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Definition

• The SVD of an m by n matrix A is written as
𝐴 = 𝑈𝑉𝑇

where U is the 𝑚 ×𝑚 orthogonal matrix, V is the 𝑛 ×
𝑛 orthogonal matrix, and  is the 𝑚 × 𝑛 orthogonal
matrix having the singular values 𝜎1 ≥ 𝜎2 ≥ . . . ≥
𝜎min(𝑚,𝑛) of A in order along its diagonal. The columns
of U and V are called the left and right singular vectors
for A.
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A be an 𝑚 × 𝑛 matrix

A ℝ𝑛 into ℝ𝑚

𝐴𝑉 = 𝑈

• The columns of V and U provide the basis for the 
domain and range. 



•U is an m by m orthogonal matrix. Its 
columns 𝑢1, . . .𝑢𝑘. . .𝑢𝑚 are basis vectors 
for the column space and the left null space. 

•V is an n by n orthogonal matrix. Its columns 
𝑣1, . . .𝑣𝑘. . .𝑣𝑛 are basis vectors for the row  
space and the null space.



𝐴𝑥 = 0

𝐴𝑥 =
−row 1 −
−row 2 −
−row m−

𝑥 =
0
0
0

The nullspace N(A) is orthogonal to the  row space 𝑅 𝐴𝑇

The left nullspace 𝑁 𝐴𝑇 is orthogonal to the column 
space 𝑅(𝐴)
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Observations

Let A be an m× 𝑛 matrix with a singular value decomposition 𝑈𝑉𝑇

 The left and right singular vectors 𝑢𝑖 and 𝑣𝑖 tend to become more and 
more oscillatory as index i increases, i.e. as 𝜎𝑖 decreases. 

 The matrix V is obtained from the diagonal factorization,   𝐴𝑇𝐴 =
𝑉𝑉𝑇 . 𝑉 diagonalizes 𝐴𝑇𝐴, it follows that the 𝑣𝑗’s are the 
eigenvectors of 𝐴𝑇𝐴. Similarly U diagonalizes 𝐴𝐴𝑇.



• 𝐴𝑇𝐴 = 𝑉𝑇𝑈𝑇𝑈𝑉𝑇=𝑉

𝜎1
2

⋱
𝜎𝑟
2

0
0

𝑉𝑇

• Hence 𝜎1
2, . . . , 𝜎𝑟

2 (and 0 if r < n) are eigenvalues of 𝐴𝑇𝐴 and the 
columns of V are the the eigenvectors of 𝐴𝑇𝐴.

• The singular values are the square roots of the nonzero eigenvalues of  
both 𝐴𝑇𝐴 and 𝐴𝐴𝑇.



• If A has rank r<n, if we set 

𝑈1 = 𝑢1, . . . , 𝑢𝑟 𝑉1 = 𝑣1, . . . , 𝑣𝑟

and define 1=
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑟

,

then 𝑨 = 𝑼𝟏𝟏𝑽𝟏
𝑻 is called the compact form of the singular value 

decomposition of A.       



Applications_1 
Numerical Rank

• It is necessary to determine the rank of  a matrix.

• If the computations involve a nonsingular matrix that 
is very close to being singular, then the computed 
solutions may have no digits of accuracy. 

• The singular values provide a way of measuring how 
close a matrix to matrices of lower rank. 



Numerical  Rank

•The numerical rank of an m x n matrix  is the 
number of singular values of the matrix that 
are greater than 𝜎 1max 𝑚, 𝑛 𝜖, where 𝜎 1
is the largest singular value of A and 𝜖 is the 

machine epsilon.



Example

S u p p o s e  t h a t  a  5 x 5  m a t r i x  w i t h  s i n g u l a r  va l u e s  𝜎1= 4 ;  𝜎2= 1 ;  𝜎3= 1 0 - 1 2 ;  

𝜎4= 3 . 1 x 1 0 - 1 4 ;  𝜎1= 2 . 6 x 1 0 - 1 5 ;  a n d  s u p p o s e  t h a t  t h e  m a c h i n e  e p s i l o n

(𝜖 )  i s  5 x 1 0 - 1 5 .

