Student Projects to Visualize Iteration Patterns of Matrices With Complex Eigenvalues

Rosemary Carroll Farley Ph.D. rosemary.farley@manhattan.edu

Project One:

Motivation:

There was a diagram in our linear algebra book (Lay) that showed a graph of the iterates of the point x_0 under the action of the matrix A.

The proposed project:

Suppose A is a 2 x 2 matrix and x_0 is an arbitrary 2 x 1 vector in \mathbb{R}^2 .

Let $x_1 = Ax_0$, $x_2 = Ax_1$, ..., $x_n = Ax_{n-1}$.

Then the iterates of the point x_0 under the action of the matrix A are

$$\{x_0, x_1, x_2, x_3, \dots\} = \{x_0, Ax_0, A^2x_0, A^3x_0 \dots\}$$

1. Provide a graph of the resulting iterates for any A and any x_0 .

2. Predict the number of distinct iterates and prove your result.

The Four Step Method for Creating Animations:

Step One: Plot one component of the animation.

Step Two: Create and name the plots.

Step Three: Create a list of these plots.

Step Four: Display the animation.**

** OR show all of the created plots at the same time.

Farley, Rosemary & Tiffany, P. A Four Step Method for Creating Animations. Computers in Education Journal. Vol. 4 No. 3 July--September 2013, 59-62.

The Code:

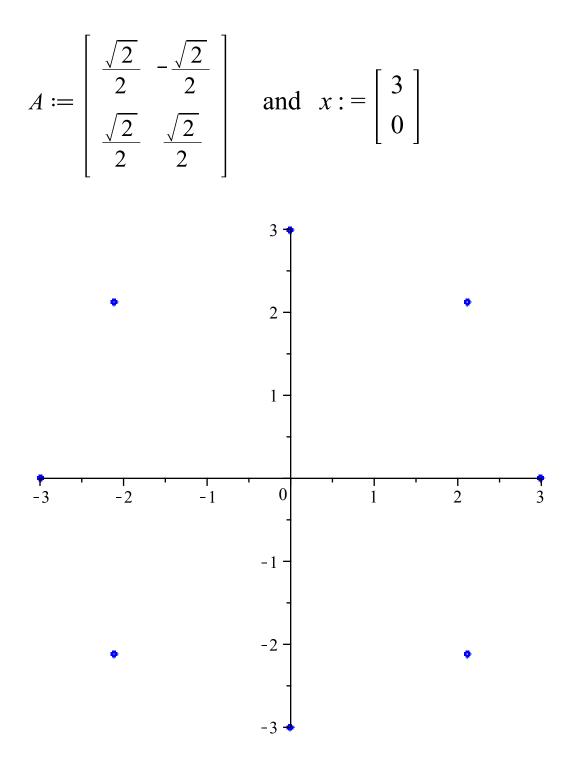
for *n* from 1 to 100 do

Q[n] := pointplot(x, symbolsize = 10, color = blue) :x := multiply(A, x) :

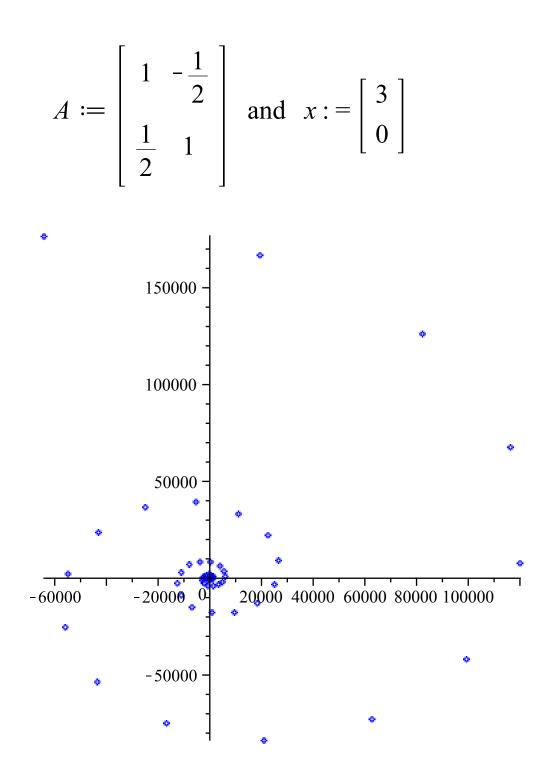
od:

L := [seq(Q[n], n = 1..100)]:display(L)

