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Where used?

• First or second day of class.

• In discrete math (including linear algebra) for 
business students

• Also used in “real” linear algebra

• This talk is basically what students see in class



Example: coins

• Given some coins, say 15 pennies and 6 
nickels, determine how many pennies and 
nickels are needed to satisfy one, two or all 
three of the given conditions:

– The total number of coins you have is 6.

– You have five times as many pennies as nickels.

– Your coins add up to a total of 30 cents.

• Use your handout.
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Restrictions/relationships = Equations

• Each restriction (relationship between 
unknowns) corresponds to an equation.

• Where:  p is number of pennies

n is number of nickels

Restriction/relationship Equation
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Functions vs. relationships

• Sometimes there is simply a relationship 
between the two values (variables).                
That is, one value is not really a function of 
the other.  This is the case for the pennies           
and nickels equations.

• Sometimes one value (variable) really is a 
function of the other, in which case we can 
solve for one variable in terms of the other.  
We can do that here as well.



Equations in standard form
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Number of equations vs.                        
number of unknowns

• Each unknown is a degree of freedom, each 
equation is a restriction.

• In general, if there are the same number of 
equations (restrictions, conditions) as unknowns 
(variables), then there is one solution.



Number of equations vs.                        
number of unknowns

• Each unknown is a degree of freedom, each 
equation is a restriction.

• In general, if there are the same number of 
equations (restrictions, conditions) as unknowns 
(variables), then there is one solution.

• Example: since an equation with two variables is 
a line, then two equations with two variables are 
two lines, and usually two lines intersect at a 
single point: the single solution.  So if there are 
two equations each with two variables, there will 
generally be a single solution. 



Number of equations vs.                        
number of unknowns

• In general, where 

m = number of equations

n = number of unknowns

then:

m vs. n # solutions # equations For n = 2



Number of equations vs.                        
number of unknowns

• In general, where 

m = number of equations

n = number of unknowns

then:

m vs. n # solutions # equations

m =  n 1 Just right

For n = 2



Number of equations vs.                        
number of unknowns

• In general, where 

m = number of equations

n = number of unknowns

then:

m vs. n # solutions # equations

m =  n 1 Just right

For n = 2



Number of equations vs.                        
number of unknowns

• In general, where 

m = number of equations

n = number of unknowns

then:

m vs. n # solutions # equations

m >  n 0 Too many

m =  n 1 Just right

For n = 2



Number of equations vs.                        
number of unknowns

• In general, where 

m = number of equations

n = number of unknowns

then:

m vs. n # solutions # equations

m >  n 0 Too many

m =  n 1 Just right

For n = 2



Number of equations vs.                        
number of unknowns

• In general, where 

m = number of equations

n = number of unknowns

then:

m vs. n # solutions # equations

m >  n 0 Too many

m =  n 1 Just right

m <  n  Not enough

For n = 2



Number of equations vs.                        
number of unknowns

• In general, where 

m = number of equations

n = number of unknowns

then:

m vs. n # solutions # equations

m >  n 0 Too many

m =  n 1 Just right

m <  n  Not enough

For n = 2



305

05

6







np

np

np



305

05

6







np

np

np



305

05

6







np

np

np



305

05

6







np

np

np



305

05

6







np

np

np



305

05

6







np

np

np



No solution!
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Students come up with examples   
(with three unknowns)

No
solution

One 
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Infinite 
solutions
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Concepts discovered and discussed

• Restrictions/relationships   equations
• Functions vs. equations (variables vs. unknowns)
• Standard form vs. slope-intercept form
• Number of equations (restrictions) vs. number of 

unknowns (freedom):  
– Typical number of solutions
– Exceptions

• In standard form, coefficients determine slope                 
and right hand side determines y- (or x-) intercept 

• Gaussian elimination is driven by coefficients,                     
not by right hand side

• Systems of linear equations have 0, 1 or ∞ solutions
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Concepts discovered and discussed

• Restrictions/relationships   equations
• Functions vs. equations (variables vs. unknowns)
• Standard form vs. slope-intercept form
• Number of equations (restrictions) vs. number of 

unknowns (freedom):  
– Typical number of solutions
– Exceptions

• In standard form, coefficients determine slope                 
and right hand side determines y- (or x-) intercept 

• Gaussian elimination is driven by coefficients,                     
not by right hand side

• Systems of linear equations have 0, 1 or ∞ solutions
• All with a simple 15-minute example



Thanks for your interest.


