Exploring Subspaces and Bases Through Magic Squares

Michelle Ghrist

Department of Mathematics
Gonzaga University

January 2018

Outline

(1) Background
(2) The Project
(3) Subsequent Work

Magic Squares

Magic squares have been studied for over 2600 years.
Connections to many fields, e.g.:

- Abstract algebra
- Combinatorics and graph theory
- Mathematical art
- Generating functions
- Splines
- Ciphers
- Elliptic curves
- Number theory

Context

The Course (U. S. Air Force Academy)

- Proof-based linear algebra course
- Most students are math majors
- Textbook: Stephen Lay's Linear Algebra and Its Applications
- MATLAB and Mathematica use encouraged

Context

The Course (U. S. Air Force Academy)

- Proof-based linear algebra course
- Most students are math majors
- Textbook: Stephen Lay's Linear Algebra and Its Applications
- MATLAB and Mathematica use encouraged

Context

The Course (U. S. Air Force Academy)

- Proof-based linear algebra course
- Most students are math majors
- Textbook: Stephen Lay's Linear Algebra and Its Applications
- MATLAB and Mathematica use encouraged

Original project was given as an extra credit assignment but can easily be extended.

The Inspiration

From Gilbert Strang's Linear Algebra and Its Applications

"In the space of all 2 by 2 matrices, find a basis for the subspace of matrices whose row sums and column sums are all equal.

The Inspiration

From Gilbert Strang's Linear Algebra and Its Applications

"In the space of all 2 by 2 matrices, find a basis for the subspace of matrices whose row sums and column sums are all equal.

The Inspiration

From Gilbert Strang's Linear Algebra and Its Applications

"In the space of all 2 by 2 matrices, find a basis for the subspace of matrices whose row sums and column sums are all equal.
(Extra credit: Find five linearly independent 3 by 3 matrices with this property.)"

The Inspiration

From Gilbert Strang's Linear Algebra and Its Applications

"In the space of all 2 by 2 matrices, find a basis for the subspace of matrices whose row sums and column sums are all equal.
(Extra credit: Find five linearly independent 3 by 3 matrices with this property.)"

Elements of this subspace are often called (non-normal) semimagic squares.

My (extra credit) assignment

Goal: Have students work with definitions of vector space, subspace, dimension, and basis.

My (extra credit) assignment

Goal: Have students work with definitions of vector space, subspace, dimension, and basis.

Actual assignment

Find a basis for the set of all 3×3 (non-normal) magic squares.

My (extra credit) assignment

Goal: Have students work with definitions of vector space, subspace, dimension, and basis.

Actual assignment

Find a basis for the set of all 3×3 (non-normal) magic squares.

My (extra credit) assignment

Goal: Have students work with definitions of vector space, subspace, dimension, and basis.

Actual assignment

Find a basis for the set of all 3×3 (non-normal) magic squares.

What I should have assigned

- Show that the set of all 3×3 (non-normal) magic squares is a subspace of $M_{3 \times 3}$.
- Find the dimension of this subspace.
- Find a basis for the set of all 3×3 (non-normal) magic squares.

Student solution, part 1

Solve the linear system:
$a_{k 1}+a_{k 2}+a_{k 3}=a_{1 k}+a_{2 k}+a_{3 k}=a_{11}+a_{22}+a_{33}=a_{31}+a_{22}+a_{13}=T$
for all $k=1,2,3$ and some T (8 equations in 10 unknowns).

Student solution, part 1

Solve the linear system:
$a_{k 1}+a_{k 2}+a_{k 3}=a_{1 k}+a_{2 k}+a_{3 k}=a_{11}+a_{22}+a_{33}=a_{31}+a_{22}+a_{13}=T$ for all $k=1,2,3$ and some T (8 equations in 10 unknowns).

In matrix form:

$$
\left[\begin{array}{llllllllll|l}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & -1 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & -1 & 0
\end{array}\right]
$$

Student solution, part 2

This row reduces to

$$
\left[\begin{array}{cccccccccc|c}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 / 3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 / 3 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 1 / 3 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & -2 & 2 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & -4 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Student solution, part 2

This row reduces to

$$
\left[\begin{array}{cccccccccc|c}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -2 / 3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -2 / 3 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 1 / 3 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & -2 & 2 / 3 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & -4 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

so there are 3 free variables. The dimension of this subspace is 3 and a basis is

$$
\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right],\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 0 & -1 \\
0 & -1 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Student solution, part 3

Using our basis, we can confirm Édouard Lucas's $19^{\text {th }}$-century result that all 3×3 magic squares are of the form

$$
\left[\begin{array}{ccc}
c-b & c+(a+b) & c-a \\
c-(a-b) & c & c+(a-b) \\
c+a & c-(a+b) & c+b
\end{array}\right]
$$

The 4×4 problem

Solve the linear system

$$
\sum_{i=1}^{4} a_{k, i}=\sum_{i=1}^{4} a_{i, k}=\sum_{i=1}^{4} a_{i, i}=\sum_{i=1}^{4} a_{i, 5-i}=T
$$

for all $k=1,2,3,4$ and some T (10 equations in 17 unknowns).