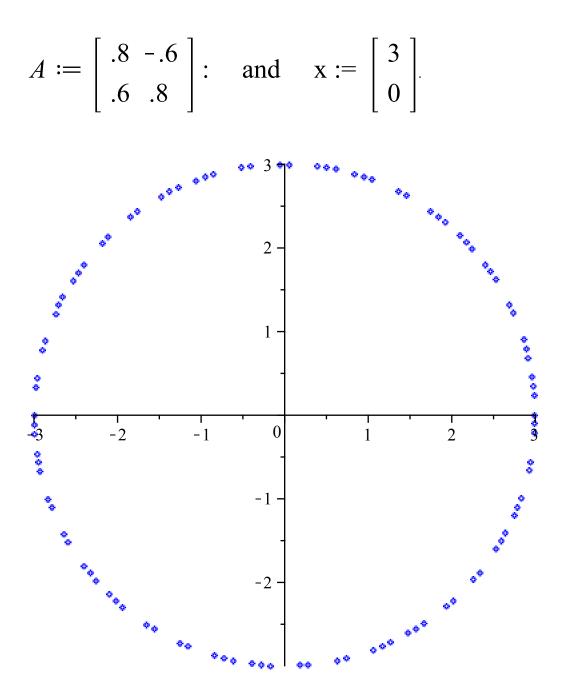
The Experimentation: Trial #1:



Trial #2:



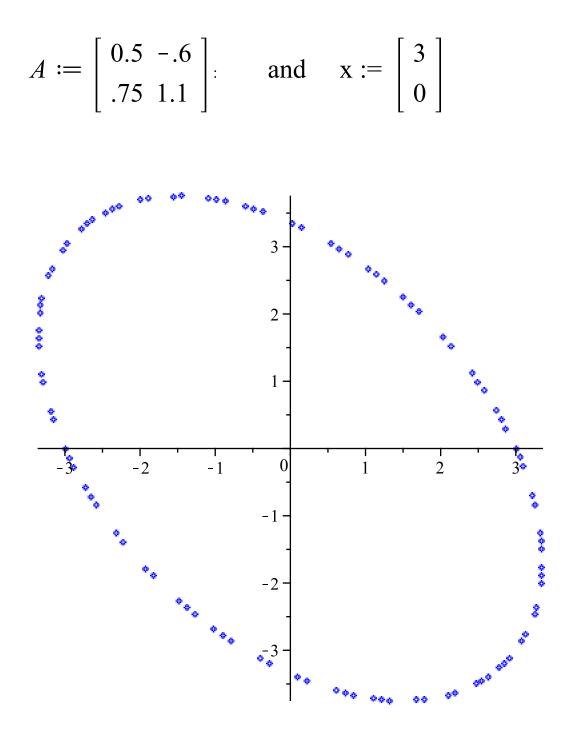
Trial #3:



Trial #4:

$$A := \begin{bmatrix} -\frac{2}{7}\sqrt{2} & \frac{5}{7}\sqrt{2} \\ -\frac{17}{14}\sqrt{2} & \frac{9}{7}\sqrt{2} \end{bmatrix} \text{ and } x := \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

Trial #5:



Rotation Matrix:

Suppose C:= $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. The eigenvalues of C are found by solving:

$$det(C - \lambda i) = (a - \lambda)^{2} + b^{2} = 0$$

Thus, $\lambda = a \pm b i$

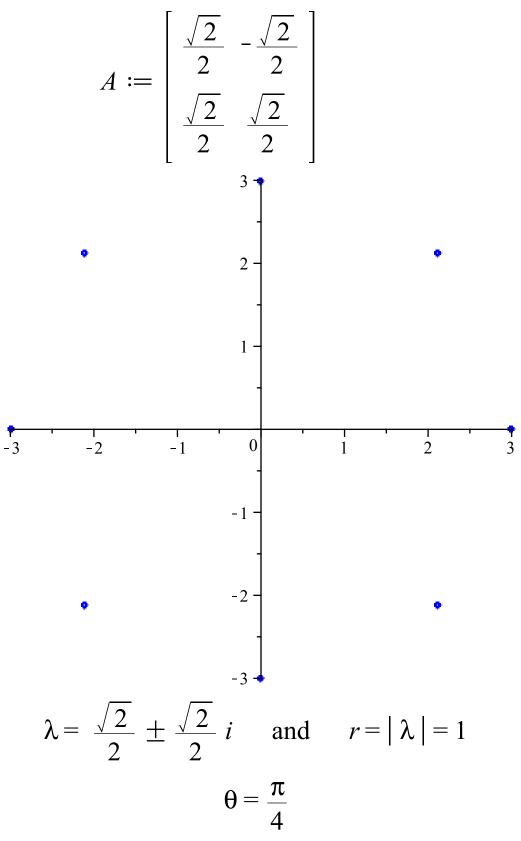
Let
$$r = |\lambda| = \sqrt{a^2 + b^2}$$

