
Background
The Project

Subsequent Work

Exploring Subspaces and Bases Through Magic
Squares

Michelle Ghrist

Department of Mathematics
Gonzaga University

January 2018

Michelle Ghrist Exploring Subspaces and Bases Through Magic Squares



Background
The Project

Subsequent Work

Outline

1 Background

2 The Project

3 Subsequent Work

Michelle Ghrist Exploring Subspaces and Bases Through Magic Squares



Background
The Project

Subsequent Work

Magic Squares

Magic squares have been studied for over 2600 years.

Connections to many fields, e.g.:

Abstract algebra

Combinatorics and graph theory

Mathematical art

Generating functions

Splines

Ciphers

Elliptic curves

Number theory
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Context

The Course (U. S. Air Force Academy)

Proof-based linear algebra course

Most students are math majors

Textbook: Stephen Lay’s Linear Algebra and Its Applications

MATLAB and Mathematica use encouraged

Original project was given as an extra credit assignment but can
easily be extended.
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The Inspiration

From Gilbert Strang’s Linear Algebra and Its Applications

“In the space of all 2 by 2 matrices, find a basis for the subspace
of matrices whose row sums and column sums are all equal.

(Extra credit: Find five linearly independent 3 by 3 matrices with
this property.)”

Elements of this subspace are often called (non-normal) semimagic
squares.
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My (extra credit) assignment

Goal: Have students work with definitions of vector space,
subspace, dimension, and basis.

Actual assignment

Find a basis for the set of all 3x3 (non-normal) magic squares.

What I should have assigned

Show that the set of all 3x3 (non-normal) magic squares is a
subspace of M3x3.

Find the dimension of this subspace.

Find a basis for the set of all 3x3 (non-normal) magic squares.
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Student solution, part 1

Solve the linear system:

ak1+ak2+ak3 = a1k+a2k+a3k = a11+a22+a33 = a31+a22+a13 = T

for all k = 1, 2, 3 and some T (8 equations in 10 unknowns).

In matrix form:

1 1 1 0 0 0 0 0 0 -1 0
0 0 0 1 1 1 0 0 0 -1 0
0 0 0 0 0 0 1 1 1 -1 0
1 0 0 1 0 0 1 0 0 -1 0
0 1 0 0 1 0 0 1 0 -1 0
0 0 1 0 0 1 0 0 1 -1 0
1 0 0 0 1 0 0 0 1 -1 0
0 0 1 0 1 0 1 0 0 -1 0


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Student solution, part 2

This row reduces to

1 0 0 0 0 0 0 0 1 -2/3 0
0 1 0 0 0 0 0 1 0 -2/3 0
0 0 1 0 0 0 0 -1 -1 1/3 0
0 0 0 1 0 0 0 -1 -2 2/3 0
0 0 0 0 1 0 0 0 0 -1/3 0
0 0 0 0 0 1 0 1 2 -4/3 0
0 0 0 0 0 0 1 1 1 -1 0
0 0 0 0 0 0 0 0 0 0 0



so there are 3 free variables. The dimension of this subspace is 3
and a basis is 0 1 −1

−1 0 1
1 −1 0

 ,

−1 1 0
1 0 −1
0 −1 1

 ,

1 1 1
1 1 1
1 1 1


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Student solution, part 3

Using our basis, we can confirm Édouard Lucas’s 19th-century
result that all 3x3 magic squares are of the form c − b c + (a + b) c − a

c − (a− b) c c + (a− b)
c + a c − (a + b) c + b


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The 4x4 problem

Solve the linear system

4∑
i=1

ak,i =
4∑

i=1

ai ,k =
4∑

i=1

ai ,i =
4∑

i=1

ai ,5−i = T

for all k = 1, 2, 3, 4 and some T (10 equations in 17 unknowns).

The dimension of this subspace is 8 and a basis is
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 ,


0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

 ,


0 0 −1 1
0 0 0 0
1 0 0 −1
−1 0 1 0

 ,


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 ,


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 ,


0 0 0 0
0 0 1 −1
0 −1 0 1
0 1 −1 0

 ,


0 0 0 0
0 1 0 −1
0 0 −1 1
0 −1 1 0

 ,
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General problem, part 1

Solve the linear system:

n∑
i=1

ak,i =
n∑

i=1

ai ,k =
n∑

i=1

ai ,i =
n∑

i=1

ai ,n+1−i = T

for all k = 1, 2, . . . n and some T .

There are 2n + 2 equations in n2 + 1 unknowns.
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General problem, part 2

n dim(magic squares) dim(semimagic squares)

2 1 2

3 3 5

4 8 10

5 15 17
...

...
...

n

n2 − 2n? (n > 2) n2 − 2n + 2?

Expect dim(magic squares) ≥ (n2 + 1) − (2n + 2) = n2 − 2n − 1.

n∑
k=1

(
n∑

i=1

ak,i

)
=

n∑
k=1

(
n∑

i=1

ai ,k

)
= nT

See Ward (1980) for proof that above formulas are correct.
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Possible Extensions, Part 1

Some questions

What if we don’t count rotations and/or reflections as unique?

If M is magic, when is Mm also magic?

If M is magic, is its adjoint also magic?

If M is magic and nonsingular, is its inverse also magic?

Is the product of two magic squares also magic?

What if we restrict to circulant or symmetric matrices?

What if we restrict entries to squares or primes?

How many normal magic squares are there of order n?
(entries unique: 1, 2, . . . , n2)
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Possible Extensions, Part 2

Make row/column/diagonal products the same (vs. sums)

Antimagic squares (all sums must be different)

Alternate shapes

More than two dimensions

Magic circles, spheres, (tori?)

Latin squares; Euler squares
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Conclusions

Magic squares and their many variations provide rich
opportunities to learn and apply mathematical ideas.

Homework problems and projects involving magic squares can
be created with many various lengths, depths, and difficulties.

There are still many open questions about magic squares.

Thank you for coming!

Michelle Ghrist, ghrist@gonzaga.edu
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