Group Theory in Linear Algebra

Paul Becker: Penn State Erie, The Behrend College

Mark Medwid: Penn State Erie, The Behrend College

Math 436 (Linear Algebra) at Penn State Erie

Problems:

1. three credit linear algebra course;
2. most students have taken two-credit introduction (Math 220);
3. students from a variety of majors;
4. students take senior-level courses in random order.

Partial solution:

Maple labs which introduce elementary linear algebra topics together with unifying concepts.

$\underline{\text { Cayley's theorem: the usual undergraduate presentation. }}$

Every group with n elements is isomorphic to a group of $n \times n$ permutation matrices.

The regular representation of the cyclic group with six elements:

$$
\begin{aligned}
& \mathbb{Z}_{6} \cong \quad\left\langle x: x^{6}=e\right\rangle \\
& X=\left[\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Cayley's theorem (a liberal presentation)

Suppose G is a group of order $n . G$ is isomorphic to a group of $m \times m$ permutation matrices, for at least one $m \leq n$.

A faithful blocking of the dicyclic group with order 12:

$$
\begin{aligned}
& \mathbb{Z}_{3} \rtimes \mathbb{Z}_{4} \cong\left\langle a, b: a^{3}=b^{4} ; b a b^{-1}=a^{-1}\right\rangle . \\
& A=[\begin{array}{cc}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array} \overbrace{}^{0} \begin{array}{c}
\\
\\
\end{array} 0
\end{aligned}
$$

Advantages of blocked representations of groups

1. connects abstract algebra to linear algebra;
2. encourages visual treatment of matrix actions on vectors;
3. treats group elements as objects to manipulate;
4. allows easy manipulation of group elements (Maple);
5. allows visual treatment of homomorphisms;
6. treats subgroups and normal subgroups as objects;
7. allows visual classification of small groups.

A Maple lab experience in linear algebra (Math 436)

$$
A=\left[\begin{array}{cc}
{\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]} & 0 \\
0 & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{array}\right] \quad ; \quad B=\left[\begin{array}{ccc}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]} & \\
0 & \\
0 & {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}
\end{array}\right]
$$

1. determine the number of multiples of A and B;
2. verify that multiplication is associative (in this set);
3. explain why the set is closed under multiplication;
4. show that the set contains a multiplicative identity;
5. show that every element of the set has a unique inverse;
6. show that multiplication in this set is not commutative;
7. summarize calculations as a definition (group) - identify the group above.

Student responses:

1. helped to understand multiplication in unfamiliar context;
2. helped to understand inverses as more than formula;
3. students explained multiplication to each other;
4. some students started explaining closure and inverses using block structure;
5. some made conjectures about the order of elements based on the block structure;
6. students who had completed abstract algebra recognized the group, and asked how the matrices could represent action on a triangle.

Follow-up:

1. action on a vector. $\left[\begin{array}{ccc}{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]} & \\ & 0 & \\ & & {\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]}\end{array}\right] \cdot\left[\begin{array}{c}A \\ B \\ C \\ U \\ P\end{array}\right]=\left[\begin{array}{c}A \\ C \\ B \\ P \\ U\end{array}\right]$

$$
U \longleftrightarrow P
$$

2. conjugation (similarity);
3. eventually, canonical forms.

More about faithful blockings

Becker, "Do Normal Subgroups Have Straight Tails?" American Math Monthly, Volume 112, No. 5, pp 440-449.

If G is a semidirect product of H by K, it admits a faithful blocking in $|H| \times|H|$ and $|K| \times|K|$ blocks.

Results by Mark Medwid:

- If a group, G, is a direct product $G=H_{1} \times H_{2} \times \cdots \times H_{k}$, then G admits a faithful blocking with k blocks.
- $S_{n},(n>2)$, can be written as a set product of two non-normal subgroups. It admits a faithful blocking generated by cosets of those subgroups.
- Faithful blockings can simplify explanations of these concepts: the purpose of groups; normal subgroups; homomorphisms and isomorphisms; images and kernels; classification of small groups; canonical forms in linear algebra; symmetry groups in geometry; etc.

Construction of faithful blockings

Suppose G is a semi-direct product of two subgroups, $G=N \rtimes H$.
Define a vector of left cosets for each subgroup:
$\widehat{\widehat{G / H}}=\left[e H,\left(n_{1}\right) H,\left(n_{2}\right) H, \ldots\right]^{T} ;$
$\widehat{G / N}=\left[e N,\left(h_{1}\right) N,\left(h_{2}\right) N, \ldots\right]^{T}$.
For each $z \in G$, let $\Phi_{H}(z)$ be the permutation matrix taking
$\widehat{G / H}$ to $\left[z H,\left(z n_{1}\right) H,\left(z n_{2}\right) H \ldots\right]^{T}$; define $\Phi_{N}(z)$ similarly.
The resulting mapping is a faithful representation of the group:

$$
z \rightarrow\left[\begin{array}{cc}
\Phi_{N}[z] & 0 \\
0 & \Phi_{H}[z]
\end{array}\right]
$$

In our example, the subgroup $\langle a\rangle$ is normal, with 4 cosets; $\langle b\rangle$ is abnormal, with 3.

Computer lab: Homomorphisms in Maple

The dicyclic group admits an "obvious" homomorphisms.

$$
\begin{array}{ll}
f:\left[\begin{array}{llll}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} & 0 & \\
& 0 & & {\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]}
\end{array}\right] & \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
f:\left[\begin{array}{llll}
{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]} & 0 \\
& 0 & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
\end{array}\right] & \rightarrow\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

Kernel of homomorphism is a normal subgroup: $\operatorname{Kernel}(f)=\langle A\rangle \cong \mathbb{Z}_{3}$.
$\operatorname{Image}(f) \cong\langle B\rangle \cong \mathbb{Z}_{4}$.

Computer lab: Homomorphisms in Maple

The dicyclic group admits a not-so-obvious homomorphisms.

$$
\left.\left.\begin{array}{ll}
g:\left[\begin{array}{llll}
{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} & 0 \\
g:\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
\end{array}\right] & \rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
g:\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] & 0 \\
& 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Kernel of homomorphism is a normal subgroup: $\operatorname{Kernel}(g)=\left\{I, B^{2}\right\} \cong \mathbb{Z}_{2}$.
$\operatorname{Image}(g) \cong S_{3}$ is generated by the block of A and the tail of B.

The Behrend College Mathematics Universe

A few recent courses:

- Math 220: Matrices
- Math 311: Concepts of Discrete Mathematics
- Math 427: Geometry
- Math 428: Geometry for Teachers
- Math 435: Abstract Algebra
- Math 436: Linear Algebra

Common topics:

- Binary operation
- identity and inverse
- group action (matrix action)
- similarity (conjugation)
- basis (generating set)
- homomorphism
- permutation group