Then C =

$$r \begin{bmatrix} \frac{a}{r} & -\frac{b}{r} \\ \frac{b}{r} & \frac{a}{r} \end{bmatrix} = r \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

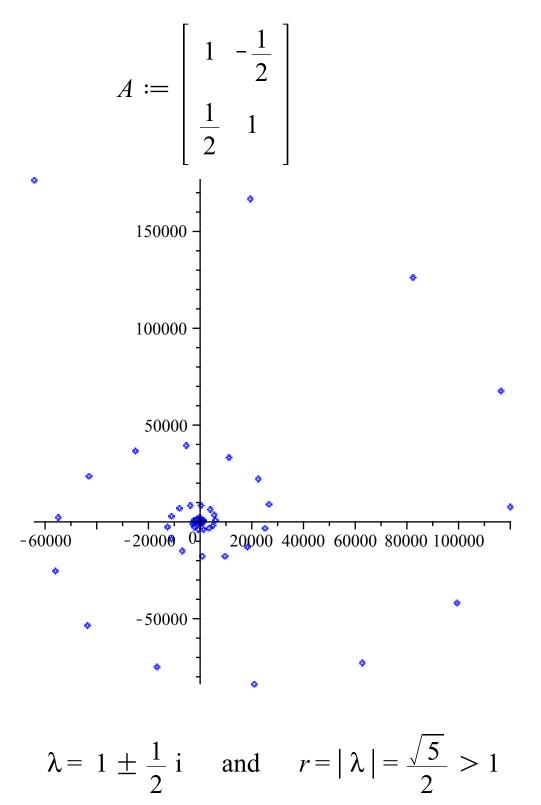
for some θ .

Trial #1--A Rotation Matrix



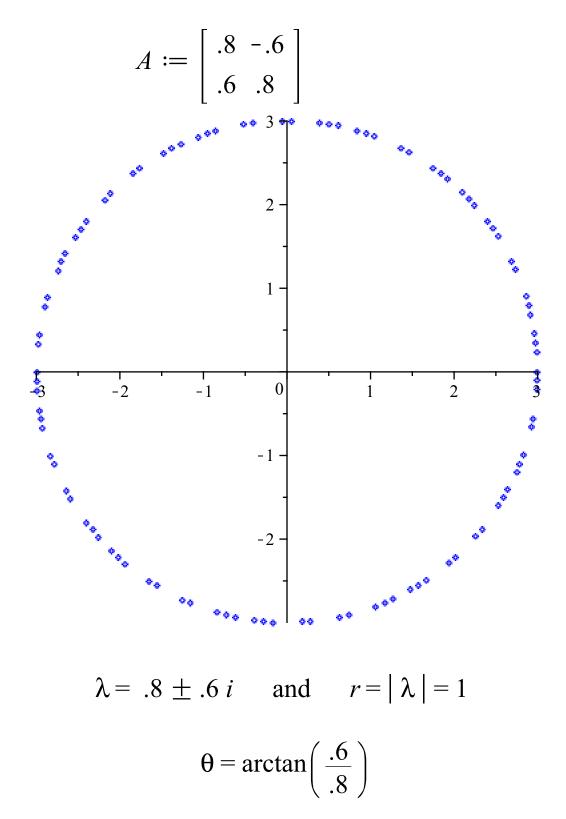
Thus there are 8 distinct iterates.