The 4×4 problem

Solve the linear system

$$
\sum_{i=1}^{4} a_{k, i}=\sum_{i=1}^{4} a_{i, k}=\sum_{i=1}^{4} a_{i, i}=\sum_{i=1}^{4} a_{i, 5-i}=T
$$

for all $k=1,2,3,4$ and some T (10 equations in 17 unknowns).
The dimension of this subspace is 8 and a basis is
$\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right],\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right],\left[\begin{array}{cccc}0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0\end{array}\right],\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$,
$\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right],\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & -1 & 0\end{array}\right],\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & -1 & 1 & 0\end{array}\right]$

General problem, part 1

Solve the linear system:

$$
\sum_{i=1}^{n} a_{k, i}=\sum_{i=1}^{n} a_{i, k}=\sum_{i=1}^{n} a_{i, i}=\sum_{i=1}^{n} a_{i, n+1-i}=T
$$

for all $k=1,2, \ldots n$ and some T.
There are $2 n+2$ equations in $n^{2}+1$ unknowns.

General problem, part 2

n	dim (magic squares)	dim (semimagic squares)
2	1	2
3	3	5
4	8	10
5	15	17
\vdots	\vdots	\vdots
n		

General problem, part 2

n	dim (magic squares)	dim (semimagic squares)
2	1	2
3	3	5
4	8	10
5	15	17
\vdots	\vdots	\vdots
n	$n^{2}-2 n ?(n>2)$	$n^{2}-2 n+2 ?$

General problem, part 2

n	dim (magic squares)	dim (semimagic squares)
2	1	2
3	3	5
4	8	10
5	15	17
\vdots	\vdots	\vdots
n	$n^{2}-2 n ?(n>2)$	$n^{2}-2 n+2 ?$

Expect $\operatorname{dim}($ magic squares $) \geq\left(n^{2}+1\right)-(2 n+2)=n^{2}-2 n-1$.

General problem, part 2

n	dim (magic squares)	dim (semimagic squares)
2	1	2
3	3	5
4	8	10
5	15	17
\vdots	\vdots	\vdots
n	$n^{2}-2 n ?(n>2)$	$n^{2}-2 n+2 ?$

Expect $\operatorname{dim}($ magic squares $) \geq\left(n^{2}+1\right)-(2 n+2)=n^{2}-2 n-1$.

$$
\sum_{k=1}^{n}\left(\sum_{i=1}^{n} a_{k, i}\right)=\sum_{k=1}^{n}\left(\sum_{i=1}^{n} a_{i, k}\right)=n T
$$

See Ward (1980) for proof that above formulas are correct.

Possible Extensions, Part 1

Some questions

- What if we don't count rotations and/or reflections as unique?
- If M is magic, when is M^{m} also magic?

Possible Extensions, Part 1

Some questions

- What if we don't count rotations and/or reflections as unique?
- If M is magic, when is M^{m} also magic?
- If M is magic, is its adjoint also magic?
- If M is magic and nonsingular, is its inverse also magic?

Possible Extensions, Part 1

Some questions

- What if we don't count rotations and/or reflections as unique?
- If M is magic, when is M^{m} also magic?
- If M is magic, is its adjoint also magic?
- If M is magic and nonsingular, is its inverse also magic?
- Is the product of two magic squares also magic?
- What if we restrict to circulant or symmetric matrices?

Possible Extensions, Part 1

Some questions

- What if we don't count rotations and/or reflections as unique?
- If M is magic, when is M^{m} also magic?
- If M is magic, is its adjoint also magic?
- If M is magic and nonsingular, is its inverse also magic?
- Is the product of two magic squares also magic?
- What if we restrict to circulant or symmetric matrices?
- What if we restrict entries to squares or primes?
- How many normal magic squares are there of order n ? (entries unique: $1,2, \ldots, n^{2}$)

Possible Extensions, Part 2

- Make row/column/diagonal products the same (vs. sums)
- Antimagic squares (all sums must be different)

Possible Extensions, Part 2

- Make row/column/diagonal products the same (vs. sums)
- Antimagic squares (all sums must be different)
- Alternate shapes
- More than two dimensions

Possible Extensions, Part 2

- Make row/column/diagonal products the same (vs. sums)
- Antimagic squares (all sums must be different)
- Alternate shapes
- More than two dimensions
- Magic circles, spheres, (tori?)
- Latin squares; Euler squares

Conclusions

- Magic squares and their many variations provide rich opportunities to learn and apply mathematical ideas.
- Homework problems and projects involving magic squares can be created with many various lengths, depths, and difficulties.
- There are still many open questions about magic squares.

Thank you for coming!

Michelle Ghrist, ghrist@gonzaga.edu

Some references

- Vector Spaces of Magic Squares, James E. Ward III. Mathematics Magazine (1980), 108-111.
- The Lost Squares of Dr. Franklin: Ben Franklin's Missing Squares and the Secret of the Magic Circle, Matthias Beck, Moshe Cohen, Jessica Cuomo, and Paul Gribelyuk. The American Mathematical Monthly, 108(6) (2001), 489-511.
- The Number of "Magic" Squares, Cubes, and Hypercubes, Paul C. Pasles. The American Mathematical Monthly, 1110(8) (2003), 707-717.

Michelle Ghrist, ghrist@gonzaga.edu

