Specific Examples, Generic Elements and Size Tuning Tools for Overcoming Student Roadblocks in Linear Algebra

Jeffrey L. Stuart
Pacific Lutheran University Tacoma, WA 98447 USA jeffrey.stuart@plu.edu

January 2016

My Background

- Fifteen years at PLU - a medium-sized, liberal arts university
- 15-20 math-related majors per year, all take linear algebra as sophomores or juniors.
- Plus some physics, CS and econ majors, also some math/stats minors
- We offer a single, proof-based linear algebra course
- Half of students take an Intro to Proofs course first
- Fifteen years at a medium-sized state university with a masters in math and a joint PhD in Computational Science
- 15-20 math majors per year, most of whom took two semesters of proof-based linear algebra
- We also offered a low-proof matrix theory course for math ed, and two graduate computational matrix theory courses
- Half of students in first proof-based course took Discrete Math first
- Thirty years as a researcher in combinatorial matrix theory
- (Thank you, Professor Hans Schneider)

Student Problems in Proofs (1)

- Linear Algebra is the often the first math course in which sets play an explicit and fundamental role.
- Linear Algebra students typically struggle with writing proofs for set-based results.

Anyone who has taught linear algebra several times has seen student "proofs" of the following types:

- Prove that vector addition is commutative in \mathbb{R}^{n}.

Student Problems in Proofs (1)

- Linear Algebra is the often the first math course in which sets play an explicit and fundamental role.
- Linear Algebra students typically struggle with writing proofs for set-based results.

Anyone who has taught linear algebra several times has seen student "proofs" of the following types:

- Prove that vector addition is commutative in \mathbb{R}^{n}.
- Putative Proof: " $(4,3)$ and $(5,7)$ are in \mathbb{R}^{n}, and $(4,3)+(5,7)=(9,10)=(5,7)+(4,3) . "$

Student Problems in Proofs (1)

- Linear Algebra is the often the first math course in which sets play an explicit and fundamental role.
- Linear Algebra students typically struggle with writing proofs for set-based results.

Anyone who has taught linear algebra several times has seen student "proofs" of the following types:

- Prove that vector addition is commutative in \mathbb{R}^{n}.
- Putative Proof: " $(4,3)$ and $(5,7)$ are in \mathbb{R}^{n}, and $(4,3)+(5,7)=(9,10)=(5,7)+(4,3) . "$
- A specific example is employed to prove the truth of a universal statement, and a proof for \mathbb{R}^{2} dispatches \mathbb{R}^{n} for all n. Note that specifying \mathbb{R}^{47} rather than \mathbb{R}^{n} blocks student from using \mathbb{R}^{2}. Since 47 is too large to explicitly write each entry, students are pushed towards focusing on a general entry.

Student Problems in Proofs (2)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a \geq 0\right.$ and $\left.b \geq 0\right\}$ is closed under vector addition."

Student Problems in Proofs (2)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a \geq 0\right.$ and $\left.b \geq 0\right\}$ is closed under vector addition."
- Putative Proof: " $(a, b)+(a, b)=(2 a, 2 b)$ satisfies $2 a \geq 0$ and $2 b \geq 0$."

Student Problems in Proofs (2)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a \geq 0\right.$ and $\left.b \geq 0\right\}$ is closed under vector addition."
- Putative Proof: " $(a, b)+(a, b)=(2 a, 2 b)$ satisfies $2 a \geq 0$ and $2 b \geq 0$."
- The single generic element from the set definition used to represent two potentially distinct generic elements.

Student Problems in Proofs (2)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a \geq 0\right.$ and $\left.b \geq 0\right\}$ is closed under vector addition."
- Putative Proof: " $(a, b)+(a, b)=(2 a, 2 b)$ satisfies $2 a \geq 0$ and $2 b \geq 0$."
- The single generic element from the set definition used to represent two potentially distinct generic elements.
- This is a proof, but of not of the desired result.

Student Problems in Proofs (3)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a b=0\right\}$ is not closed under vector addition.

