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Math 436 (Linear Algebra) at Penn State Erie

Problems:

1. three credit linear algebra course;

2. most students have taken two-credit introduction (Math 220);

3. students from a variety of majors;

4. students take senior-level courses in random order.

Partial solution:

Maple labs which introduce elementary linear algebra topics together with
unifying concepts.
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Cayley’s theorem: the usual undergraduate presentation.

Every group with n elements is isomorphic to a group of n × n permutation
matrices.

The regular representation of the cyclic group with six elements:

Z6
∼= 〈x : x6 = e〉

X =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 .
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Cayley’s theorem (a liberal presentation)

Suppose G is a group of order n. G is isomorphic to a group of m×m permu-
tation matrices, for at least one m ≤ n.

A faithful blocking of the dicyclic group with order 12:

Z3 o Z4
∼= 〈a, b : a3 = b4; bab−1 = a−1〉.

A =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 0

0

0 1 0
0 0 1
1 0 0




; B =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 0

0

1 0 0
0 0 1
0 1 0
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Advantages of blocked representations of groups

1. connects abstract algebra to linear algebra;

2. encourages visual treatment of matrix actions on vectors;

3. treats group elements as objects to manipulate;

4. allows easy manipulation of group elements (Maple);

5. allows visual treatment of homomorphisms;

6. treats subgroups and normal subgroups as objects;

7. allows visual classification of small groups.
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A Maple lab experience in linear algebra (Math 436)

A =


0 1 0

0 0 1
1 0 0

 0

0

[
1 0
0 1

]
 ; B =


1 0 0

0 0 1
0 1 0

 0

0

[
0 1
1 0

]


1. determine the number of multiples of A and B;

2. verify that multiplication is associative (in this set);

3. explain why the set is closed under multiplication;

4. show that the set contains a multiplicative identity;

5. show that every element of the set has a unique inverse;

6. show that multiplication in this set is not commutative;

7. summarize calculations as a definition (group) – identify the group above.
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Student responses:

1. helped to understand multiplication in unfamiliar context;

2. helped to understand inverses as more than formula;

3. students explained multiplication to each other;

4. some students started explaining closure and inverses using block structure;

5. some made conjectures about the order of elements based on the block struc-
ture;

6. students who had completed abstract algebra recognized the group, and
asked how the matrices could represent action on a triangle.
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Follow-up:

1. action on a vector.


1 0 0

0 0 1
0 1 0

 0

0

[
0 1
1 0

]
 ·


A
B
C
U
P

 =


A
C
B
P
U


A

↙ ↘
↙ ↘
B ←→ C

U ←→ P

2. conjugation (similarity);

3. eventually, canonical forms.
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More about faithful blockings

Becker, “Do Normal Subgroups Have Straight Tails?” American Math Monthly, Volume 112, No. 5,
pp 440-449.

If G is a semidirect product of H by K, it admits a faithful blocking in |H| × |H| and |K| × |K| blocks.

Results by Mark Medwid:

• If a group, G, is a direct product G = H1 ×H2 × · · · ×Hk, then G admits a faithful blocking with k

blocks.

• Sn, (n > 2), can be written as a set product of two non-normal subgroups. It admits a faithful blocking
generated by cosets of those subgroups.

• Faithful blockings can simplify explanations of these concepts:
the purpose of groups; normal subgroups; homomorphisms and isomorphisms; images and kernels;
classification of small groups; canonical forms in linear algebra; symmetry groups in geometry; etc.
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Construction of faithful blockings

Suppose G is a semi-direct product of two subgroups, G = N o H.

Define a vector of left cosets for each subgroup:

Ĝ/H = [eH, (n1)H, (n2)H, . . . ]T ;

Ĝ/N = [eN, (h1)N, (h2)N, . . . ]T .

For each z ∈ G, let ΦH(z) be the permutation matrix taking

Ĝ/H to [zH, (zn1)H, (zn2)H . . . ]T ; define ΦN(z) similarly.

The resulting mapping is a faithful representation of the group:

z →
[
ΦN [z] 0

0 ΦH [z]

]
In our example, the subgroup 〈a〉 is normal, with 4 cosets; 〈b〉 is abnormal, with 3.

A =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 0

0

0 1 0
0 0 1
1 0 0




; B =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 0

0

1 0 0
0 0 1
0 1 0
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Computer lab: Homomorphisms in Maple

The dicyclic group admits an “obvious” homomorphisms.

f :




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 0

0

0 1 0
0 0 1
1 0 0




→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



f :




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 0

0

1 0 0
0 0 1
0 1 0




→


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



Kernel of homomorphism is a normal subgroup: Kernel(f) = 〈A〉 ∼= Z3.

Image(f) ∼= 〈B〉 ∼= Z4.
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Computer lab: Homomorphisms in Maple

The dicyclic group admits a not-so-obvious homomorphisms.

g :




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 0

0

0 1 0
0 0 1
1 0 0




→

0 1 0
0 0 1
1 0 0



g :




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 0

0

1 0 0
0 0 1
0 1 0




→

1 0 0
0 0 1
0 1 0



Kernel of homomorphism is a normal subgroup: Kernel(g) = {I, B2} ∼= Z2.

Image(g) ∼= S3 is generated by the block of A and the tail of B.
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The Behrend College Mathematics Universe

A few recent courses:

• Math 220: Matrices

• Math 311: Concepts of Discrete Mathematics

• Math 427: Geometry

• Math 428: Geometry for Teachers

• Math 435: Abstract Algebra

• Math 436: Linear Algebra

Common topics:

• Binary operation

• identity and inverse

• group action (matrix action)

• similarity (conjugation)

• basis (generating set)

• homomorphism

• permutation group


