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 Project	context	
 NDSU	Module	2:	Linear	Maps	
 Action	Process	Object	Schema	(APOS)	theoretical	framework	
(More	information	about	this	project	will	be	given	at	the	NSF	Poster	Session	2‐4	pm	Thursday	afternoon	in	Veteran’s	
Auditorium,	2nd	Floor,	Hynes	Convention	Center)	

Linear	algebra	In	New	Environments	(LINE)	is	a	project	funded	by	the	NSF	CCLI	program	(NSF	DUE‐#0837050)	at	four	
universities:	Brooklyn	College—CUNY,	Georgia	State	University,	Grandview	University,	and	North	Dakota	State	University.	The	
goal	of	the	project	is	to	make	use	of	research	on	teaching	and	learning	and	a	specific	theoretical	framework,	APOS,	in	
undergraduate	linear	algebra	courses.	The	mechanism	we	use	is	the	development	of	modules	that	involve	core	ideas	found	in	
undergraduate	linear	algebra	courses	and	reflect	educational	theory	about	the	teaching	and	learning	of	collegiate	
mathematics.	

The	handout	for	this	session	has	one	of	the	project	modules	developed	and	used	at	NDSU	and	a	sketch	of	the	APOS	research	
framework.	Please	take	a	few	minutes	to	scan	the	material	in	that	handout.	

This	module	was	developed	by	the	course	instructor,	a	research	mathematician	at	NDSU	who	taught	the	linear	algebra	course,	
working	with	the	LINE	project	researchers.	The	instructor	chose	the	topic,	linear	maps,	as	one	of	the	central	themes	of	his	
course	and	proposed	a	series	of	problems	that	students	would	work	on	at	the	start	of	the	study	of	that	material.	The	textbook	
used	in	this	course	was	Sheldon	Axler’s	Linear	Algebra	Done	Right	(2nd	Edition,	1997	corrected	printing	2004).	The	instructor	
worked	with	the	project	researchers	to	refine	his	problems	to	a	set	that	would	be		
 Accessible	to	students	in	his	class	prior	to	formal	instruction	in	this	component	of	the	course	
 Aligned	with	the	APOS	framework	for	concept	development	in	mathematics	
 Useful	to	assess	student	understanding	of	the	material	as	a	guide	to	instruction	

The	instructor	and	researchers	read	and	discussed	a	series	of	mathematics	education	research	manuscripts	during	the	
summer	prior	to	the	course	to	provide	the	context	for	this	work.	

Look	at	the	module	to	see	how	it	reflects	the	APOS	framework	of	the	hierarchical	development	of	conceptual	understanding	of	
specific	content	(this	framework	has	been	applied	to	many	important	collegiate	mathematics	concepts).	

Problem	1a	primarily	require	understanding	at	an	action	level.	Students	are	given	specific	vectors	and	use	prior	knowledge	of	
functions	and	systems	of	equations	to	compute	an	appropriate	map.	

Problem	1b	requires	both	action	and	process	conceptions	because	the	student	must	be	able	to	imagine	how	any	other	linear	
transformation	would	map	the	given	vectors	while	recognizing	from	their	computations	in	part	(a)	that	the	given	vectors	
determine	the	map.	

Problems	2a	and	2b	again	have	students	draw	on	action	and	process	conceptions	in	a	setting	that	is	less	determined	by	the	
provided	information.	Again,	students	will	need	to	use	knowledge	from	prior	work	with	systems	of	equations	to	solve	the	
problems.	Parts	1b	and	2b	provide	a	sort	of	transition	to	the	purely	process	Problem	3	by	referring	to	a	specific	action	that	the	
students	have	carried	out.	

Problem	3	requires	a	process	conception	that	could	be	based	on	reflection	of	Problems	1	and	2.	

Problem	4	also	uses	a	process	conception.	

The	proof	in	Problem	5	draws	on	an	object	conception	of	linear	map	that	must	be	de	encapsulated	to	analyze	the	processes	
that	created	the	cognitive	object.	

	 	



Problem Set 2 (Linear Maps)

Make sure that you explain all your answers. Your solutions must be writ-
ten up clearly, legibly, in complete sentences, primarily focusing on explaining
your reasoning. For this particular assignment, most credit will be awarded for
satisfying these conditions. As usual, F will denote either R or C.

1. (a) Give an example of a linear map T : R2 → R2 such that T (2, 3) = (7, 8)
and T (3, 4) = (10, 11). (If such a linear map does not exist, explain why.)
For your example, does there exist (a, b) ∈ R2 such that T (a, b) = (1, 1)?