Student Problems in Proofs (3)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a b=0\right\}$ is not closed under vector addition.
- Putative Proof: " $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)=0$ so $a_{1} b_{1}+a_{2} b_{1}+a_{1} b_{2}+a_{2} b_{2}=0$ so $a_{2} b_{1}+a_{1} b_{2}=0$, which cannot happen."

Student Problems in Proofs (3)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a b=0\right\}$ is not closed under vector addition.
- Putative Proof: " $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)=0$ so $a_{1} b_{1}+a_{2} b_{1}+a_{1} b_{2}+a_{2} b_{2}=0$ so $a_{2} b_{1}+a_{1} b_{2}=0$, which cannot happen."
- Except that it does sometimes happen. The student has failed to convince us because the entries in the argument are not fully specified, allowing the possibility for $a_{1}=a_{2}=0$ or $b_{1}=b_{2}=0$.

Student Problems in Proofs (3)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a b=0\right\}$ is not closed under vector addition.
- Putative Proof: " $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)=0$ so $a_{1} b_{1}+a_{2} b_{1}+a_{1} b_{2}+a_{2} b_{2}=0$ so $a_{2} b_{1}+a_{1} b_{2}=0$, which cannot happen."
- Except that it does sometimes happen. The student has failed to convince us because the entries in the argument are not fully specified, allowing the possibility for $a_{1}=a_{2}=0$ or $b_{1}=b_{2}=0$.
- On the positive side, the student has created and correctly used two generic elements from the set, $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$, and implicitly but correctly used $a_{1} b_{1}=0$ and $a_{2} b_{2}=0$.

Student Problems in Proofs (3)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a b=0\right\}$ is not closed under vector addition.
- Putative Proof: " $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)=0$ so $a_{1} b_{1}+a_{2} b_{1}+a_{1} b_{2}+a_{2} b_{2}=0$ so $a_{2} b_{1}+a_{1} b_{2}=0$, which cannot happen."
- Except that it does sometimes happen. The student has failed to convince us because the entries in the argument are not fully specified, allowing the possibility for $a_{1}=a_{2}=0$ or $b_{1}=b_{2}=0$.
- On the positive side, the student has created and correctly used two generic elements from the set, $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$, and implicitly but correctly used $a_{1} b_{1}=0$ and $a_{2} b_{2}=0$.
- In the first "proof", a specific example "verifies" a universal statement.

Student Problems in Proofs (3)

- Prove that the set $\left\{(a, b) \in \mathbb{R}^{2}: a b=0\right\}$ is not closed under vector addition.
- Putative Proof: " $\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)=0$ so $a_{1} b_{1}+a_{2} b_{1}+a_{1} b_{2}+a_{2} b_{2}=0$ so $a_{2} b_{1}+a_{1} b_{2}=0$, which cannot happen."
- Except that it does sometimes happen. The student has failed to convince us because the entries in the argument are not fully specified, allowing the possibility for $a_{1}=a_{2}=0$ or $b_{1}=b_{2}=0$.
- On the positive side, the student has created and correctly used two generic elements from the set, $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$, and implicitly but correctly used $a_{1} b_{1}=0$ and $a_{2} b_{2}=0$.
- In the first "proof", a specific example "verifies" a universal statement.
- In the second "proof", a generic example falsely contradicts a false universal statement. The student fails to see the need for a specific example.

Prompting for generic elements and specific examples

- Students need constant re-emphasis of the differences between and the roles of generic elements and specific (counter)examples.

Prompting for generic elements and specific examples

- Students need constant re-emphasis of the differences between and the roles of generic elements and specific (counter)examples.
- "Can anyone give me two specific examples from this set?"

Prompting for generic elements and specific examples

- Students need constant re-emphasis of the differences between and the roles of generic elements and specific (counter)examples.
- "Can anyone give me two specific examples from this set?"
- "Can anyone give me two generic elements from this set? What properties do they satisfy?"

Prompting for generic elements and specific examples

- Students need constant re-emphasis of the differences between and the roles of generic elements and specific (counter)examples.
- "Can anyone give me two specific examples from this set?"
- "Can anyone give me two generic elements from this set? What properties do they satisfy?"
- "We are proving a result for all of the elements in this set. What is a often good way to begin?"

