Cards for 2.3 Activity:

Making Connections: You will be given a stack of index cards that identify certain properties. Determine under which of the following headings each card belongs. Note that each card will fit under one of \#1-3 and one of \#4-6.

Throughout this activity, let $A=\left[\begin{array}{ccc}\mid & & \mid \\ v_{1} & \cdots & v_{k} \\ \mid & & \mid\end{array}\right]$ where each \mathbf{v}_{i} is a vector in \mathbb{R}^{n}.

1. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}$ span \mathbb{R}^{n}.
2. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}$ do not span \mathbb{R}^{n}.
3. We need more information to determine whether the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}$ span \mathbb{R}^{n}.
4. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}$ are linearly dependent.
5. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}$ are linearly independent.
6. We need more information to determine whether the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{k}$ are linearly dependent.

The linear system corresponding to [$\mathbf{A} \mid \mathbf{0}$]

 has exactly one solution.One vector is a scalar multiple of one of the
One of the vectors can be expressed as a linear others.

The row reduced form of the augmented matrix A has no all zero rows.
$c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} \cdots+c_{k} \mathbf{v}_{k}=0$ only if $c_{i}=0$ for all i.
combination of the others.

The linear system corresponding to [A|0] has at least two solutions.

$\operatorname{Rank}(A)=n$

$k<n$

