Weekly MATLAB labs in Linear Algebra

Dan Seth
Math, MCP
West Texas A\&M University

Table of Contents

- Introduction to Concept
- A Resolution
- Lab Assignments
- Sample Labs
- Retention and Assessment
- Conclusions and References

Labs in Mathematics - Premise

- Most STEM disciplines presume a lab component is necessary for complete comprehension of material.
- Mathematics is one of the only STEM disciplines where a Laboratory component is rarely presumed or implemented.
- The "computer competency" requirement has all but vanished from the US higher-ed curriculum.
- Meanwhile: USM (Univ. Sains Malaysia) has incorporated lab components in mathematics courses since 2000.

Labs in Mathematics

- Technologies are in place to enable enhanced learning of concepts from basic to upper level undergraduate math.
- Graphic calculators, e.g.:TI-84, Nspire CX (algebra, trig, calculus, statistics)
- Matlab (linear algebra, numerical analysis, calculus)
- Mathematica (calculus, real analysis)
- Minitab (statistics)
- Instructors have integrated explorations that implement these tools into math classrooms around the world.

Concerns

- Explorations must be integrated into current classroom format or material
- Incorporation of new course items means a sacrifice; topics or depth of coverage
- Budget issues disallow additions of lab components in mathematics:
- 3 hr courses become 4 hr with lab
- requires additional faculty budget lines (i.e., positions)
- increased student course hours (e.g., Texas has 120 hr program limits, adding additional hours is not encouraged)

Some Technology Experiences

- ATLAST (Augmenting Teaching Linear Algebra with Software Tools) workshops in 1995, 1996, Seattle.
- Technology (MATLAB, TI-92/V200) integrated into linear algebra since 1997, often in a computer classroom.
- Retention and comprehension of theories or concepts has improved significantly.
- Yet, issues abound:
- Persistent holes in student comprehension, e.g. - span, linear combinations, vector spaces and norms, applicability.
- The plethora of software and on-line sites has increasingly become a distraction, surfing, emailing, etc...
- Topical depth, sometimes coverage, reduced to allow time to integrate explorations into the classroom.

A Resolution

- Weekly laboratory, currently Fridays.
- Class meetings: three 50 minute periods, 2 in a traditional classroom, lab day in a computer classroom with MATLAB.
- Positives:
- Lab time focused on enhancement of theory with technology
- More opportunity to interact with the students
- Student comprehension of topics has improved, exceeding results of classroom integration of MATLAB explorations
- Student attention seems better, retention is up
- Students work together and help teach each other

A Resolution

- Weekly Friday laboratory.
- Class meetings: three 50 minute periods, 2 in a traditional classroom, lab day in a computer classroom with MATLAB.
- Shortcomings:
- Reduced time on lecture days for questions
- Tons of grading
- Some students miss labs that never miss classroom days
- Shock of intro to vector space concepts seems greater, yet are grasped faster. I suspect because they cannot just "put it in the computer" or "rref it", novel applications of "rref" are tried.

Lab Assignments Linear Algebra

Fall 2012

- lab 1 - introduction to matlab - (Seth, Lay)
- lab 2 - Solving systems of equations, rref, vector forms (Seth)
- lab 3 - Span and linear combrnations (Seth)
- lab 4 - Balancing Chemical Equations (Seth, Adsmond(chemist))
- lab 5 - Rank and Linear Independence (Seth)
- lab 6 - Solving Systems with Inverses (Seth)
- lab 7 - Determinants (Seth, some ideas of Hill, ATLAST, Lay)
- lab 8 - Owls (Lay) and magic squares (ATLAST)

Lab Assignments Linear Algebra

Fall 2012

- lab 9 - Coordinate vectors and basis (Seth, Hill, ATLAST)
- lab 10 - Eigenvalues and eigenvectors (Lay, Seth)
- lab 11 - Eigenvalues - Owls Σ_{-}and systems of DE's (Seth, Lay)
- lab 12 - norms and inner products - (Seth, ATLAST, Hill)
- lab 13 - orthogonal vectors and grahm Schmidt - (Seth, Lay)

Other labs or explorations, other semesters

- Linear Algebra and Least Squares
- Linear Transformations and Animation
- Modeling ski slopes - polynomial interpolation
- Matrix multiplications and graph theory (airplane connections)

Samples from Labs:

Linear Combinations and Span

 the routine draw 5,50,100, and 500 different linear combinations. Discuss your observations. Based on the plot for multiple linear combinations of u and v, what conclusion can you draw about $\operatorname{span}\{u, v\}$?