(b) How many linear maps T : R2 → R2 with T (2, 3) = (7, 8) and T (3, 4) =
(10, 11) exist?

2. (a) Give an example of a linear map T : R3 → R2 such that T (2, 3, 1) = (7, 8)
and T (3, 4, 2) = (10, 11). (If such a linear map does not exist, explain why.)

(b) How many linear maps T : R3 → R2 with T (2, 3, 1) = (7, 8) and T (3, 4, 2) =
(10, 11) exist?

3. Let U, V be finite dimensional vector spaces over F and let (u1, . . . , un) be a list
of linearly independent vectors in U and v1, . . . , vn ∈ V . Prove that there exists
a linear map T : U → V such that T (ui) = vi for all i = 1, . . . , n.

4. Let U, V be finite dimensional vector spaces over F and let (u1, . . . , un) be a list
of vectors in U . Assume that for every v1, . . . , vn ∈ V there exists a linear map
T : U → V such that T (ui) = vi for all i = 1, . . . , n. Prove that the vectors
u1, . . . , un are linearly independent.

5. Let U, V be finite dimensional vector spaces over F, W a subspace of U , and let
T : W → V be a linear map. Prove that there exists a linear map S : U → V
that extends T . (S extends T means S(w) = T (w) for all w ∈ W .)
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Action	Process	Object	Schema	Theory	(APOS)	
Excerpted	from	Integrating	Learning	Theories	and	Application‐based	Modules	in	Teaching	Linear	Algebra	(Martin,	
Loch,	Cooley,	Dexter,	Vidakovic;	2010)	

APOS	theory	is	a	theoretical	perspective	of	learning	based	on	an	interpretation	of	Piaget's	constructivism	and	poses	
descriptions	of	mental	constructions	that	may	occur	in	understanding	a	mathematical	concept.	These	constructions	are	called	
actions,	processes,	objects,	and	schema.	

An	action	is	a	transformation	of	a	mathematical	object	according	to	an	explicit	algorithm	seen	as	externally	driven.	It	may	be	a	
manipulation	of	objects	or	acting	upon	a	memorized	fact.	

When	one	reflects	upon	an	action,	constructing	an	internal	operation	for	a	transformation,	the	action	begins	to	be	interiorized.	
A	process	is	this	internal	transformation	of	an	object.	Each	step	may	be	described	or	reflected	upon	without	actually	
performing	it.	Processes	may	be	transformed	through	reversal	or	coordination	with	other	processes.	

There	are	two	ways	in	which	an	individual	may	construct	an	object.	A	person	may	reflect	on	actions	applied	to	a	particular	
process	and	become	aware	of	the	process	as	a	totality.	One	realizes	that	transformations	(whether	actions	or	processes)	can	
act	on	the	process,	and	is	able	to	actually	construct	such	transformations.	At	this	point,	the	individual	has	reconstructed	a	
process	as	a	cognitive	object.	In	this	case	we	say	that	the	process	has	been	encapsulated	into	an	object.	One	may	also	construct	
a	cognitive	object	by	reflecting	on	a	schema,	becoming	aware	of	it	as	a	totality.	Thus,	he	or	she	is	able	to	perform	actions	on	it	
and	we	say	the	individual	has	thematized	the	schema	into	an	object.	With	an	object	conception	one	is	able	to	de‐encapsulate	
that	object	back	into	the	process	from	which	it	came,	or,	in	the	case	of	a	thematized	schema,	unpack	it	into	its	various	
components.	Piaget	&	Garcia	[13]	indicate	that	thematization	has	occurred	when	there	is	a	change	from	usage	or	implicit	
application	to	consequent	use	and	conceptualization.	

A	schema	is	a	collection	of	actions,	processes,	objects,	and	other	previously	constructed	schemata	which	are	coordinated	and	
synthesized	to	form	mathematical	structures	utilized	in	problem	situations.	Objects	may	be	transformed	by	higher‐level	
actions,	leading	to	new	processes,	objects,	and	schemata.	Hence,	reconstruction	continues	in	evolving	schemata.	

To	illustrate	different	conceptions	of	the	APOS	theory,	imagine	the	following	'teaching'	scenario.	We	give	students	multi‐part	
activities	in	a	technology	supported	environment.	In	particular,	we	assume	students	are	using	Maple	in	the	computer	lab.	The	
multi‐part	activities,	focusing	on	vectors	and	operations,	in	Maple	begin	with	a	given	Maple	code	and	drawing.	In	case	of	scalar	
multiplication	of	the	vector,	students	are	asked	to	substitute	one	parameter	in	the	Maple	code,	execute	the	code	and	observe	
what	has	happened.	They	are	asked	to	repeat	this	activity	with	a	different	value	of	the	parameter.	Then	students	are	asked	to	
predict	what	will	happen	in	a	more	general	case	and	to	explain	their	reasoning.	Similarly,	students	may	explore	addition	and	
subtraction	of	vectors.	In	the	next	part	of	activity	students	might	be	asked	to	investigate	about	the	commutative	property	of	
vector	addition.	

