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Figure 1: The action of A : Row space to column space, nullspace to zero.

Big Picture: Column space and nullspace of A and AT 
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Figure 2: Least squares : x̂ minimizes ‖b − Ax‖2 by solving ATAx̂ = ATb.

Operator splitting

.

Operator splitting is a method of computing the solution to a differential equa-
tion by separating the equation into two different parts, computing the solu-
tion to those parts separately, and then finally combining the two solutions
to form a solution to the original equation. A canonical example is splitting
of diffusion and advection terms in an advection-diffusion partial differential
equation. The computational advantage is that it is faster to compute the so-
lution of the two terms separately than to compute the solution when they are
treated together. However, splitting introduces an error and strategies have
been devised to control this. This chapter introduces splitting and surveys
some recent developments in the area.
We begin with first order and second order accurate splitting methods. Higher
order splitting methods, and reasons why they are not yet common, are then
discussed. Next, it is observed that splitting does not capture the correct steady
state. Balanced splitting, a new technique that does preserve the steady state,
is introduced. Splitting has by now very wide applications and we end with
a survey of some of these, including reaction-diffusion PDEs in mathemati-
cal biology, chemical master equations and stochastic models, and advection-
diffusion-reaction PDEs in combustion.
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1 Splitting for ordinary differential equations
Consider the linear ordinary differential equation (ODE)

du
dt

= (A+B)u, (1)

with solution u(h) = e

h(A+B)
u(0), at time h. This is the model equation that we study in

all that follows. In applications it often happens that eh(A+B) is relatively difficult to compute
directly, whilst there are readily available methods to compute e

hA and e

hB separately. For
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Figure 3: Orthonormal bases that diagonalizeA.

SVD = Singular Value Decomposition
 A = U  Ʃ  VT    (m x m) (m x n) (n x n)
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Figure 4: The inverse of A (where possible) is the pseudoinverseA+.

Pseudoinverse   A+       is   n  by  m      



Construct    V, Ʃ, U    in    A = U Ʃ VT

 v1 ,..., vr    orthonormal eigenvectors of  AT A
           AT A vi  = ƛi vi              ƛi =σi2        ƛi >0

KEY   ui  = A vi   are orthogonal because
(A vi)T(A vj) = viT  (AT A vj) = ƛj viT vj 

Normalize to length 1      Divide  ui  by  σi = ||ui||   
Choose  vr+1 ,..., vn  orthonormal  in N(A)
Choose  ur+1 ,..., un  orthonormal  in N(AT)
Then       A v1  = σ1 u1     ...      A vr  = σr ur  

SVD



Factor        Am x n = Cm x r Dr x n   = [c1 ... cr][d1 ... dn]
Basis for column space in  C:    dim r
Coefficients for each column are in D

Look again,   REVERSED    

A = CD  expresses rows of A by rows of D
Coefficients for each row are in C
Then row space has dimension  ≤ r

row rank = column rank PROOF 1
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Start  x1 ,...,  xr     basis for row space 
Show    Ax1 ,...,  Axr     independent in column space
Suppose    0 = c1Ax1  + ... + crAxr

                     = A (c1x1  + ...  + crxr)   =  Av
v is in row space and null space:  v = 0.
Then     ci = 0     since   xi  are  a  basis.

row rank = column rank PROOF 2


