A Nickel and Dime Example

David Strong Pepperdine University

A Nickel and Dime Example

(Actually nickels and pennies)

David Strong Pepperdine University

Where used?

- First or second day of class.
- In discrete math (including linear algebra) for business students
- Also used in "real" linear algebra
- This talk is basically what students see in class

Example: coins

- Given some coins, say 15 pennies and 6 nickels, determine how many pennies and nickels are needed to satisfy one, two or all three of the given conditions:
 - The total number of coins you have is 6.
 - You have five times as many pennies as nickels.
 - Your coins add up to a total of 30 cents.
- Use your <u>handout</u>.

NT					
	я	m	n	ρ	ľ
T .	C.			~	1

Pennies Nickels

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

N	6			~	
IN	a	1	ш	e	

Pennies Nickels

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

Pennies/Nickels 0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...

N	6			~	
IN	a	1	ш	e	

Pennies Nickels

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

Pennies/Nickels 0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...

0/0, 5/1, 10/2, 15/3, ...

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

N	6			~	
IN	a	1	ш	e	

Pennies Nickels

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...

Pennies/Nickels

0/6, 5/5, 10/4, 15/3, ...

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

N	6			~	
IN	a	1	ш	e	

Pennies Nickels

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

Pennies/Nickels 0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...

0/0, 5/1, 10/2, 15/3, ...

0/6, 5/5, 10/4, 15/3, ...

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

5/1

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

_	

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

N	6			~	
IN	a	1	ш	e	

Pennies Nickels

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

Pennies/Nickels 0/6, 1/5, 2/4, 3/3, 4/2 5/

0/0,(5/1) 10/2, 15/3, ...

0/6, 5/5, 10/4, 15/3, ...

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

5/1

The total number of coins you have is 6.5You have five times as many pennies as nickels.Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

N	6			~	
IN	a	1	ш	e	

Pennies Nickels

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

5/1

Pennies/Nickels

0/6) 1/5, 2/4, 3/3, 4/2, 5/1, ...

0/0, 5/1, 10/2, 15/3, ...

0/6) 5/5, 10/4, 15/3, ...

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels. 0/6

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

NТ					
	я	T	n	ρ	•
	c.			~	٠

Pennies Nickels

-	

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

5/1

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

0/6

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

15/3

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

Pennies/Nickels 0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...

0/0, 5/1, 10/2, 15/3

0/6, 5/5, 10/4, 15/

NТ					
	я	1	n	ρ	•
	c.			~	٠

Pennies Nickels

-	

The total number of coins you have is 6.

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

Pennies/Nickels 0/6, 1/5, 2/4, 3/3, 4/2, 5/1, ...

The total number of coins you have is 6. You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

5/1

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. You have five times as many pennies as nickels.

Your coins add up to a total of 30 cents.

The total number of coins you have is 6.

15/3

0/6

You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

The total number of coins you have is 6. ?? You have five times as many pennies as nickels. Your coins add up to a total of 30 cents.

???

0/6, 5/5, 10/4, 15/3, ...

0/0, 5/1, 10/2, 15/3, ...

Restrictions/relationships = Equations

- Each **restriction** (relationship between unknowns) corresponds to an **equation**.
- Where: *p* is number of pennies *n* is number of nickels
- Restriction/relationshipEquationTotal number of coins is 6.p + n = 6Five times as many pennies as nickels.p 5n = 0Coins add up to 30 cents.p + 5n = 30

Functions vs. relationships

- Sometimes there is simply a relationship between the two values (variables). That is, one value is not really a function of the other. This is the case for the pennies and nickels equations.
- Sometimes one value (variable) really is a function of the other, in which case we can solve for one variable in terms of the other. We can do that here as well.

Equations in standard form

Equations with *p* in terms of *n*

Equations with *n* in terms of *p*

Equations in standard form

- Each unknown is a degree of freedom, each equation is a restriction.
- In general, if there are the same number of equations (restrictions, conditions) as unknowns (variables), then there is one solution.

- Each unknown is a degree of freedom, each equation is a restriction.
- In general, if there are the same number of equations (restrictions, conditions) as unknowns (variables), then there is one solution.
- Example: since an equation with two variables is a line, then two equations with two variables are two lines, and usually two lines intersect at a single point: the single solution. So if there are two equations each with two variables, there will generally be a single solution.

• In general, where

m = number of equations*n* = number of unknowns

then:

<u>m vs. n # solutions # equations For n = 2</u>

• In general, where

m = number of equations*n* = number of unknowns

<u>m vs. n</u>	<u># solutions</u>	<u># equations</u>	<u>For n = 2</u>
m = n	1	Just right	

• In general, where

m = number of equations*n* = number of unknowns

<u>m vs. n</u>	<u># solutions</u>	<u># equations</u>	<u>For n = 2</u>
m = n	1	Just right	

• In general, where

m = number of equations*n* = number of unknowns

<u>m vs. n</u>	<u># solutions</u>	<u># equations</u> For n = 2	
m > n	0	Too many	
m = n	1	Just right	-

• In general, where

m = number of equations n = number of unknowns

<u>m vs. n</u>	<u># solutions</u>	<u># equations</u> For n = 2	
m > n	0	Too many	
m = n	1	Just right	-

• In general, where

m = number of equations
n = number of unknowns

<u>m vs. n</u>	<u># solutions</u>	<u># equations</u> For n = 2
m > n	0	Too many
m = n	1	Just right
<i>m</i> < <i>n</i>	00	Not enough

• In general, where

m = number of equations
n = number of unknowns

<u>m vs. n</u>	<u># solutions</u>	<u># equations</u> For n = 2
m > n	0	Too many
m = n	1	Just right
<i>m</i> < <i>n</i>	∞	Not enough