Prompting for generic elements and specific examples

- Students need constant re-emphasis of the differences between and the roles of generic elements and specific (counter)examples.
- "Can anyone give me two specific examples from this set?"
- "Can anyone give me two generic elements from this set? What properties do they satisfy?"
- "We are proving a result for all of the elements in this set. What is a often good way to begin?"
- This (eventually) prompts students to volunteer, "Choose generic elements from the set."

Prompting for generic elements and specific examples

- Students need constant re-emphasis of the differences between and the roles of generic elements and specific (counter)examples.
- "Can anyone give me two specific examples from this set?"
- "Can anyone give me two generic elements from this set? What properties do they satisfy?"
- "We are proving a result for all of the elements in this set. What is a often good way to begin?"
- This (eventually) prompts students to volunteer, "Choose generic elements from the set."
- "We want to show a property can fail for some elements in a set. What is a often good way to begin?"

Prompting for generic elements and specific examples

- Students need constant re-emphasis of the differences between and the roles of generic elements and specific (counter)examples.
- "Can anyone give me two specific examples from this set?"
- "Can anyone give me two generic elements from this set? What properties do they satisfy?"
- "We are proving a result for all of the elements in this set. What is a often good way to begin?"
- This (eventually) prompts students to volunteer, "Choose generic elements from the set."
- "We want to show a property can fail for some elements in a set. What is a often good way to begin?"
- This (eventually) prompts students to volunteer, "Look for a specific element (counterexample) in the set."

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.
- Hidden set question: Show that the set of $n \times n$ upper triangular matrices is closed under matrix addition.

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.
- Hidden set question: Show that the set of $n \times n$ upper triangular matrices is closed under matrix addition.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A+B)_{i j}=a_{i j}+b_{i j}$. Since A and B are upper triangular, $a_{i j}=0$ and $b_{i j}=0$ when $i>j$, so $a_{i j}+b_{i j}=0$ when $i>j$. Thus, $A+B$ is upper triangular.

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.
- Hidden set question: Show that the set of $n \times n$ upper triangular matrices is closed under matrix addition.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices.

For all i and $j,(A+B)_{i j}=a_{i j}+b_{i j}$. Since A and B are upper triangular, $a_{i j}=0$ and $b_{i j}=0$ when $i>j$, so $a_{i j}+b_{i j}=0$ when $i>j$. Thus, $A+B$ is upper triangular.

- Putative Proof 1: The sum of two specific upper triangular matrices.

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.
- Hidden set question: Show that the set of $n \times n$ upper triangular matrices is closed under matrix addition.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A+B)_{i j}=a_{i j}+b_{i j}$. Since A and B are upper triangular, $a_{i j}=0$ and $b_{i j}=0$ when $i>j$, so $a_{i j}+b_{i j}=0$ when $i>j$. Thus, $A+B$ is upper triangular.
- Putative Proof 1: The sum of two specific upper triangular matrices.
- Putative Proof 2: Partially filled, possibly upper triangular matrices mostly added together.

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.
- Hidden set question: Show that the set of $n \times n$ upper triangular matrices is closed under matrix addition.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A+B)_{i j}=a_{i j}+b_{i j}$. Since A and B are upper triangular, $a_{i j}=0$ and $b_{i j}=0$ when $i>j$, so $a_{i j}+b_{i j}=0$ when $i>j$. Thus, $A+B$ is upper triangular.
- Putative Proof 1: The sum of two specific upper triangular matrices.
- Putative Proof 2: Partially filled, possibly upper triangular matrices mostly added together.
- Putative Proof 3: (Blank)

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.
- Hidden set question: Show that the set of $n \times n$ upper triangular matrices is closed under matrix addition.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A+B)_{i j}=a_{i j}+b_{i j}$. Since A and B are upper triangular, $a_{i j}=0$ and $b_{i j}=0$ when $i>j$, so $a_{i j}+b_{i j}=0$ when $i>j$. Thus, $A+B$ is upper triangular.
- Putative Proof 1: The sum of two specific upper triangular matrices.
- Putative Proof 2: Partially filled, possibly upper triangular matrices mostly added together.
- Putative Proof 3: (Blank)
- The arbitrary aspects overwhelm the students, concealing that they do understand the importance of triangularity here.

