A single formulation for least squares, orthogonal projections, exact and approximate solutions

David Strong Pepperdine University

For a square invertible matrix $A=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]$, $A \vec{x}=\vec{b}$ has the solution $\vec{x}=A^{-1} \vec{b}$.
One way to describe this is that \vec{b} is a linear combination of the columns of A, where

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\vec{x}=A^{-1} \vec{b}
$$

is the amounts of each column needed to
build \vec{b} :

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b}
$$

Typically, a little later comes the idea of projecting one vector \vec{b} onto another \vec{a} :

$$
\hat{\vec{b}}=\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} .
$$

Important is the fact that $\vec{b}-\hat{\vec{b}} \perp \vec{a}$.

More generally, where the columns of $A=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]$ are orthogonal (and non-zero),

$$
\begin{aligned}
\hat{\vec{b}} & =\operatorname{proj}_{\operatorname{Col} A} \vec{b}=\frac{\vec{b} \cdot \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{1}} \vec{a}_{1}+\cdots+\frac{\vec{b} \cdot \vec{a}_{n}}{\vec{a}_{n} \cdot \vec{a}_{n}} \vec{a}_{n} \\
& =\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]\left[\begin{array}{c}
\frac{\vec{b}}{\vec{a}_{1} \cdot \vec{a}_{1}} \\
\vdots \\
\vdots \\
\frac{\vec{a}}{1} \\
\frac{\vec{a}_{n}}{n} \cdot \vec{a}_{n}
\end{array}\right]=A \widehat{\vec{x}}
\end{aligned}
$$

where $\hat{\vec{x}}$ is weightings of the columns of
A in building \vec{b} as well as we can.

Similar to before,

$$
\vec{b}-\hat{\vec{b}} \perp \operatorname{Col} A
$$

that is,

$$
\vec{b}-A \hat{\vec{x}} \perp \operatorname{Col} A
$$

that is,

$$
A^{T}(\vec{b}-A \hat{\vec{x}})=\overrightarrow{0}
$$

which leads to

$$
A^{T} A \hat{\vec{x}}=A^{T} \stackrel{\rightharpoonup}{b}
$$

This equation can also be found by minimizing the error $\|\vec{b}-A \vec{x}\|$.

So in general, the best solution $\hat{\vec{x}}$ to $A \vec{x}=\vec{b}$ (where the columns of A are linearly independent) is the least squares solution

$$
\hat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b} .
$$

There are four cases:
Columns of $m \times n$ matrix A Orthogonal $\quad \operatorname{Span} R^{m}$

Case 1	No	No
Case 2	No	Yes
Case 3	Yes	No
Case 4	Yes	Yes

The question is how the solutions to $A \vec{x}=\vec{b}$ for these four cases are related to

$$
\hat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

and/or to

$$
\hat{\vec{b}}=\operatorname{proj}_{C o l} \vec{b}=A \widehat{\vec{x}}=A\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

Case 1

Columns of A are not orthogonal.
Columns of A do not span R^{m}.

$$
\hat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

so that

$$
\hat{\vec{b}}=\operatorname{proj}_{\operatorname{Col} A} \vec{b}=A \hat{\vec{x}}=A\left(A^{T} A\right)^{-1} A^{T} \vec{b} .
$$

Case 2

Columns of A are not orthogonal.
Columns of A do span R^{m}.
(So A is square and invertible)

$$
\widehat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}=A^{-1}\left(A^{T}\right)^{-1} A^{T} \vec{b}=A^{-1} \vec{b}
$$

so that

$$
\hat{\vec{b}}=\operatorname{proj}_{\operatorname{Col} A} \stackrel{\rightharpoonup}{b}=A \widehat{\vec{x}}=A\left(A^{-1} \stackrel{\rightharpoonup}{b}\right)=\vec{b}
$$

Case 2

Columns of A are not orthogonal.
Columns of A do span R^{m}.
(So A is square and invertible)

$$
\hat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}=A^{-1}\left(A^{T}\right)^{-1} A^{T} \vec{b}=A^{-1} \vec{b}
$$

so that

$$
\hat{\vec{b}}=\operatorname{proj}_{\operatorname{Col} A} \stackrel{\rightharpoonup}{b}=A \hat{\vec{x}}=A\left(A^{-1} \stackrel{\rightharpoonup}{b}\right)=\vec{b}
$$

I think we usually make this observation with our students.

