The Fundamental Theorem of Linear Algebra

Gilbert Strang MIT

Big Picture: Column space and nullspace of A and A^{\top}

Figure 1: The action of A : Row space to column space, nullspace to zero.

$$
m>n \text { in } A x=b \quad \text { Solve } A^{T} A \hat{x}=A^{T} b
$$

Projection $\quad p=A \hat{x}=A\left(A^{T} A\right)^{-1} A^{T} b=P b$

Figure 2: Least squares: $\widehat{\boldsymbol{x}}$ minimizes $\|\boldsymbol{b}-A \boldsymbol{x}\|^{2}$ by solving $A^{\mathrm{T}} A \widehat{\boldsymbol{x}}=A^{\mathrm{T}} \boldsymbol{b}$.

SVD = Singular Value Decomposition

 $A=U \Sigma V^{\top}(m \times m)(m \times n)(n \times n)$

Figure 3: Orthonormal bases that diagonalize A.

Pseudoinverse A^{+}is n by m

Figure 4: The inverse of A (where possible) is the pseudoinverse A^{+}.

SVD

Construct $\quad V, \Sigma, U \quad$ in $\quad A=U \Sigma V^{\top}$
$\mathrm{v}_{1}, \ldots, \mathrm{~V}_{\mathrm{r}}$ orthonormal eigenvectors of $\mathrm{A}^{\top} \mathrm{A}$

$$
\mathrm{A}^{\top} \mathrm{A} \mathrm{v}_{\mathrm{i}}=\lambda_{i} \mathrm{v}_{\mathrm{i}} \quad \lambda_{i}=\sigma_{i}^{2} \quad \lambda_{i}>0
$$

$K E Y \mathrm{u}_{\mathrm{i}}=\mathrm{A} \mathrm{v}_{\mathrm{i}}$ are orthogonal because

$$
\left(A v_{i}\right)^{\top}\left(A v_{j}\right)=v_{i}^{\top}\left(A^{\top} A v_{j}\right)=\lambda_{j} v_{i}^{\top} v_{j}
$$

Normalize to length 1 Divide u_{i} by $\sigma_{i}=\left\|u_{i}\right\|$
Choose V_{r+1}, \ldots, V_{n} orthonormal in N(A)
Choose u_{r+1}, \ldots, u_{n} orthonormal in $N\left(A^{\top}\right)$
Then $\quad A v_{1}=\sigma_{1} u_{1} \quad \ldots \quad A v_{r}=\sigma_{r} u_{r}$

An all-black image $(300 \times 300$ pixels $)$:

Grey-scale image (300×300 pixels):

$$
\frac{1}{300}\left[\begin{array}{cccc}
0 & 1 & \cdots & 299 \\
\vdots & \vdots & & \vdots \\
0 & 1 & \cdots & 299
\end{array}\right]=\frac{1}{300} \underbrace{\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]\left[\begin{array}{lllll}
0 & 1 & 2 & \cdots & 299
\end{array}\right]}_{\text {Send this! }}
$$

French flag (300×300 pixels):

$$
\left[\begin{array}{ccccccccc}
0 & \cdots & 0 & 1 & \cdots & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & \cdots & 1 & 0 & \cdots & 0
\end{array}\right]=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]\left[\begin{array}{llll}
0 \cdots 0 & 1 \cdots 1 & 0 \cdots 0
\end{array}\right]
$$

row rank $=$ column rank

Factor $\quad A_{m \times n}=C_{m \times r} D_{r \times n}=\left[C_{1} \ldots c_{r}\right]\left[d_{1} \ldots d_{n}\right]$
Basis for column space in C : $\operatorname{dim} r$
Coefficients for each column are in D
Look again, REVERSED $A=\left[\begin{array}{c}\text { row } 1 \\ \vdots \\ \text { row } \mathrm{m}\end{array}\right]\left[\begin{array}{c}\text { row } 1 \\ \vdots \\ \text { row } \mathrm{r}\end{array}\right]$
$A=C D$ expresses rows of A by rows of D
Coefficients for each row are in C
Then row space has dimension $\leq r$

row rank = column rank

Start X_{1}, \ldots, X_{r} basis for row space Show $A x_{1}, \ldots, A x_{r}$ independent in column space Suppose $0=c_{1} A x_{1}+\cdots+c_{r} A x_{r}$

$$
=A\left(c_{1} X_{1}+\cdots+c_{r} X_{r}\right)=A v
$$

v is in row space and null space: $v=0$.
Then $c_{i}=0$ since x_{i} are a basis.