Linear Combinations and Span

- With 100 linear combinations:

16. Use drawlc.m to plot multiple linear combinations of $u=$
$\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $v=\left[\begin{array}{l}-2 \\ -4\end{array}\right]$. Have the routine draw 5, 50, 100, and 200 different linear combinations. Discuss your observations. Based on the plot for multiple linear combinations of u and v, what conclusion can you draw about $\operatorname{span}\{u, v\}$?

Samples from Labs:

Owls lifespan

```
\(\mathrm{t}=0.1800\)
\(\mathrm{a}=\)
\begin{tabular}{crc}
0 & 0 & 0.3300 \\
0.1800 & 0 & 0 \\
0 & 0.7100 & 0.9400
\end{tabular}
```

$\mathrm{x} 0=$
100
100
100
$\mathrm{a}^{*} \mathrm{xn}=$
$\begin{array}{ccccccc}\mathrm{k}=1997+ & 0 & 1 & 2 & 3 & 10 & 20 \\ \text { juveniles } 100.0000 & 33.0000 & 54.4500 & 55.4004 & 46.0797 & 39.0538\end{array}$
$\begin{array}{lllllll}\text { subadults } & 100.0000 & 18.0000 & 5.9400 & 9.8010 & 8.4327 & 7.1469\end{array}$
adults $100.0000 \quad 165.0000 \quad 167.8800162 .0246$

Owls lifespan

Owls lifespan

Owls lifespan

Magic Squares

Square 2: $\left[\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{3} & 2 & x_{4} \\ x_{5} & x_{6} & 3\end{array}\right]$
The system of equations: $1+x_{1}+x_{2}=6$
$x_{3}+2+x_{4}=6$
$x_{5}+x_{6}+3=6$
$1+x_{3}+x_{5}=6$
Augmented matrix of system of equations:
$x_{1}+2+x_{6}=6$

$[1$	1	0	0	0	0	5
0	0	1	1	0	0	4
0	0	0	0	1	1	3
0	0	1	0	1	0	5
1	0	0	0	0	1	4
0	1	0	1	0	0	3
0	1	0	0	1	0	$4]$,

$$
x_{2}+x_{4}+3=6
$$

$$
x_{2}+2+x_{5}=6
$$

Magic Squares

Reduced row echelon form:

$[1$	0	0	0	0	0
0	1	0	0	0	0
0	0	1	0	0	0
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

Solution of system of equations:
free variable, infinite solutions with integers:

Select $\mathrm{t}=1$, then: $\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 3\end{array}\right] \quad$ Select $\mathrm{t}=10$, then: $\left[\begin{array}{ccc}1 & -6 & 11 \\ 12 & 2 & -8 \\ -7 & 10 & 3\end{array}\right]$

Eigenvalues and Owls

Survival rates and eigenvalues.

- table of extinction rates, leading eigenvalues

Survival rate juv - subadult	$\mathrm{t}=$.18	.20	.22	.24	.25	.26	.28	.30
Dominant eigenvalue	λ	0.9836	0.9880	0.9923	0.9966	0.9987	1.0008	1.0050	1.0090

Critical value of $\mathrm{t}: \quad t=.26, \quad \lambda_{1}=1.0008$
Eigenvalue of "steady state": lambda1 $=1.0008$
$\mathrm{v} 1=$
0.3121
0.0811
0.9466

Eigenvalues and Owls

(a) t below critical:

(b) t above critical:

Eigenvalues and DE

Solution and plot of system of DE's.

- Plot 1, as separate functions of time:
- Plot 2, as ordered pairs in time, dynamic systems:

Eigenvalues and DE

plot 1, as separate functions of time:

- Plot 2, as ordered pairs in time, dvnamic svstems:

Assessment and Retention

Retention

- Fall 2012 (2 $2^{\text {nd }}$ with lab): 46 started, 3 D, 1 failed
- Fall 2008 (no lab): 27 started, 4 D, 2 failed

Assessment

- Common final exam, 3-4 question coverage variations

	2008	2009	2010	2011	2012
Final Exam Passed (\%)	81	83	95	87	100
Final average of D	37	11	8	10	11
Failed Final Exam	19	19	17	5	0

Future and References

- Some tasks:
- Clean up the labs, e.g., reduce lengths and drudgery, add minor subtopics
- Incorporate linear transformations and animation (CS friendly)
- Develop and implement a more complete assessment process
- Good Lab Book References
- Instructors MATLAB Manual, J. Case and J. Day, supplement to Linear Algebra, D. Lay, Pearson Education (2006)
- ATLAST Computer Exercises for Linear Algebra, S. Leon, E. Herman, and R. Faulkenberry, Prentice Hall (2002)
- Linear Algebra Labs with MATLAB, $3^{\text {rd }}$ Ed., D. Hill and D. Zitarelli, Prentice Hall (2003)