Based	on	APOS	theory,	in	the	first	part	of	the	activity—in	which	students	are	asked	to	perform	certain	operation	and	make	
observations—our	intention	is	to	induce	each	student’s	action	conception	of	that	concept.	By	asking	students	to	imagine	what	
will	happen	if	they	make	a	certain	change–but	do	not	physically	perform	that	change–we	are	hoping	to	induce	a	somewhat	
higher	level	of	students'	thinking,	the	process	level.	In	order	to	predict	what	will	happen	students	would	have	to	imagine	
performing	the	action	based	on	the	actions	they	performed	before	(reflective	abstraction).	Activities	designed	to	explore	on	
vector	addition	properties	require	students	to	encapsulate	the	process	of	addition	of	two	vectors	into	an	object	on	which	some	
other	action	could	be	performed.	For	example,	in	order	for	a	student	to	conclude	that	u	+	v	=	v	+	u,	he/she	must	encapsulate	a	
process	of	adding	two	vectors	u	+	v	into	an	object	(resulting	vector)	which	can	further	be	compared	[action]	with	another	
vector	representing	the	addition	of	v	+	u.	

As	with	all	theories	of	learning,	APOS	has	a	limitation	that	researchers	may	only	observe	externally	what	one	produces	and	
discusses.	While	schemata	are	viewed	as	dynamic,	the	task	is	to	attempt	to	take	a	snap	shot	of	understanding	at	a	point	in	time	
using	a	genetic	decomposition.	A	genetic	decomposition	is	a	description	by	the	researchers	of	specific	mental	constructions	
one	may	make	in	understanding	a	mathematical	concept.	As	with	most	theories	(economics,	physics)	that	have	restrictions,	it	
can	still	be	very	useful	in	describing	what	is	observed.	



Further	Information	
We	asked	the	instructor	how	he	thought	our	readings	and	discussions	of	learning	theories	in	relation	to	linear	algebra	had	
influenced	his	thinking	about	best	teaching	practices.	He	responded	

I	have	gained	some	awareness	when	crafting	mathematical	questions	to	my	students.	I	have	always	thought	that	going	
from	simple	to	complex	is	a	good	approach.	After	these	readings	I	consciously	divide	this	evolution	from	simple	to	
complex	into	several	layers	that	require	increasing	levels	of	understanding.	

Learning	is	a	personal	activity	(and	so	is	teaching).	Different	individuals	have	different	ways	to	learn	mathematics.	This	
often	results	in	different	ways	of	understanding	the	same	mathematical	concept.	I	do	not	mean	different	levels	of	
understanding,	just	different	ways	to	look	at	a	concept.	Each	individual	using	his/her	own	"hardware"	(self‐explanatory)	
uses	personal	"software"	(logical	thinking)	to	process	knowledge	(learning	process)	delivered	through	the	activity	of	
teaching	(self‐teaching	included).	As	a	result,	one	relates	this	knowledge	to	previous	knowledge,	connects	and	relates	new	
concepts	and	facts	with	previously	processed	concepts	and	facts.	There	are	different	ways	to	make	these	connections;	the	
mathematical	proofs	are	the	connections	of	the	highest	quality.	Teaching	does	not	deliver	thinking	(which	is	a	process	
that	takes	place	in	the	student's	"hardware"),	but	very	often,	by	processing	the	knowledge	delivered	(i.e.	learning),	the	
"software"	improves	itself.	This	"byproduct"	of	teaching	(the	self‐adjustment	and	improvement	of	the	"software"),	on	the	
long	run,	is	by	far	the	most	important	output	of	the	learning	process.	The	reverse	process	is	also	possible:	the	"software"	
can	self‐downgrade	when	not	used	frequently.	I	see	learning	as	a	process	deeply	integrated	with	(and	therefore	greatly	
influenced	by)	the	"hardware"	and	"software"	components.	

Other	Modules	
 Systems	of	Equations	
 Vector	Spaces	and	Subspaces	
 Linear	Independence,	Span	
 Basis,	Change	of	Basis,	Dimension	
 Inner	Products	
 Operators	on	Complex	Vector	Spaces	
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