S o l u t i o n :      𝜎 1 max 𝑚 , 𝑛 𝜖 = 4 x 5 x 5 x 1 0 - 1 5  = 1 0 - 1 3

S i n c e  t h re e  o f  t h e  s i n g u l a r  va l u e s  a re  g re a t e r  t h a n  1 0 - 1 3

T h e  m a t r i x  h a s  n u m e r i c a l  ra n k  3



Applications_2
Image Compression

Digital image may be considered as matrices whose elements are the 
pixel values of the image. 

• Computational time

• Reduces the cost in image storage and transmission

An m by n matrix A               An matrix of lower rank r where 
r<min(m,n) 



Image Compression

• Amount of storage required for a regular image= mn

• If the image A has singular value decomposition 𝑈𝑉𝑇, then A can be 
represented by the outer product expansion

𝐴 = 𝜎1𝑢1𝑣1
𝑇+𝜎2𝑢2𝑣2

𝑇+. . .+𝜎𝑛𝑢𝑛𝑣𝑛
𝑇

The closest matrix of rank r is obtained by truncating the sum after first 
r terms

𝐴𝑟 = 𝜎1𝑢1𝑣1
𝑇+𝜎2𝑢2𝑣2

𝑇+. . .+𝜎𝑟𝑢𝑟𝑣𝑟
𝑇

Amount of storage required = r 𝑚 + 𝑛 + 1





Applications_3
Deblur an image

• The relation between a blurred and a sharp image is given by 
𝐴𝑐𝑋𝐴𝑟

𝑇 = 𝐵

𝐴𝑐 ∈ ℝ𝑚𝑥𝑚 vertical blurring  

𝐴𝑟 ∈ ℝ𝑛𝑥𝑛 horizontal blurring     





𝑋𝑛𝑎𝑖𝑣𝑒=𝐴𝑐
−1𝐵𝐴𝑟

−𝑇



𝐵 = 𝐵𝑒𝑥𝑎𝑐𝑡 + E

1. Blurred image is collected by a mechanical device.

2. When the image is converted from analog to digital, it is 
represented by a finite number of digits.

𝐴𝑐𝑋𝐴𝑟
𝑇 =𝐵𝑒𝑥𝑎𝑐𝑡 + E

𝑋𝑛𝑎𝑖𝑣𝑒=𝐴𝑐
−1𝐵𝐴𝑟

−𝑇+𝐴𝑐
−1𝐸𝐴𝑟

−𝑇

Inverted noise



Pseudoinverse of A

The pseudoinverse of A=𝑈𝑉𝑇 is 

𝐴†=𝑉†𝑈𝑇

• The pseudoinverse 𝐴† agrees with 𝐴−1 when A is invertible. The solution is 

𝑋𝑘 = 𝐴𝑐 𝑘
†𝐵 𝐴𝑟 𝑘

† 𝑇
+ Inverted noise

The diagonal entries are of the form †
𝑖𝑖

= 
1

𝜎𝑖

0

𝑖𝑓 1 ≤ 𝑖 ≤ 𝑘;
𝑖𝑓 𝑘 + 1 ≤ 𝑖 ≤ 𝑛



Singular vectors that corresponds to smaller singular 
values represent high frequency information. Since the 
high frequency components are dominated by error, we 
ignore the high frequency components and we have 
the following truncated expansion

𝐴𝑘
† = 𝑖=1

𝑘 1

𝜎𝑖
𝑣𝑖𝑢𝑖

𝑇



Using k=45, we got the reconstructed image.  The Blurred image, Ar, 
Ac are given in challenge2.mat. This can be found at 
www.siam.org/books/fa03.



MATLAB code

• function out = pseudosum(Ac,Ar,B,K )

• % K is the no. of singular values to be chosen. 

• [u1, s1, v1] = svd(Ac);

• [u2, s2, v2] = svd(Ar);

• s1i = inv(s1);

• s2i = inv(s2); 

• Ac1=v1(:,1:K)*s1i(1:K,1:K)*u1(:,1:K)';

• Ar1=v2(:,1:K)*s2i(1:K,1:K)*u2(:,1:K)';

• out = Ac1*B*Ar1'

• figure, imshow(out, []);

• end
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