Di-eigenals

Jennifer Galovich
St. John's University/College of St. Benedict
JMM

11 January, 2018

Geometric Interpretation of Eigenvalues in R^{2}

Suppose

$$
M=\left(\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right)
$$

It is easy to check that the eigenvalues of M are 7 and -4 .

Geometer's Sketchpad shows Eigenvalues and Eigenvectors

$$
M=\left(\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right)
$$

$\lambda=7$

$\lambda=-4$

All together now... the diagonals are the eigenvectors...right?

WRONG!!!

I want a 2×2 matrix $\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$ so that
(i) $\mathbf{v}_{1}+\mathbf{v}_{2}$ is an eigenvector
(ii) $\mathbf{v}_{1}-\mathbf{v}_{2}$ is an eigenvector

I will call these di-eigenals

What works? 2×2 eigenstuff....

- Let $\mathrm{M}=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$.

The eigenvalues of M are $a+b$ and $a-b$.
The eigenvectors are $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$, respectively.
The diagonals of the image are $\left[\begin{array}{l}a+b \\ a+b\end{array}\right]=(a+b)\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}a-b \\ b-a\end{array}\right]=(a-b)\left[\begin{array}{c}1 \\ -1\end{array}\right]$

Which is exactly what we wanted.
Doesn't Work $\longrightarrow\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right]$
$\left[\begin{array}{ll}1 & 6 \\ 6 & 1\end{array}\right] \longleftarrow$ Works!

Proposition:

Let M be a 2×2 matrix. Then M has a full set of di-eigenals iff M is of the form $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ where $a+b \neq 0$ and $a-b \neq 0$

Proof: "If" follows immediately from the relevant definitions "Only if" : Set up the required system of equations and let Mathematica do the work.

On beyond two dimensions....

In two dimensions, we could find the di-eigenals and saw that this happened when the image of the unit square is a rhombus
What about $n=3$?
Problem 1: What do you call it?

Rhom ${ }^{\text {P/edipiped }}$
Rhombohedron

Problem 2: there are four diagonals and three eigenvectors.

$$
4 \neq 3
$$

Forget $\mathrm{n}=3$. Try $\mathrm{n}=4$.

We want a 4×4 matrix whose eigenvectors are some four vectors in R^{4} that correspond to the diagonals of the image of the unit square under that action of the matrix.

What worked before? $\quad \mathrm{M}=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$.
The sum of the columns gives one eigenvalue and the difference gives the other.
That is, the eigenvectors are $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and the corresponding eigenvalues are $a+b=(a, b) \cdot(1,1)$ and $a-b=(a-b) \cdot(1,-1)$

Generalize....

IDEA: Label each "vertex" as a string of 1 s and 0 s .
Diagonals are differences of the vertices, so they are strings of $0 \mathrm{~s}, 1 \mathrm{~s}$ and -1 s .

Diagonals of interest (i.e., not edges or diagonals of faces) are those whose strings have no Os.

Example:

$(1,1,1,1)-(0,0,0,0)=(1,1,1,1)$
These have potential
$(1,0,1,1)-(0,1,0,0)=(1,-1,1,1)$
$(1,0,1,1)-(0,1,1,1)=(1,-1,0,0)$

For $\mathrm{n}=4$, there are 16 vertices and 8 potential diagonals (we consider ($1,-1,1,-1$) equivalent to its negative, $(-1,1,-1,1)$.

But we can't have any more than 4 di-eigenals.

How to choose?

Look for some structure...

Think of the vertices as elements of $Z_{2} \times Z_{2} \times Z_{2} \times Z_{2}$
Let H be the subgroup:

$$
\begin{array}{llll}
(1,1,1,1) & (1,1,0,0) & (0,1,1,0) & (1,0,1,0) \\
(0,0,0,0) & (0,0,1,1) & (1,0,0,1) & (0,1,0,1)
\end{array}
$$

Note that $\mathrm{K}=\{(1,1,1,1),(0,0,0,0)\}$ is a subgroup of H .
Choose our four diagonals by pairing up the elements of the cosets of K in H and taking the differences. This gives

$$
(1,1,1,1),(1,1,-1,-1),(1,-1,-1,1) \text { and }(1,-1,-1,1)
$$

Are our diagonals actually di-eigenals?

