A Nickel and Dime Example

David Strong

Pepperdine University

Nickel and Dime Example

 (Actually nickels and pennies)
David Strong

Pepperdine University

Where used?

- First or second day of class.
- In discrete math (including linear algebra) for business students
- Also used in "real" linear algebra
- This talk is basically what students see in class

Example: coins

- Given some coins, say 15 pennies and 6 nickels, determine how many pennies and nickels are needed to satisfy one, two or all three of the given conditions:
- The total number of coins you have is 6 .
- You have five times as many pennies as nickels.
- Your coins add up to a total of 30 cents.
- Use your handout.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.
\square The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.
\square The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 . You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is 6 .

Pennies/Nickels

$0 / 6,1 / 5,2 / 4,3 / 3,4 / 2,5 / 1, \ldots$ You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.
\square The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\square The total number of coins you have is 6 . You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .

Pennies/Nickels

$0 / 6,1 / 5,2 / 4,3 / 3,4 / 2,5 / 1, \ldots$

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.
\square The total number of coins you have is 6
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\square The total number of coins you have is 6 . You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\square The total number of coins you have is 6 . You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.

Pennies/Nickels

$0 / 6,1 / 5,2 / 4,3 / 3,4 / 2,5 / 1, \ldots$
$0 / 0,5 / 1,10 / 2,15 / 3, \ldots$
$0 / 6,5 / 5,10 / 4,15 / 3, \ldots$
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .

Pennies/Nickels

$0 / 6,1 / 5,2 / 4,3 / 3,4 / 2,5 / 1, \ldots$

$$
0 / 0,5 / 1,10 / 2,15 / 3, \ldots
$$

0/6, 5/5, 10/4, 15/3, ...

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\square The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .

Pennies/Nickels

$0 / 6,1 / 5,2 / 4,3 / 3,4 / 2,5 / 1$

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .

Pennies/Nickels

(0/6) $1 / 5,2 / 4,3 / 3,4 / 2,5 / 1, \ldots$

You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.
\square The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .

Pennies/Nickels

0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...
$0 / 6,5 / 5,10 / 4,15 / 3$

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
0/6
You have five times as many pennies as nickels.
Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 . 15/3
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.
\qquad
Suppose you had 15 pennies and 6 nickels. Find a solution to each of the following seven problems by finding how many pennies and nickels would be needed to satisfy the condition(s) in bold.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .

Pennies/Nickels

0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels.
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 .
$0 / 0,5 / 1,10 / 2,15 / 3, \ldots$

0/6, 5/5, 10/4, 15/3, ...

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is $\mathbf{6}$.
You have five times as many pennies as nickels
Your coins add up to a total of 30 cents.

The total number of coins you have is 6 . 15/3
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.

The total number of coins you have is 6 .
You have five times as many pennies as nickels. Your coins add up to a total of $\mathbf{3 0}$ cents.

Restrictions/relationships = Equations

- Each restriction (relationship between unknowns) corresponds to an equation.
- Where: p is number of pennies n is number of nickels

Restriction/relationship
Equation
Total number of coins is 6 .
Five times as many pennies as nickels. Coins add up to 30 cents.
$p+n=6$
$p-5 n=0$
$p+5 n=30$

Functions vs. relationships

- Sometimes there is simply a relationship between the two values (variables). That is, one value is not really a function of the other. This is the case for the pennies and nickels equations.
- Sometimes one value (variable) really is a function of the other, in which case we can solve for one variable in terms of the other. We can do that here as well.

Equations in standard form

$$
\begin{array}{|l}
p+n=6 \\
\hline p-5 n=0 \\
p+5 n=30 \\
\hline
\end{array}
$$

Equations with \boldsymbol{p} in terms of \boldsymbol{n}

$p+n=6$
$p-5 n=0$
$p+5 n=30$
:---
$p=5 n$
$p=-5 n+30$

Equations with \boldsymbol{n} in terms of \boldsymbol{p}

$p+n=6$
$p-5 n=0$
$p+5 n=30$
$p+6$
$n=-\frac{1}{5} p+6$

Equations in standard form

$$
\begin{array}{|l}
p+n=6 \\
\hline p-5 n=0 \\
p+5 n=30 \\
\hline
\end{array}
$$

Number of equations vs. number of unknowns

- Each unknown is a degree of freedom, each equation is a restriction.
- In general, if there are the same number of equations (restrictions, conditions) as unknowns (variables), then there is one solution.

Number of equations vs. number of unknowns

- Each unknown is a degree of freedom, each equation is a restriction.
- In general, if there are the same number of equations (restrictions, conditions) as unknowns (variables), then there is one solution.
- Example: since an equation with two variables is a line, then two equations with two variables are two lines, and usually two lines intersect at a single point: the single solution. So if there are two equations each with two variables, there will generally be a single solution.

