# Motivating Students for Linear Algebra by using Puzzles 

Dr. Naima Naheed
Benedict College
Columbia, SC

## Introduction

* Puzzle 1: ADDITION TABLE
- Purpose: To learn rank, free variables, and consistency
* Puzzle 2: GOSSIP NETWORK
- Purpose: To understand the application of matrix multiplication

Given $a, b, c$, and $d$, find all possible values of $r, s, t$ and $u$ to fill in the following addition table

| + | $t$ | $u$ |
| :---: | :---: | :---: |
| $r$ | $a$ | $c$ |
| $s$ | $b$ | $d$ |

We have $\quad$| $r+t=a$ |
| :--- |
| $s+t=b$ |
| $r+u=c$ |
| $s+u=d$ |

Writing equations (2) for the puzzle in (1) in matrix form gives

$$
\underbrace{\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]}_{\mathrm{A}}\left[\begin{array}{l}
r \\
s \\
t \\
u
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]
$$

The echelon form of matrix $A$ is
$\left.\begin{array}{l}\begin{array}{l}\text { Rank=\# of } \\ \text { nonzero } \\ \text { rwows }=3\end{array} \\ \hline\end{array}\right\}\left[\begin{array}{lllc}1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}r \\ s \\ t \\ u\end{array}\right]=\left[\begin{array}{c}a \\ b \\ a-c \\ d-b-c+a\end{array}\right]$

Number of free variables=number of unknowns $-\operatorname{rank}(A)=4-3=1$

The system becomes consistent

$$
d-b-c+a=0 \quad \Longleftrightarrow \quad a+d=b+c
$$

Infinite number of solutions

## Example: 2X2 Puzzle



## Example: 3X3 Puzzle

| + | $u$ | $v$ | $w$ |  | + | $1+w$ | $-2+w$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r$ | 6 | 3 | 5 |  | $5-w$ | 6 | 3 |
| $s$ |  |  |  |  |  |  |  |
|  | 2 | 4 |  | $4-w$ | 5 | 2 | 4 |
| $t$ | 7 | 4 | 6 |  | $6-w$ | 7 | 4 |

Let $w=1$

3 X 3 Puzzle

| + | 2 | -1 | 1 |
| :--- | :--- | :--- | :--- |
| 4 | 6 | 3 | 5 |
| 3 | 5 | 2 | 4 |
| 5 | 7 | 4 | 6 |

Generalization of the $n \times n$ puzzle


# $m+m=2 m$ unknowns 

$n \times n=m^{2} \quad$ equations
$4-1 \times(4-1\rangle\langle-1)^{2}$
No. of $2 \times 2$ blocks
$\operatorname{Rank}(A)=n^{2}-4-1^{2}=2 n-1$

No. of free variables=

$$
2 n-(2 n-1)=1
$$

Puzzle 2: Seven people are all connected by e-mail. Whenever one of them hears a juicy piece of gossip, he or she passes it along by emailing it to someone else in the group according to following table:

| Sender | Recipients |
| :--- | :--- |
| Amy | Bob, Gal |
| Bob | Clara |
| Clara | Don, Gal |
| Don | Efaz |
| Efaz | Fiin |
| Fiin | Amy |
| Gal | Ehaz |



# If Amy hears a rumor, how many paths will it take for everyone else to hear the rumor? 

Diagraph G

Adjacency matrix: If G is a diagraph with n vertices, then the adjacency matrix is defined by
$a_{i j}= \begin{cases}1 & \text { if there is a directed edge between vertices } i \text { and } j \\ 0 & \text { otherwise }\end{cases}$

Letting people Amy through Gal correspond to vertices 1 through 7 in alphabetical order, the adjacency matrix is





This puzzle is reminiscent of the notion of "six degrees of separation", which suggests that any two people in the world are connected by a path of acquaintances, whose average length is six.

## Watts-Strogatz model

Average path length between two nodes in a random network

# $=\ln N / \ln K$ 

$\mathrm{N}=$ total nodes
$\mathrm{K}=$ acquaintances per node


Average path length $=19.5 / 3.4=5.7$

# $N=6,000,000,000$ 

$90 \%$ of the World population

## $K=30$ <br> 

Acquaintances per person

Average path length $=22.5 / 3.4=6.6$

## Bibliography

>Glaister, Paul. An application of Matrix Theory, The Mathematics Teacher, 85 (1992), pp. 220-223.
>Lay, C. David. Linear Algebra. $4^{\text {th }}$ ed.Massachusetts: Pearson Education, Inc. 2011.
>Poole, David. Linear Algebra. $4^{\text {th }}$ ed. Connecticut: Cengage Learning, 2014.
>Duncan J. Watts \& Steven H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 393 (1998), 440-442.

## Thank You