Author/Instructor-Induced Student Problems in Proofs

- Prove the sum of two upper triangular matrices is upper triangular.
- Hidden set question: Show that the set of $n \times n$ upper triangular matrices is closed under matrix addition.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A+B)_{i j}=a_{i j}+b_{i j}$. Since A and B are upper triangular, $a_{i j}=0$ and $b_{i j}=0$ when $i>j$, so $a_{i j}+b_{i j}=0$ when $i>j$. Thus, $A+B$ is upper triangular.
- Putative Proof 1: The sum of two specific upper triangular matrices.
- Putative Proof 2: Partially filled, possibly upper triangular matrices mostly added together.
- Putative Proof 3: (Blank)
- The arbitrary aspects overwhelm the students, concealing that they do understand the importance of triangularity here.
- Most students can generate generic elements and perform the matrix algebra to correctly show that the sum of two 3×3 upper triangular matrices is upper triangular.

Author/Instructor-Induced Misery (Aggravated)

- Prove the product of two upper triangular matrices is upper triangular.

Author/Instructor-Induced Misery (Aggravated)

- Prove the product of two upper triangular matrices is upper triangular.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Since A and B are upper triangular, $a_{i k}=0$ when $i>k$ and $b_{k j}=0$ when $k>j$, so $a_{i k} b_{k j}=0$ when $k<i$ or $k>j$. So $(A B)_{i j}=\sum_{k=i}^{j} a_{i k} b_{k j}$. When $i>j$, there are no nonzero summands! Thus, $(A B)_{i j}=0$ when $i>j$.

Author/Instructor-Induced Misery (Aggravated)

- Prove the product of two upper triangular matrices is upper triangular.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Since A and B are upper triangular, $a_{i k}=0$ when $i>k$ and $b_{k j}=0$ when $k>j$, so $a_{i k} b_{k j}=0$ when $k<i$ or $k>j$. So $(A B)_{i j}=\sum_{k=i}^{j} a_{i k} b_{k j}$. When $i>j$, there are no nonzero summands! Thus, $(A B)_{i j}=0$ when $i>j$.
- I leave you to imagine the horrors that I have seen.

Author/Instructor-Induced Misery (Aggravated)

- Prove the product of two upper triangular matrices is upper triangular.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Since A and B are upper triangular, $a_{i k}=0$ when $i>k$ and $b_{k j}=0$ when $k>j$, so $a_{i k} b_{k j}=0$ when $k<i$ or $k>j$. So $(A B)_{i j}=\sum_{k=i}^{j} a_{i k} b_{k j}$. When $i>j$, there are no nonzero summands! Thus, $(A B)_{i j}=0$ when $i>j$.
- I leave you to imagine the horrors that I have seen.
- The arbitrary aspects overwhelm the students, concealing that they do understand the importance of triangularity here.

Author/Instructor-Induced Misery (Aggravated)

- Prove the product of two upper triangular matrices is upper triangular.
- The Fantasy Proof: Let A and B be $n \times n$ upper triangular matrices. For all i and $j,(A B)_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$. Since A and B are upper triangular, $a_{i k}=0$ when $i>k$ and $b_{k j}=0$ when $k>j$, so $a_{i k} b_{k j}=0$ when $k<i$ or $k>j$. So $(A B)_{i j}=\sum_{k=i}^{j} a_{i k} b_{k j}$. When $i>j$, there are no nonzero summands! Thus, $(A B)_{i j}=0$ when $i>j$.
- I leave you to imagine the horrors that I have seen.
- The arbitrary aspects overwhelm the students, concealing that they do understand the importance of triangularity here.
- Most students can generate the generic elements and perform the matrix algebra to correctly show that the product of two 3×3 upper triangular matrices is upper triangular.