Number of equations vs. number of unknowns

- In general, where $m=$ number of equations $n=$ number of unknowns
then:
\underline{m} vs. n \#solutions \#equations For $n=2$

Number of equations vs. number of unknowns

- In general, where $m=$ number of equations $n=$ number of unknowns
then:
\underline{m} vs. n \#solutions \#equations For $n=2$

$$
m=n \quad 1 \quad \text { Just right }
$$

Number of equations vs. number of unknowns

- In general, where $m=$ number of equations $n=$ number of unknowns
then:
$\underline{m \text { vs. } n}$ \#solutions \# equations For $n=2$

$$
m=n \quad 1 \quad \text { Just right }
$$

Number of equations vs. number of unknowns

- In general, where $m=$ number of equations $n=$ number of unknowns
then:
\underline{m} vs. n \#solutions \#equations For $n=2$
$m>n$
0
$m=n \quad 1$
Too many
Just right

Number of equations vs. number of unknowns

- In general, where $m=$ number of equations $n=$ number of unknowns
then:
$\begin{array}{ccc}\frac{m \text { vs. } n}{m>n} & \frac{\# \text { solutions }}{} & \frac{\text { \# equations }}{\text { Too many }}= \\ m=n & 1 & \text { Just right }\end{array}$

Number of equations vs.

number of unknowns

- In general, where
$m=$ number of equations $n=$ number of unknowns
then:

$\frac{m \text { vs. } n}{}$	\# solutions	
$m>n$	0	\#equations
$m=n$	1	Joo many
$m<n$	∞	Not right $n=2$
$m o n g h$		

Number of equations vs.

number of unknowns

- In general, where
$m=$ number of equations $n=$ number of unknowns
then:

$\frac{m \text { vs. } n}{}$	\# solutions	
$m>n$	0	\# equations
$m=n$	1	Juo many right
$m<n$	∞	Not enough

$p+n=6$
 $p-5 n=0$
 $p+5 n=30$

$$
\begin{aligned}
& p+n=6 \\
& p-5 n=0 \\
& p+5 n=30
\end{aligned}
$$

$$
\begin{aligned}
& p+n=6 \\
& p-5 n=0 \\
& p+5 n=30
\end{aligned}
$$

$p+n=6$
 $p-5 n=0$
 $p+5 n=30$

$$
\begin{aligned}
p+n & =6 \\
p-5 n & =0 \\
p+5 n & =30
\end{aligned}
$$

$$
\begin{aligned}
& p+n=6 \\
& p-5 n=0 \\
& p+5 n=30
\end{aligned}
$$

$p+n=6$
 $p-5 n=0$
 $p+5 n=30$

$$
\begin{array}{|l|}
\hline p+n=6 \\
\hline p-5 n=0 \\
p+5 n=30 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 6 \\
1 & -5 & 0 \\
1 & 5 & 30
\end{array}\right] \xrightarrow{R 2-R 1}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
0 & -6 & -6 \\
0 & 4 & 24
\end{array}\right]} \\
& \xrightarrow{-\frac{1}{6} R 2}\left[\begin{array} { l l | l }
{ 1 } & { 1 } & { 6 } \\
{ { } _ { 4 } ^ { 1 } R 3 }
\end{array} [\begin{array} { l l l }
{ 1 } & { 1 } & { 1 } \\
{ 0 } & { 1 } & { 6 }
\end{array}] \xrightarrow { R 1 - R 2 } \left[\begin{array}{ll|l}
1 & 0 & 5 \\
R 3-R 2
\end{array}\left[\begin{array}{ll|l}
0 & 1 & 1 \\
0 & 0 & 5
\end{array}\right]\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 6 \\
1 & -5 & 0 \\
1 & 5 & 30
\end{array}\right] \xrightarrow{R 2-R 1}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
R 3-R 1 \\
0 & -6 & -6 \\
0 & 4 & 24
\end{array}\right]} \\
& \left.\begin{array}{l}
-{ }_{6}^{1} R 2 \\
{ }_{4}^{1} R 3 \\
\xrightarrow{R 2}
\end{array}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
0 & 1 & 1 \\
0 & 1 & 6
\end{array}\right] \xrightarrow{R 1-R 2} \begin{array}{|cc|c}
R 3-R 2 & 0 & 5 \\
0 & 1 & 1 \\
\hline 0 & 0 & 5
\end{array}\right]
\end{aligned}
$$

$$
0 p+0 n=5 . \text { No solution. }
$$

$0 p+0 n=5$. No solution.

$0 p+0 n=5$. No solution.

