is
provided in the hamming_codes_student.sagews file. Convert the message from binary to ASCII.

Problem 5. Alice’s new message is too long for you to fix any errors by hand, so we should create some
code that will fix any errors automatically. For example, if Hx = [1 1 0], we know that the first digit of x
needs to be fixed. We can use an if statement:

V = VectorSpace(GF(2),7)
for i in range(len(message)):

if H * vector(message[i]) == vector([1,1,0]):
message[i] = V(message[i]) + V([1,0,0,0,0,0,0])

Edited by Dr. William T. Jamieson 4 Updated: November 7, 2017

8

Grading Scheme

Pass/Fail based on Lab average and practicum
Points Response Description
0 Non-submission No lab submission
1 Non-acceptance Lab has few or no correct answers. Lab is disorganized, with

little to no explanation or commenting structure.
2 Accept with major revisions Lab has either i) mostly or completely correct answers, but

lab is disorganized, with little to no explanation or com-
menting structure; or ii) lab has incorrect answers or incom-
plete answers, but lab is well organized with appropriate
explanation and commenting structure.

3 Accept with minor revisions Lab has mostly or completely correct answers, and is well
organized with appropriate explanation and commenting
structure.

4 Accept with no revisions Lab has completely correct answers, and is perfectly orga-
nized with appropriate explanation and commenting struc-
ture.

9

Conclusions

Student Feedback

• Students felt that coding helped them understand the course
material.

• “The projects and puzzles were fun to figure out.”

• Students wanted a master list of Sage commands.

• Students wanted to see the lab solutions.

10

Ideas for Future Improvement

• Discuss problem background and Sage commands together.

• Prepare students to troubleshoot technical issues with CoCalc.

• Clearly define rules for collaboration between students.

• Change the credit structure.

• Have students curate a master list of Sage commands.

11

Thank you for your time!

12

	Introduction
	The Labs
	Conclusions

