The Fundamental Theorem of Linear Algebra

Gilbert Strang MIT

Big Picture: Column space and nullspace of A and A^{T}

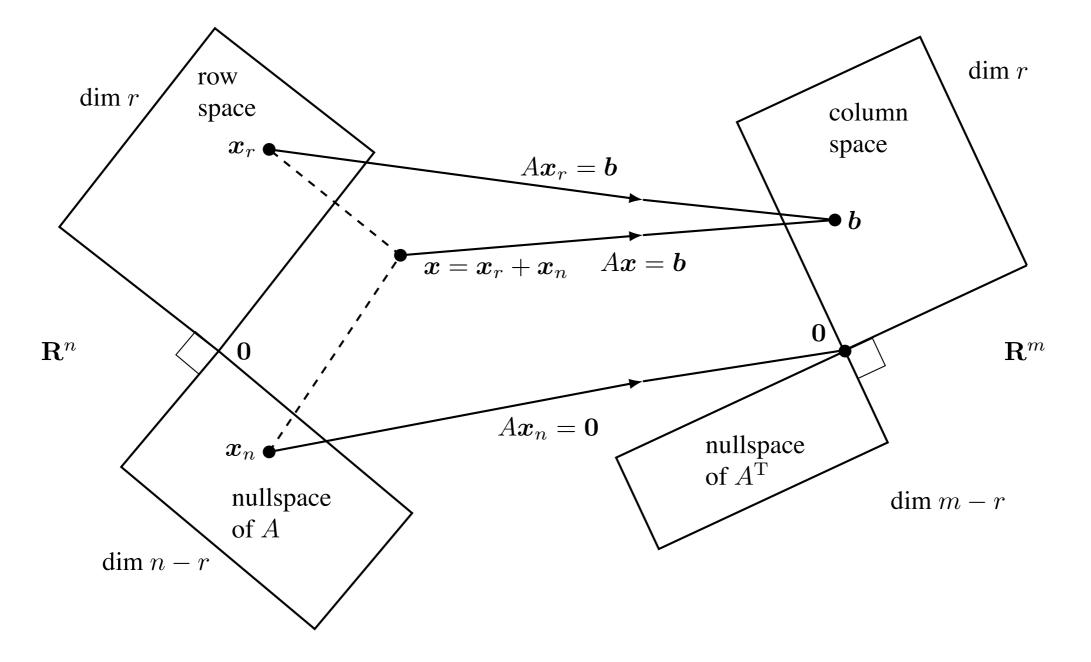


Figure 1: The action of A: Row space to column space, nullspace to zero.

m > n in Ax = b Solve $A^T A \hat{x} = A^T b$

Projection $p = A\hat{x} = A(A^TA)^{-1}A^Tb = Pb$

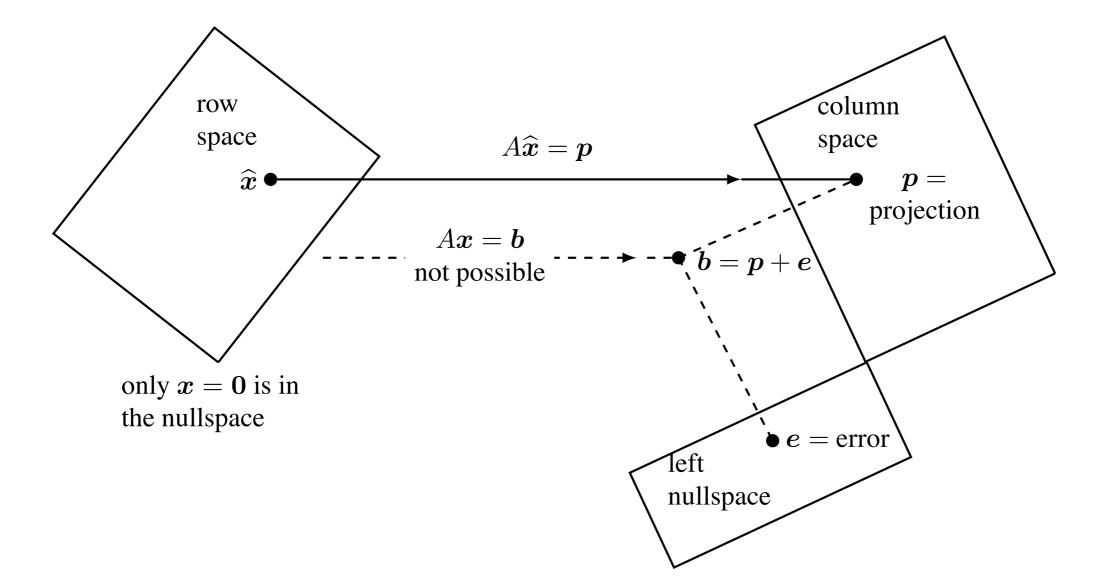


Figure 2: Least squares: \hat{x} minimizes $\|\boldsymbol{b} - A\boldsymbol{x}\|^2$ by solving $A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$.