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 6 \\
1 & -5 & 0 \\
1 & 5 & 30
\end{array}\right] \xrightarrow{R 2-R 1}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
R 3 & -6 & -6 \\
0 & 4 & 24
\end{array}\right]} \\
& \xrightarrow{-\frac{1}{6} R 2}\left[\begin{array}{ll|l}
\frac{1}{4} R 3 \\
& 1 & 6 \\
0 & 1 & 1 \\
0 & 1 & 6
\end{array}\right] \xrightarrow{R 1-R 2}\left[\begin{array}{ll|l}
1 & 0 & 5 \\
R 3-R 2
\end{array}\left[\begin{array}{rrr|}
\hline 0 & 1 & 1 \\
0 & 0 & 5
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 6 \\
1 & -5 & 0 \\
1 & 5 & 10
\end{array}\right] \xrightarrow{R 2-R 1}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
0 & -6 & -6 \\
0 & 4 & 4
\end{array}\right]} \\
& \begin{array}{l}
-\frac{1}{6} R 2 \\
{ }_{4}^{1} R 2 \\
\xrightarrow{R 3-R 1}
\end{array}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \xrightarrow{R 1-R 2}\left[\begin{array}{ll|l}
1 & 0 & 5 \\
R 3-R 2
\end{array}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\right.
\end{aligned}
$$

$$
O p+0 n=0 . \text { This is } O K .
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 6 \\
1 & -5 & 0 \\
1 & 5 & 10
\end{array}\right] \xrightarrow{R 2-R 1}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
R 3-R 1 & -6 & -6 \\
0 & 4 & 4
\end{array}\right]} \\
& \xrightarrow[\rightarrow]{-\frac{1}{6} R 2} \underset{{ }_{4}^{1} R 3}{1}\left[\begin{array}{ll|l}
1 & 1 & 6 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \xrightarrow{R 1-R 2}\left[\begin{array}{ll|l}
1 & 0 & 5 \\
R 3-R 2
\end{array}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0!
\end{array}\right]\right.
\end{aligned}
$$

$$
O p+0 n=0 . \text { This is } O K .
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 6 \\
1 & -5 & 0 \\
1 & 5 & 10
\end{array}\right] \xrightarrow{R 2-R 1}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
R 3-R 1 & -6 & -6 \\
0 & 4 & 4
\end{array}\right]}
\end{aligned}
$$

$p+n=6$
 $p+5 n=10$

$$
O p+O n=0 . \text { This is } O K .
$$

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
1 & 1 & 6 \\
1 & -5 & 0 \\
1 & 5 & 10
\end{array}\right] \xrightarrow{R 2-R 1}\left[\begin{array}{rr|r}
1 & 1 & 6 \\
R 3-R 1 & -6 & -6 \\
0 & 4 & 4
\end{array}\right]} \\
& \xrightarrow{-\frac{1}{6} R 2}\left[\begin{array}{ll|l}
1 & 1 & 6 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \xrightarrow{R 1-R 2}\left[\begin{array}{ll|l|l}
1 & 0 & 5 \\
R 3-R 2 \\
0 & 1 & 1 \\
0 & 0 & 0!
\end{array}\right] \begin{array}{l}
p=5 \\
n=1
\end{array}
\end{aligned}
$$

Students come up with examples (with three unknowns)

	No solution	One solution	Infinite solutions
\# equations < \# unknowns			
\# equations = \# unknowns			
\# equations $>$ \# unknowns			

Concepts discovered and discussed

- Restrictions/relationships \leftrightarrow equations
- Functions vs. equations (variables vs. unknowns)
- Standard form vs. slope-intercept form
- Number of equations (restrictions) vs. number of unknowns (freedom):
- Typical number of solutions
- Exceptions
- In standard form, coefficients determine slope and right hand side determines y - (or x-) intercept
- Gaussian elimination is driven by coefficients, not by right hand side
- Systems of linear equations have 0,1 or ∞ solutions

Concepts discovered and discussed

- Restrictions/relationships \leftrightarrow equations
- Functions vs. equations (variables vs. unknowns)
- Standard form vs. slope-intercept form
- Number of equations (restrictions) vs. number of unknowns (freedom):
- Typical number of solutions
- Exceptions
- In standard form, coefficients determine slope and right hand side determines y - (or x-) intercept
- Gaussian elimination is driven by coefficients, not by right hand side
- Systems of linear equations have 0,1 or ∞ solutions

Concepts discovered and discussed

- Restrictions/relationships \leftrightarrow equations
- Functions vs. equations (variables vs. unknowns)
- Standard form vs. slope-intercept form
- Number of equations (restrictions) vs. number of unknowns (freedom):
- Typical number of solutions
- Exceptions
- In standard form, coefficients determine slope and right hand side determines y - (or x-) intercept
- Gaussian elimination is driven by coefficients, not by right hand side
- Systems of linear equations have 0,1 or ∞ solutions
- All with a simple 15 -minute example

Thanks for your interest.