YES!! Reverse engineering --
Choose the vectors

$$
(1,1,1,1),(1,1,-1,-1),(1,-1,-1,1) \text { and }(1,-1,1,-1)
$$

to be eigenvectors and the corresponding dot products

$$
a+b+c+d, a+b-c-d, a-b-c+d, \text { and } a-b+c-d
$$

to be the corresponding eigenvalues.
Let P be the matrix whose columns are these eigenvectors and D the diagonal matrix formed from the eigenvalues.
Let $\mathrm{M}=\mathrm{PDP}^{-1}$. And we're (almost) done!

$$
\text { And here it is: } \mathrm{M}=\begin{array}{llll}
a & b & c & d \\
b & a & d & c \\
c & d & a & b \\
d & c & b & a
\end{array}
$$

We choose a, b, c, and d so that the eigenvalues are distinct and non-zero. This boils down to:

$$
\begin{array}{ll}
b \pm d \neq 0 & a+b+c+d \neq 0 \\
b \pm c \neq 0 & a+b-(c+d) \neq 0 \\
c \pm d \neq 0 & a+d-(b+c) \neq 0 \\
& a+c-(b+d) \neq 0
\end{array}
$$

The same plan works for $n=8$...

$$
\left(\begin{array}{llllllll}
a & b & c & d & f & g & h & j \\
b & a & d & c & g & f & j & h \\
c & d & a & b & h & j & f & g \\
d & c & b & a & j & h & g & f \\
f & g & h & j & a & b & c & d \\
g & f & j & h & b & a & d & c \\
h & j & f & g & c & d & a & b \\
j & h & g & f & d & c & b & a
\end{array}\right)
$$

A pattern emerges....

> - $N=2$
> $\mathrm{~N}=4$
> $N=8$
> $\left(\begin{array}{ll}a & b \\ b & a\end{array}\right) \quad\left(\begin{array}{cccc}a & b & c & d \\ b & a & d & c \\ c & d & a & b \\ d & c & b & a\end{array}\right)$

General plan of attack....

- Find a full set of linearly independent vectors of 1 s and -1 s . Make them the columns of a matrix P. Take the dot product of each vector with ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$) to get the corresponding eigenvalues and use them to make a diagonal matrix D . Compute $\mathrm{M}=\mathrm{PDP}^{-1}$.
- Choose ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$) (the entries of M) so that the eigenvalues are distinct and non-zero.

Problem: How to choose that set of linearly independent vectors????

IDEA: The plan....

- Let B be the 2×2 matrix $\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
- Create a 4×4 matrix P of eigenvectors by replicating B as follows:

$$
\begin{array}{c:c}
B & B \\
\hdashline B & -B
\end{array}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

Iterate!! (These are better known as Hadamard matrices.)

Back to n = 3...

After some experimentation, it turns out that any set of three vectors of 1 s and -1 s produces di-eigenals.

Set $P=\left(\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1\end{array}\right)$ and eigenvalues $\{a+b+c,-a+b-c,-a-b+c\}$ to produce
the matrix $\left(\begin{array}{ccc}-a & a+c & a+b \\ -b+c & b & a+b \\ b-c & a+c & c\end{array}\right)$ which has three di-eigenals.
Moreover, the same Hadamard trick produces di-eigenals for $n=6$. ETC.

Questions to ponder....

1. By design, the Hadamard plan works, but are there other ways to make di-eigenals?
2. The eigenvectors for the case $n=2^{k}$ are mutually orthogonal. Is that necessary?
3. Is there some simple way to describe the sets of matrix entries that give non-zero distinct eigenvalues? (assuming solutions exist...) If so, is there some interesting geometry associated with this complement of a union of hyperplanes?

Thanks! Thanks! Thanks! -Thanks!