Trial #2--A Rotation Matrix



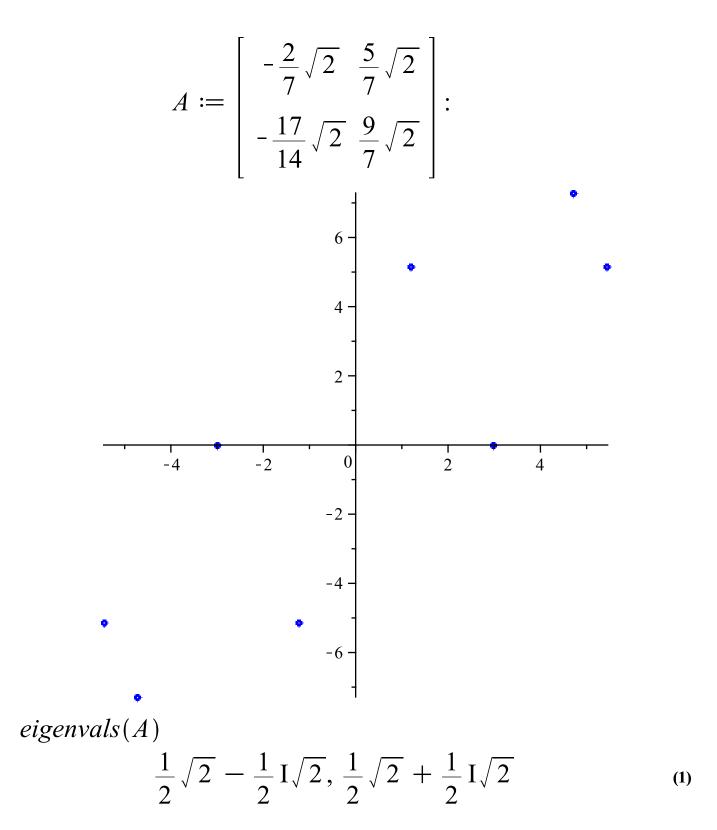
Thus there will not be repetition in the iterates.

Trial #3--A Rotation Matrix:



It seems that there will be no repetition in the iterates.

Trial #4:



Explanation:

Theorem:

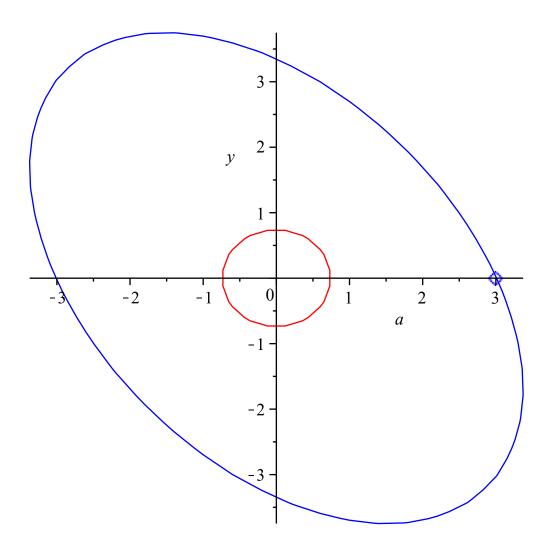
Let A be a real 2x2 matrix with a complex eigenvalue $\lambda = a - bi \ (b \neq 0)$ and an associated

eigenvector
$$v = \begin{bmatrix} d + ei \\ f + gi \end{bmatrix}$$
 in C^2 . Then

$$A = PCP^{-1}$$
, where $P = [\operatorname{Re} v \quad \operatorname{Im} v] = \begin{bmatrix} d & e \\ f & g \end{bmatrix}$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

There is the rotation matrix again.

What does this look like?



$$x_{0}$$

$$x_{1} = Ax_{0} = PCP^{-1}x_{0}$$

$$x_{2} = A x_{1} = PCP^{-1}x_{1} = PCP^{-1}PCP^{-1}x_{0} = PC^{2}P^{-1}x_{0}$$

$$\mathbf{x}_{n} = PC^{n}P^{-1}\mathbf{x}_{0}$$

•

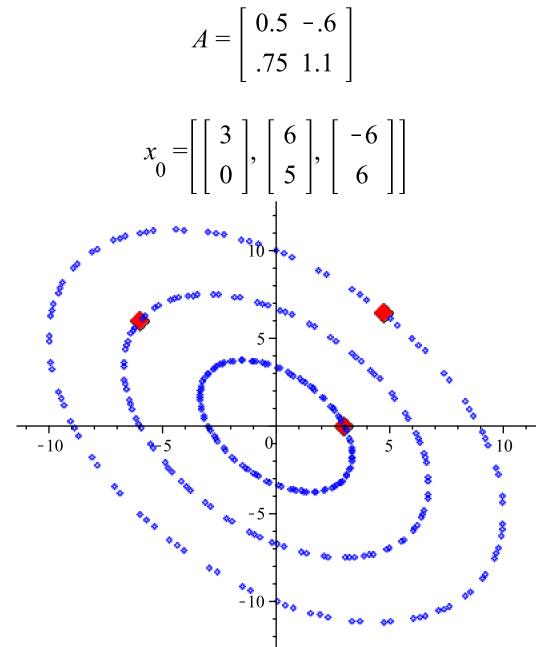
Project #2---What is the equation of the ellipse?

Consider $A = PCP^{-1}$ where the eigenvalues of A are $\lambda = a \pm b i$ and $|\lambda| = 1$.

The iterates will all fall on an ellipse.

What is the equation of the ellipse?