Four Key Strategies for Student Proof Success

(1) Emphasize the role of specific (fully specified) examples as examples to highlight definitions, and, more importantly, as counterexamples to universal statements.
(2) Emphasize what a generic element from a set is, how to write one or more generic elements from a set, and what role they play in proofs about sets.
(3) Emphasize the different and noninterchangeable roles of specific examples and generic elements.
(9) Thoughtfully tune the sizes of vectors and matrices in problems to focus students on the primary idea at hand.

Spans are the Unsung Heroes of Linear Algebra ... but ...

- "We" typically define the span of a set S of vectors from \mathbb{R}^{n} as, "The span of S is the set of all linear combinations of vectors from $S . "$

Spans are the Unsung Heroes of Linear Algebra ... but ...

- "We" typically define the span of a set S of vectors from \mathbb{R}^{n} as, "The span of S is the set of all linear combinations of vectors from S."
- Perhaps we require S be nonempty.

Spans are the Unsung Heroes of Linear Algebra ... but ...

- "We" typically define the span of a set S of vectors from \mathbb{R}^{n} as, "The span of S is the set of all linear combinations of vectors from $S . "$
- Perhaps we require S be nonempty.
- In all early examples, S is a FINITE set, but many authors/instructors do NOT build finiteness into their definition.

Spans are the Unsung Heroes of Linear Algebra ... but ...

- "We" typically define the span of a set S of vectors from \mathbb{R}^{n} as, "The span of S is the set of all linear combinations of vectors from $S . "$
- Perhaps we require S be nonempty.
- In all early examples, S is a FINITE set, but many authors/instructors do NOT build finiteness into their definition.
- What does a student do with
"Let S be a nonempty subset of \mathbb{R}^{n}. Show that $\operatorname{span}(S)$ is closed under vector addition?

Spans are the Unsung Heroes of Linear Algebra ... but ...

- "We" typically define the span of a set S of vectors from \mathbb{R}^{n} as, "The span of S is the set of all linear combinations of vectors from $S . "$
- Perhaps we require S be nonempty.
- In all early examples, S is a FINITE set, but many authors/instructors do NOT build finiteness into their definition.
- What does a student do with
"Let S be a nonempty subset of \mathbb{R}^{n}. Show that $\operatorname{span}(S)$ is closed under vector addition?
- Size tuning suggests a cascade of examples and problems.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then

$$
\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\} .
$$

- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then
$\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
(Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then
$\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
(Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then
$\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
(Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- Show that $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is closed under vector addition.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$. (Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- Show that $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is closed under vector addition.
- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in \mathbb{R}^{n}$, then
$\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)=\left\{\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}:\right.$ all $\left.c_{j} \in \mathbb{R}\right\}$.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$. (Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- Show that $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is closed under vector addition.
- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in \mathbb{R}^{n}$, then
$\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)=\left\{\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}:\right.$ all $\left.c_{j} \in \mathbb{R}\right\}$.
- Give two different generic elements of $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$. (Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- Show that $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is closed under vector addition.
- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in \mathbb{R}^{n}$, then
$\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)=\left\{\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}:\right.$ all $\left.c_{j} \in \mathbb{R}\right\}$.
- Give two different generic elements of $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$.
- Show that $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$ is closed under vector addition.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then
$\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$. (Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- Show that $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is closed under vector addition.
- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in \mathbb{R}^{n}$, then
$\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)=\left\{\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}:\right.$ all $\left.c_{j} \in \mathbb{R}\right\}$.
- Give two different generic elements of $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$.
- Show that $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$ is closed under vector addition.
- If S is a nonempty, possibly infinite subset of \mathbb{R}^{n}, then $\operatorname{span}(S)$ is the set of all linear combinations built using a finite number of vectors from S. To get a generic element of S, choose some positive integer k, choose k vectors from S, and then form the linear combination: $\mathbf{x}=\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}$ where $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in S$ and where $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$.
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$. (Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- Show that $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is closed under vector addition.
- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in \mathbb{R}^{n}$, then
$\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)=\left\{\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}:\right.$ all $\left.c_{j} \in \mathbb{R}\right\}$.
- Give two different generic elements of $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$.
- Show that $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$ is closed under vector addition.
- If S is a nonempty, possibly infinite subset of \mathbb{R}^{n}, then $\operatorname{span}(S)$ is the set of all linear combinations built using a finite number of vectors from S. To get a generic element of S, choose some positive integer k, choose k vectors from S, and then form the linear combination: $\mathbf{x}=\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}$ where $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in S$ and where $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$.
- Why can we assume that another generic element \mathbf{y} in S can be built with the same vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in S$?
- If $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$, then $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\left\{c_{1} \mathbf{u}+c_{2} \mathbf{v}+c_{3} \mathbf{w}: c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}$.
- Give a generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$. (Hint: It is not $c \mathbf{u}+c \mathbf{v}+c \mathbf{w}$, why not?)
- Give a second, different generic element of $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$.
- Show that $\operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is closed under vector addition.
- If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in \mathbb{R}^{n}$, then