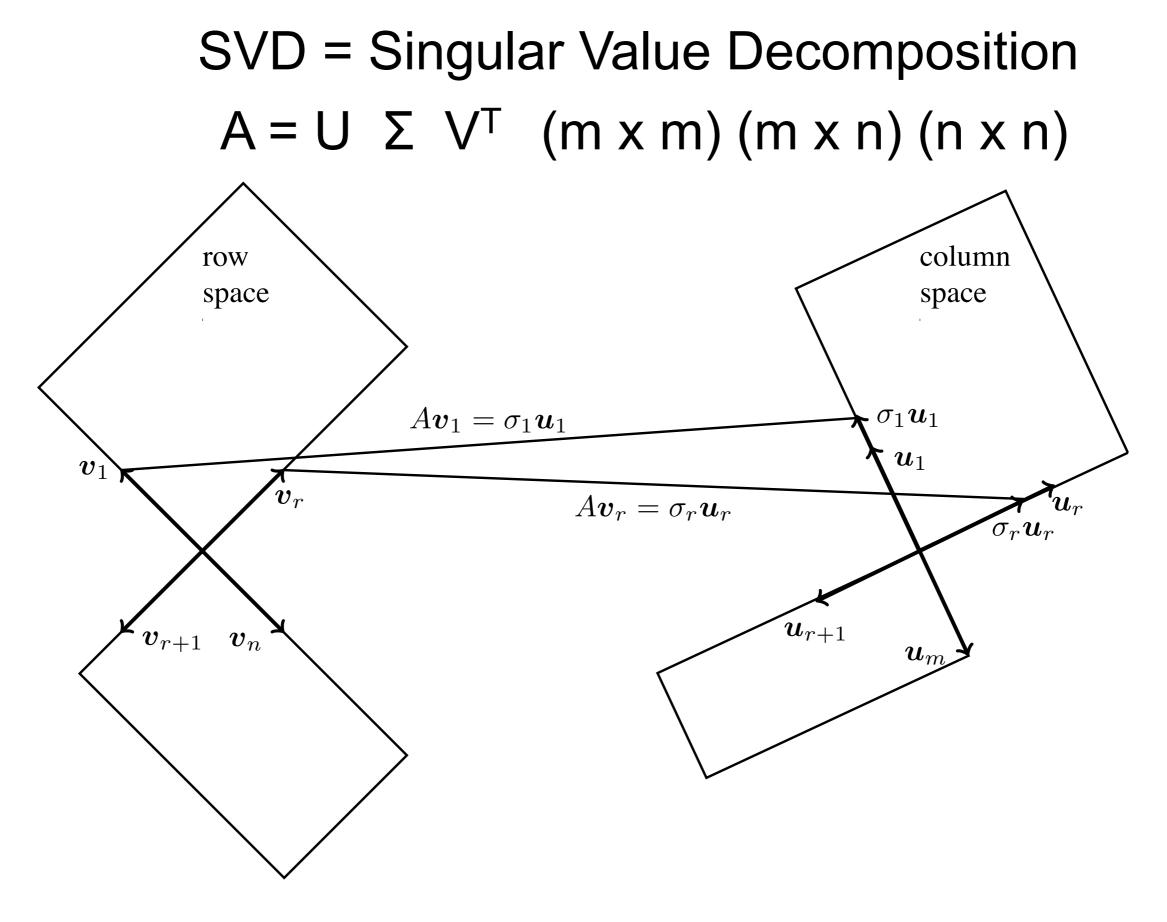


Figure 3: Orthonormal bases that diagonalize A.

