Tridiagonal Matrices

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{rr}
7 & 10 \\
15 & 22
\end{array}\right] \quad \frac{2}{3}=\frac{10}{15}} \\
{\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{rr}
7 & 10 \\
15 & 22
\end{array}\right]=\left[\begin{array}{rr}
37 & 54 \\
81 & 112
\end{array}\right]} & \frac{2}{3}=\frac{54}{81}
\end{array}
$$

It happened twice, that looks like a theorem
All functions of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ have the
same off-diagonal ratio $\frac{b}{c}$
First noticed and proved by induction for 2×2 : Peter Larcombe
The result extends to all tridiagonal matrices

Linear algebra proof

Choose a diagonal matrix D so that
$D A D^{-1}=\left[\begin{array}{cc}a & d_{1} b / d_{2} \\ d_{2} c / d_{1} & d\end{array}\right]$ is symmetric
Then all its powers are symmetric
Now undo the similarity

$$
A^{n}=D^{-1}\left(D A D^{-1}\right)^{n} D
$$

has the same off-diagonal ratios for all n
True for any function of A including A^{-1} and

$$
x y^{\top}=(\text { eigenvector })(\text { left eigenvector })^{\top}
$$

Ira Gessel's "combinatorial proof"

Compare the 1,1 entries of $A A^{n}=A^{n} A$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
a_{1} & b_{1} & \\
c_{1} & a_{2} & b_{2} \\
\cdot & c_{2} & \cdot
\end{array}\right]\left[\begin{array}{lll}
A_{1} & B_{1} & \\
C_{1} & A_{2} & B_{2} \\
& C_{2} & \cdot
\end{array}\right]=\left[\begin{array}{ccc}
a_{1} A_{1}+b_{1} C_{1} & \cdot \\
\cdot & \cdot \\
& a_{1} A_{1}+b_{1} C_{1} & =A_{1} a_{1}+B_{1} c_{1} \\
b_{1} / c_{1} & =B_{1} / C_{1} & \text { QED }
\end{array}\right.}
\end{gathered}
$$

Extension to 2 nd order differential equations
"Tridiagonal matrices can be
2nd order difference operators"

$$
\left(a(x) \frac{d^{2}}{d x^{2}}+b(x) \frac{d}{d x}+c(x)\right) u(x)
$$

can be symmetrized by changing
from $u(x)$ to $v(x)=D(x) u(x)$
The symmetric form is

$$
\frac{d}{d x}\left(A(x) \frac{d}{d x}\right) v(x)+C(x) v(x)
$$

David Bindel : apply to eigenfunctions
Partial Differential Equations
Symmetrize $a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u$ In 2D it helps to have constant coefficients

Inverses of tridiagonal matrices

"rank 1 above and on the diagonal"
"rank 1 below and on the diagonal"

$$
A^{-1}=\left[\begin{array}{rrr}
2 & 3 & 5 \\
1 & 6 & 10 \\
3 & 18 & 4
\end{array}\right]
$$

Then A is tridiagonal:

$$
\begin{aligned}
& A_{13}=\frac{\text { cofactor }}{\text { determinant }}=0 \\
& A_{31}=\frac{\text { cofactor }}{\text { determinant }}=0
\end{aligned}
$$

Completion of tridiagonal matrices

$$
\text { Start } \quad A_{0}=\left[\begin{array}{lll}
6 & 2 & x \\
2 & 8 & 4 \\
x & 4 & 3
\end{array}\right]
$$

Which number x maximizes the determinant?
Then x also maximizes the "entropy"
Answer : $\boldsymbol{x}=\mathbf{1}$ This gives rank 1 away from the diagonal The inverse of the completed matrix is tridiagonal

$$
\frac{d}{d x}(\operatorname{det} A)=\frac{\text { cofactor }}{\text { determinant }}=0 \text { for best } x
$$

Tough decisions on the notation !

1 Do I have to use In for \log ?
2 Variable of integration on page 1 ?

$$
\begin{gathered}
\text { Solution to } \frac{d y}{d t}=f(t) \quad y(t)=\int_{0}^{t} f(s) d s+C \\
\int_{0}^{t} f(\tau) d \tau \quad \int_{0}^{t} f(T) d T \quad \int_{0}^{t} f(t) d t
\end{gathered}
$$

3 Can solutions and computer codes go on math.mit.edu/dela?