Experimentation



3. 2 -1 --2 0 2 - 1 1 - 1 -2 -3 -We know that the circle has radius $r = \left| P^{-1} x_0 \right|$. We know

that a point $\begin{bmatrix} X \\ Y \end{bmatrix}$ will be on the ellipse only if $\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} r\cos(\theta) \\ r\sin(\theta) \end{bmatrix}$ for some point $\begin{bmatrix} r\cos(\theta) \\ r\sin(\theta) \end{bmatrix}$ on the circle.

The Equation

$$\begin{pmatrix} P_{22}^{2} + P_{21}^{2} \end{pmatrix} X^{2} - 2 \begin{pmatrix} P_{22}P_{12} + P_{21}P_{11} \end{pmatrix} XY + \begin{pmatrix} P_{12}^{2} + P_{21}P_{11} \end{pmatrix} XY + \begin{pmatrix} P_{12}^{2} + P_{21}P_{11} \end{pmatrix} Y^{2} = r^{2} det(P)^{2}$$

Construct the symmetric matrix

$$S = \begin{bmatrix} P_{22}^{2} + P_{21}^{2} & -(P_{22}P_{12} + P_{21}P_{11}) \\ -(P_{22}P_{12} + P_{21}P_{11}) & P_{12}^{2} + P_{11}^{2} \end{bmatrix}.$$

Our ellipse can be expressed as: $w^T S w = d$

Where
$$d = r^2 (det(P))^2$$
 and $w = \begin{bmatrix} X \\ Y \end{bmatrix}$.

Trial #5:

If
$$A = \begin{bmatrix} 0.5 & -.6 \\ .75 & 1.1 \end{bmatrix}$$
 and $x_0 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ then:

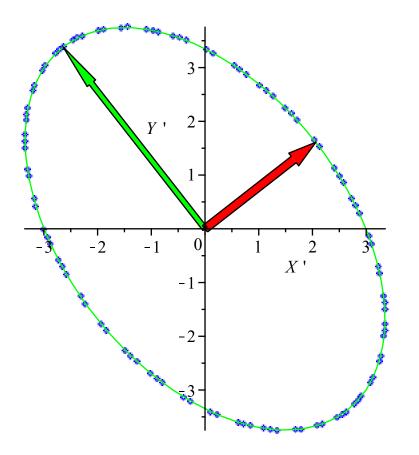
$$P = \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix}, \quad r = \begin{vmatrix} P^{-1} x_0 \end{vmatrix} = \frac{3}{4}, \quad det(P) = 20 \text{ and}$$
$$d = r^2 det(P)^2 = 225.$$

Then

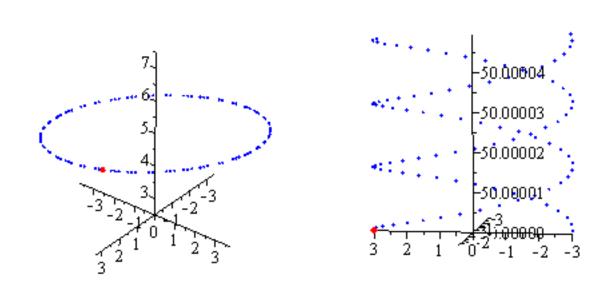
$$S = \begin{bmatrix} P_{22}^{2} + P_{21}^{2} & -(P_{22}P_{12} + P_{21}P_{11}) \\ -(P_{22}P_{12} + P_{21}P_{11}) & P_{12}^{2} + P_{11}^{2} \end{bmatrix} = \begin{bmatrix} 25 \ 10 \\ 10 \ 20 \end{bmatrix}.$$

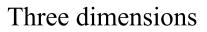
Equation of the ellipse: $25 X^2 + 20 XY + 20 Y^2 = 225$

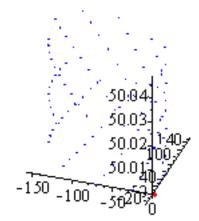
The Graph with Axes.



This lead to another project discussing orthogonal diagonalization and major and minor axes of the ellipse.







In Closing:

- Students used the computer algebra system Maple to experiment with ideas, to visualize results, and ultimately to form hypotheses that they proved.
- The four step method was easy for students to understand and to mimic. Coding was never the problem. The mathematics was.
- Maple made the experimentation easy. Ideas were formed and Maple was used for the brute force calculations. Ideas were quickly discarded too when results were not as expected.
- Without the power of Maple, it is difficult to imagine these students forming the hypotheses they did. There was simply too much calculation to do by hand.
- •Make sure you are ready to invest a lot of time before embarking on these types of student projects.

Conclusion: It is worth the time.