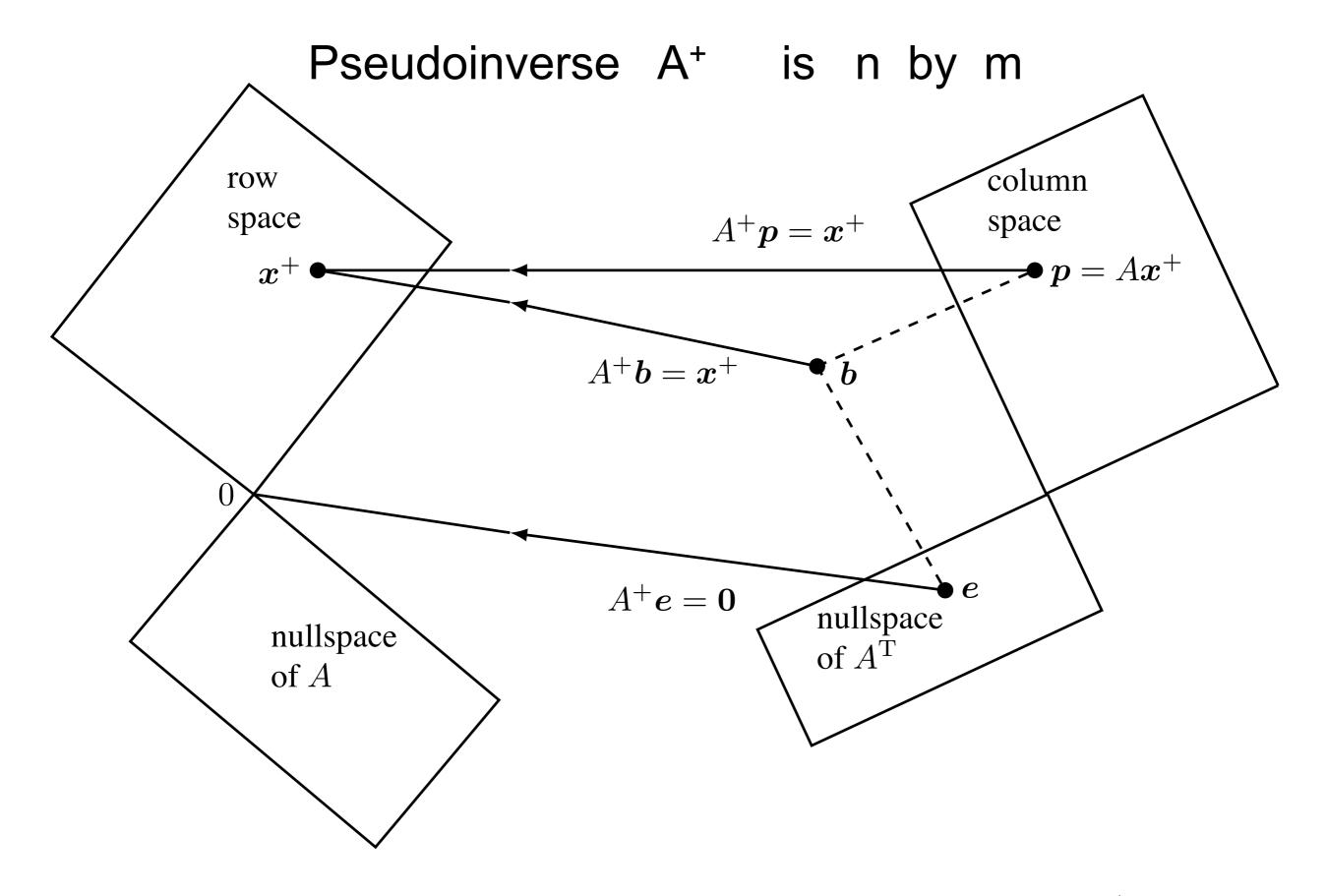
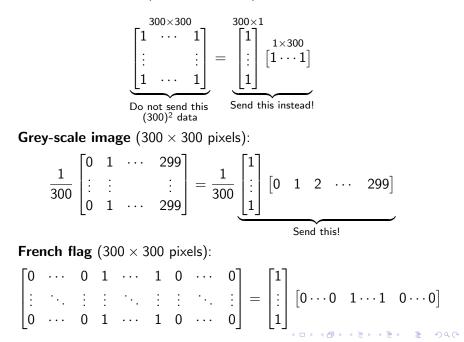


Figure 4: The inverse of A (where possible) is the pseudoinverse A^+ .

SVD

Construct V, Σ , U in A = U Σ V^T v_1, v_r orthonormal eigenvectors of $A^T A$ $A^{\mathsf{T}} A \mathsf{v}_{\mathsf{i}} = \hat{\chi}_i \mathsf{v}_{\mathsf{i}} \qquad \hat{\chi}_i = \sigma_i^2 \qquad \hat{\chi}_i > 0$ *KEY* $u_i = A v_i$ are orthogonal because $(A v_i)^T (A v_i) = v_i^T (A^T A v_i) = \hat{\chi}_i v_i^T v_i$ Normalize to length 1 Divide u_i by $\sigma_i = ||u_i||$ Choose v_{r+1} ,..., v_n orthonormal in N(A) Choose u_{r+1} ..., u_n orthonormal in N(A^T) Then $Av_1 = \sigma_1 u_1 \dots Av_r = \sigma_r u_r$

An all-black image $(300 \times 300 \text{ pixels})$:



row rank = column rank

PROOF 1

Factor $A_{m \times n} = C_{m \times r} D_{r \times n} = [c_1 \dots c_r][d_1 \dots d_n]$ Basis for column space in C: dim r Coefficients for each column are in D

Look again, REVERSED
$$A = \begin{bmatrix} row \ 1 \\ \vdots \\ row \ m \end{bmatrix} \begin{bmatrix} row \ 1 \\ \vdots \\ row \ r \end{bmatrix}$$

A = CD expresses rows of A by rows of D Coefficients for each row are in C Then row space has dimension \leq r

row rank = column rank

Start $x_{1,...,} x_{r}$ basis for row space Show $Ax_{1,...,} Ax_{r}$ independent in column space Suppose $0 = c_{1}Ax_{1} + \dots + c_{r}Ax_{r}$ $= A (c_{1}x_{1} + \dots + c_{r}x_{r}) = Av$ v is in row space and null space: v = 0.

Then $c_i = 0$ since x_i are a basis.