$$
\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)=\left\{\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}: \text { all } c_{j} \in \mathbb{R}\right\}
$$

- Give two different generic elements of $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$.
- Show that $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}\right)$ is closed under vector addition.
- If S is a nonempty, possibly infinite subset of \mathbb{R}^{n}, then $\operatorname{span}(S)$ is the set of all linear combinations built using a finite number of vectors from S. To get a generic element of S, choose some positive integer k, choose k vectors from S, and then form the linear combination: $\mathbf{x}=\sum_{j=1}^{k} c_{j} \mathbf{v}_{j}$ where $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in S$ and where $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$.
- Why can we assume that another generic element \mathbf{y} in S can be built with the same vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k} \in S$?
- Prove $\operatorname{span}(S)$ is closed under vector addition by showing $\mathbf{x} \neq \mathbf{y}$ is in $S_{\underline{\underline{\underline{E}}}}$.
- Mathematical conventions are agreements made by all or most mathematicians to adopt a practice that is convenient.
- Mathematical conventions are agreements made by all or most mathematicians to adopt a practice that is convenient.
- You have met some conventions already: angles are measured counterclockwise; $0!=1$; and $x^{0}=1$ for all real x.
- Mathematical conventions are agreements made by all or most mathematicians to adopt a practice that is convenient.
- You have met some conventions already: angles are measured counterclockwise; $0!=1$; and $x^{0}=1$ for all real x.
- Another convention is that the span of the empty set is $\{\mathbf{0}\}$ where $\mathbf{0} \in \mathbb{R}^{n}$ for the appropriate choice of n. Does this seem reasonable to you?
- Mathematical conventions are agreements made by all or most mathematicians to adopt a practice that is convenient.
- You have met some conventions already: angles are measured counterclockwise; $0!=1$; and $x^{0}=1$ for all real x.
- Another convention is that the span of the empty set is $\{\boldsymbol{0}\}$ where $\mathbf{0} \in \mathbb{R}^{n}$ for the appropriate choice of n. Does this seem reasonable to you?
- On the subject of conventions, I hope that you have enjoyed our lovely Convention Center here in Seattle!
- Mathematical conventions are agreements made by all or most mathematicians to adopt a practice that is convenient.
- You have met some conventions already: angles are measured counterclockwise; $0!=1$; and $x^{0}=1$ for all real x.
- Another convention is that the span of the empty set is $\{\boldsymbol{0}\}$ where $\mathbf{0} \in \mathbb{R}^{n}$ for the appropriate choice of n. Does this seem reasonable to you?
- On the subject of conventions, I hope that you have enjoyed our lovely Convention Center here in Seattle!
- I wish to thank all of my students, the organizers of this session, and all you who have listened to this talk.
- Mathematical conventions are agreements made by all or most mathematicians to adopt a practice that is convenient.
- You have met some conventions already: angles are measured counterclockwise; $0!=1$; and $x^{0}=1$ for all real x.
- Another convention is that the span of the empty set is $\{\boldsymbol{0}\}$ where $\mathbf{0} \in \mathbb{R}^{n}$ for the appropriate choice of n. Does this seem reasonable to you?
- On the subject of conventions, I hope that you have enjoyed our lovely Convention Center here in Seattle!
- I wish to thank all of my students, the organizers of this session, and all you who have listened to this talk.
- Jeff Stuart Pacific Lutheran University jeffrey.stuart@plu.edu

