Magic Squares and other Explorations in Linear Algebra

Michelle Ghrist
 United States Air Force Academy

The opinions in this talk are those of the speaker and are not official positions of the U.S. Air Force or the U.S. government.
Distribution A, Approved for public release, distribution unlimited

Introduction

- Math majors class
- Students: 19 (sophomores-seniors) with a wide variety of backgrounds and abilities
- Proof-based (but with applications)
- Textbook: Stephen Lay’s Linear Algebra and its applications ($4^{\text {th }} \mathrm{ed}$)
- Students have access to and experience with MATLAB and Mathematica
- My first time teaching this course

"Extra" Goals

- Develop better proof-writing skills
- Encourage students to see the bigger picture of linear algebra
- How do various ideas connect?
- Ask deep questions (research-like mentality)
- Appreciate some of the many applications of linear algebra
- Lots of hands-on learning: groupwork, "labs"

Idea \#1: Set the tone

- Lesson 1 brainstorming in groups:
- In what contexts have you heard the word "linear"?
- In what applications/other classes have you used matrices?
- Discussion of how this course connects to other courses
- Start to establish connections/big picture

Idea \#2: commuting matrices (Lesson 6)

- Context: discussion of elementary matrices (plus rotation and projection matrices)
- Left-multiplying a matrix by an elementary matrix performs a single elementary row operation.
Example: $\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)=\left(\begin{array}{ccc}9 & 12 & 15 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$
- Question posed to the students: what happens if I rightmultiply a matrix by an elementary matrix?

Example: $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 4 & 3 \\ 4 & 13 & 6 \\ 7 & 22 & 9\end{array}\right)$

Idea \#2: commuting matrices

- Elementary (plus rotation and projection) matrices
- Question posed by a student: if I left-multiply and rightmultiply a matrix by one of these five matrices, do I ever get the same result?

Idea \#3: Lesson 7 quiz

1. Let T be a linear transformation from \mathbb{R}^{n} onto \mathbb{R}^{m}. What else can you conclude about T and its associated standard matrix A ? (List as many ideas as you can.) Denote which of these are iff's.

- Each $\vec{b} \in \mathbb{R}^{m}$ is the image of at least one $\vec{x} \in \mathbb{R}^{n}$ under T. (iff)
- A has m pivot columns. (iff)
- A is $m \times n$ with $m \leq n$.

2. "Let T be a one-to-one linear transformation from \mathbb{R}^{n} to $\mathbb{R}^{m} \ldots "$

đdea \#4: LU Decompositions (Lesson 9)

- Write $A=L U$ where
- $L=m \times m$ lower triangular matrix with i's on the diagonal
- $U=m \times n$ echelon form of A

Idea \#5: Matrix Factorizations (Lesson 10)

- Discuss $L U$ (in-depth), $Q R *$, and SVD* (briefly)
- Pre-class question posed to students:
"Via research, find at least one other matrix factorization."
* Explored further in later lessons

Idea \#6: Magic Squares: Lesson 18

- Inspiration: problem from Strang's Linear Algebra and its Applications
- Let $V=M_{2 \times 2}$, and let W be the subspace of V whose row sums and column sums are all equal.
- Prove that W is a subspace of V.
- Find a basis for W.
- Challenge: repeat if $V=M_{3 \times 3}$.

Idea \#7: Project (last year)

- Semester long individual research project
- Choose from list of 28 projects (must be new to you)
- Find at least 3 references; write paper and give presentation.

Idea \#8: Project (this semester)

- Individual research project, focused on second part of semester
- Locate a journal article in which one of the ideas from class is applied (non-math journal)
- E.g., matrix factorization, change of coordinate matrix
- Test/recreate results (use technology!)
- Write a paper summarizing:
- Application topic (may require outside research)
- How the idea was used and your results.

Conclusions

- Informally, students developed a better appreciation for the inter-connectedness of linear algebra.
- Many students enjoyed the lab exercises, seeing some of the many applications of linear algebra, and being allowed to think deep thoughts.
- Thank you for attending.
- Any questions?

Michelle.Ghrist@usafa.edu

