Student Mathematical Connections in an Introductory Linear Algebra Course Employing a Hybrid of Inquiry-Oriented Teaching and Traditional Lecture

SPENCER PAYTON
WASHINGTON STATE UNIVERSITY
JANUARY7, 2017

Mathematical Connections in Linear Algebra

"One of the most appealing aspects of linear algebra - yet a serious source of difficulty for students - is the "endless" number of mathematical connections one can (must) create studying it" (Harel, 1997).

Logical implication connections

- "If the columns of a matrix A are linearly independent, then no column of A is a linear combination of the other columns"

The Invertible Matrix Theorem (IMT)

Let A be a square $n \times n$ matrix. Then the following statements are equivalent.

- A is an invertible matrix.
- A is row equivalent to the $n \times n$ identity matrix.
- A has n pivot positions.
- The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
- The columns of A form a linearly independent set.
- The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
- The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in R^{n}.
- The columns of $A \operatorname{span} R^{n}$.
- The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps R^{n} onto R^{n}.
- There is an $n \times n$ matrix C such that $C A=I$.
- There is an $n \times n$ matrix D such that $A D=I$.
- A^{T} is an invertible matrix.
- The columns of A form a basis of R^{n}.
- $\operatorname{Col} A=R^{n}$
- $\operatorname{dim} C o l(A=n$
- $\operatorname{rank} A=n$
- Nul $A=\{0\}$
- $\operatorname{dimNul} A=0$
- The number 0 is not an eigenvalue of A.
- The determinant of A is not zero.

Two More Theorems of Logical Equivalence

Theorem 1: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{m}.
${ }^{\circ} A$ has m pivot positions; that is, A has a pivot position in every row.
- Every vector \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
- The columns of A span \mathbb{R}^{m}.
- The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(\mathbf{x})=A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}.

Two More Theorems of Logical Equivalence

Theorem 2: Let A be an $m \times n$ matrix. Then the following statements are logically equivalent.

- The equation $A \mathbf{x}=\mathbf{b}$ has at most one solution for each \mathbf{b} in \mathbb{R}^{m}.
- For each \mathbf{b} in \mathbb{R}^{m}, the linear system corresponding to $A \mathbf{x}=\mathbf{b}$ does not have a free variable; that is, the linear system only has basic variables.
${ }^{\circ} A$ has n pivot positions; that is, A has a pivot position in every column.
- The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
- The columns of A form a linearly independent set.
- No column of A is a linear combination of the other columns.
\circ The linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(\mathbf{x})=A \mathbf{x}$ is one-to-one.

My Linear Algebra Class

2 credit course

Content

- Linear systems, vector algebra, span and linear independence, linear transformations, matrix algebra, invertibility, subspaces of \mathbb{R}^{n}, determinants, eigen theory, and orthogonality

Normally 80-120 students

Coordinated sections

- Same content, textbook (Lay), schedule, exam, grading, policies

Inquiry-Oriented Teaching

Mathematical inquiry (Richards, 1991)

- Mathematical discussion
- Solving math problems
- Forming conjectures

Inquiry-oriented teaching: practice of creating opportunities for students to engage in mathematical inquiry

Research Questions

What does it look like when a teacher attempts to incorporate inquiry-oriented teaching in an undergraduate introductory linear algebra class?

What mathematical connections do students appear to evoke within the context of an introductory linear algebra course that employs inquiry-oriented teaching?

Classroom Context

Introductory linear algebra courses that I taught

- Action research
- Classroom observations
- Written reflections
- Summer ‘15 (pilot study), Fall '15, spring '16

Accommodations for research
${ }^{\circ}$ Forty students in fall, sixty in spring

- Some freedom with exams and schedules

Results: Inquiry-Oriented Teaching

Inquiry-oriented teaching and lecture

- Hybrid approach

Inquiry-oriented teaching

- Student development of math
- Specific teaching goals (connections)

Lecture

- Connect to formal math
- Concepts not central to understanding of subject

Inquiry in My Hybrid Approach

Reserved inquiry for big ideas

- Span, linear independence, etc.

Inquiry-oriented activities
${ }^{\circ}$ Quick

- Problems
- Discussion
- Connections

Example: Span

Without solving a linear system or using any elementary row operations, determine whether the following sets of vectors span the given space. For each set of vectors, formulate a conjecture about span based on that set.

Do the vectors $\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{c}-2 \\ 4\end{array}\right]$ span all of \mathbb{R}^{2} ?
Do the vectors $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 6\end{array}\right]$ span all of \mathbb{R}^{3} ?
Do the vectors $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$ span all of \mathbb{R}^{3} ?
Do the vectors $\left[\begin{array}{l}1 \\ 7 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 8 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 9 \\ 0\end{array}\right]$ span all of \mathbb{R}^{3} ?
Do the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]$ span all of \mathbb{R}^{2} ?

The Hybrid Approach

Three considerations

- Definition of inquiry, inquiry-oriented teaching
- Teaching goals
- Constraints

Inquiry-oriented teaching emerged through reflection on these considerations

Questions?

Spencer Payton

spayton@math.wsu.edu