Case 3

Columns of A are orthogonal. Columns of A do not span R^{m}.
First,

$$
\begin{aligned}
A^{T} A & =\left[\begin{array}{c}
\vec{a}_{1}^{T} \\
\vdots \\
\vec{a}_{n}^{T}
\end{array}\right]\left[\begin{array}{lll}
\vec{a}_{1} & \cdots & \vec{a}_{n}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\vec{a}_{1}^{T} \vec{a}_{1} & & \\
& \ddots & \\
& & \vec{a}_{n}^{T} \vec{a}_{n}
\end{array}\right]
\end{aligned}
$$

So
$\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{ccc}\frac{1}{\vec{a}_{1} \cdot \vec{a}_{1}} & & \\ & \ddots & \\ & & 1 \\ & & \frac{\vec{a}_{n} \cdot \vec{a}_{n}}{}\end{array}\right]\left[\begin{array}{c}\vec{a}_{1}^{T} \\ \vdots \\ \vec{a}_{n}^{T}\end{array}\right]=\left[\begin{array}{c}\vec{a}_{1}^{T} \\ \overrightarrow{\vec{a}}_{1} \cdot \vec{a}_{1} \\ \vdots \\ \frac{\vec{a}_{n}^{T}}{\vec{a}_{n} \cdot \vec{a}_{n}}\end{array}\right]$
so that

$$
\hat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b}=\left[\begin{array}{c}
\vec{b} \cdot \vec{a}_{1} \\
\vec{a}_{1} \cdot \vec{a}_{1} \\
\vdots \\
\vec{b} \cdot \vec{a}_{n} \\
\vec{a}_{n} \cdot \vec{a}_{n}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
\hat{\vec{b}} & =A \hat{\vec{x}}=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]\left[\begin{array}{c}
\frac{\vec{b} \cdot \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{1}} \\
\vdots \\
\frac{\vec{b} \cdot \vec{a}_{n}}{\vec{a}_{n} \cdot \vec{a}_{n}}
\end{array}\right] \\
& =\frac{\vec{b} \cdot \vec{a}_{1}}{\stackrel{\rightharpoonup}{a}_{1} \cdot \vec{a}_{1}} \stackrel{\rightharpoonup}{a}_{1}+\cdots+\frac{\vec{b} \cdot \vec{a}_{n}}{\vec{a}_{n} \cdot \vec{a}_{n}} \vec{a}_{n}
\end{aligned}
$$

which is what we found earlier when we projected \vec{b} onto the column space of A.

Then

$$
\begin{aligned}
\hat{\vec{b}} & =A \hat{\vec{x}}=\left[\vec{a}_{1} \cdots \vec{a}_{n}\right]\left[\begin{array}{c}
\vec{b} \cdot \vec{a}_{1} \\
\vec{a}_{1} \cdot \vec{a}_{1} \\
\vdots \\
\vdots \\
\vec{b} \cdot \vec{a}_{n} \\
\vec{a}_{n} \cdot \vec{a}_{n}
\end{array}\right] \\
& =\frac{\vec{b} \cdot \vec{a}_{1}}{\vec{a}_{1} \cdot \vec{a}_{1}} \vec{a}_{1}+\cdots+\frac{\vec{b} \cdot \vec{a}_{n}}{\vec{a}_{n} \cdot \vec{a}_{n}} \vec{a}_{n}
\end{aligned}
$$

which is what we found earlier when we projected \vec{b} onto the column space of A.

I am not sure that we always make this connection with our students.

Case 4

Columns of A are orthogonal.
Columns of A do span R^{m}.
Same as case 3, except that $\hat{\vec{b}}=\vec{b}$ exactly, since the columns of A span R^{m}.

The point is that every one of the four cases we typically consider can be viewed as a special case of the least squares
solution $\hat{\vec{x}}$ to $A \vec{x}=\vec{b}$:

$$
\begin{gathered}
\hat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b} \\
\hat{\vec{b}}=\operatorname{proj}_{\text {Col }}^{A} \\
\vec{b}
\end{gathered}=A \hat{\vec{x}}=A\left(A^{T} A\right)^{-1} A^{T} \vec{b}
$$

The point is that every one of the four cases we typically consider can be viewed as a special case of the least squares
solution $\hat{\vec{x}}$ to $A \vec{x}=\vec{b}$:

$$
\begin{gathered}
\hat{\vec{x}}=\left(A^{T} A\right)^{-1} A^{T} \vec{b} \\
\hat{\vec{b}}=\operatorname{proj}_{\operatorname{Col}} A \vec{b}=A \hat{\vec{x}}=A\left(A^{T} A\right)^{-1} A^{T} \vec{b}
\end{gathered}
$$

Questions?