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 30$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 30$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 30$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 30$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 30$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 30$

$$\begin{bmatrix} 1 & 1 & 6 \\ 1 & -5 & 0 \\ 1 & 5 & 30 \end{bmatrix} \xrightarrow{R2-R1} \begin{bmatrix} 1 & 1 & 6 \\ 0 & -6 & -6 \\ 0 & 4 & 24 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{6}R2} \begin{bmatrix} 1 & 1 & 6 \\ -\frac{1}{4}R3 \\ -\frac{1}{0} & 1 & 1 \\ 0 & 1 & 6 \end{bmatrix} \xrightarrow{R1-R2} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ -\frac{1}{0} & -6 \end{bmatrix}$$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 30$

$$\begin{bmatrix} 1 & 1 & 6 \\ 1 & -5 & 0 \\ 1 & 5 & 30 \end{bmatrix} \xrightarrow{R2-R1} \begin{bmatrix} 1 & 1 & 6 \\ 0 & -6 & -6 \\ 0 & 4 & 24 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{6}R2} \begin{bmatrix} 1 & 1 & 6 \\ 1 & 1 & 6 \\ -\frac{1}{4}R3 \\ -\frac{1}{6} & 0 & 1 & 1 \\ -\frac{1}{6} & 0 & 1 & 1 \\ -\frac{1}{6} & 0 & 1 & 1 \\ -\frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} \end{bmatrix} \xrightarrow{R1-R2} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ -\frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} \end{bmatrix}$$

0p + 0n = 5. No solution.

0p + 0n = 5. No solution.

0p + 0n = 5. No solution.

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 10$

$$\begin{bmatrix} 1 & 1 & 6 \\ 1 & -5 & 0 \\ 1 & 5 & 30 \end{bmatrix} \xrightarrow{R2-R1} \begin{bmatrix} 1 & 1 & 6 \\ 0 & -6 & -6 \\ 0 & 4 & 24 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{6}R2} \begin{bmatrix} 1 & 1 & 6 \\ -\frac{1}{4}R3 \\ -\frac{1}{4}R3 \\ 0 & 1 & 1 \\ -\frac{1}{6} \end{bmatrix} \xrightarrow{R1-R2} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ -\frac{1}{6} \end{bmatrix}$$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 10$

$$\begin{bmatrix} 1 & 1 & 6 \\ 1 & -5 & 0 \\ 1 & 5 & 10 \end{bmatrix} \xrightarrow{R2-R1} \begin{bmatrix} 1 & 1 & 6 \\ 0 & -6 & -6 \\ 0 & 4 & 4 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{6}R2} \begin{bmatrix} 1 & 1 & 6 \\ 0 & 1 & 1 \\ -\frac{1}{4}R3 \\ -\frac{1}{0} & 1 & 1 \end{bmatrix} \xrightarrow{R3-R2} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ -\frac{1}{0} & 0 & 0 \end{bmatrix}$$

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 10$

$$\begin{bmatrix} 1 & 1 & 6 \\ 1 & -5 & 0 \\ 1 & 5 & 10 \end{bmatrix} \xrightarrow{R2-R1} \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & -6 & -6 \\ 0 & 4 & 4 \end{bmatrix}$$
$$\begin{bmatrix} -\frac{1}{6}R^{2} \\ -\frac{1}{4}R^{3} \\ - \end{array} \begin{bmatrix} 1 & 1 & 6 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R1-R2} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 1 \\ - \end{array}$$

0p + 0n = 0. This is OK.

$$p + n = 6$$

 $p - 5n = 0$
 $p + 5n = 10$

$$\begin{bmatrix} 1 & 1 & 6 \\ 1 & -5 & 0 \\ 1 & 5 & 10 \end{bmatrix} \xrightarrow{R2-R1} \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & -6 & -6 \\ 0 & 4 & 4 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{6}R2} \begin{bmatrix} 1 & 1 & 6 \\ 0 & 1 & 1 \\ -\frac{1}{6}R3 \\ -\frac{1}{4}R3 \\ -\frac{1}{0} & 1 & 1 \end{bmatrix} \xrightarrow{R1-R2} \begin{bmatrix} 1 & 0 & 5 \\ R3-R2 \\ -\frac{1}{0} & 1 & 1 \\ -\frac{1}{0} & 0 & 0 \end{bmatrix} p = 5$$
$$n = 1$$

0p + 0n = 0. This is OK.

$$\begin{array}{c} p + n = 6 \\ p - 5n = 0 \\ p + 5n = 10 \end{array} \right) \xrightarrow{16} \xrightarrow{16} \xrightarrow{10} \xrightarrow{10$$

0p + 0n = 0. This is OK.

Students come up with examples (with three unknowns)

	No solution	One solution	Infinite solutions
# equations <			
# unknowns			
# equations			
– # unknowns			
# equations >			
# unknowns			

Concepts discovered and discussed

- Restrictions/relationships ↔ equations
- Functions vs. equations (variables vs. unknowns)
- Standard form vs. slope-intercept form
- Number of equations (restrictions) vs. number of unknowns (freedom):
 - Typical number of solutions
 - Exceptions
- In standard form, coefficients determine slope and right hand side determines y- (or x-) intercept
- Gaussian elimination is driven by coefficients, not by right hand side
- Systems of linear equations have 0, 1 or ∞ solutions

Concepts discovered and discussed

- Restrictions/relationships ↔ equations
- Functions vs. equations (variables vs. unknowns)
- Standard form vs. slope-intercept form
- Number of equations (restrictions) vs. number of unknowns (freedom):
 - Typical number of solutions
 - Exceptions
- In standard form, coefficients determine slope and right hand side determines y- (or x-) intercept
- Gaussian elimination is driven by coefficients, not by right hand side
- Systems of linear equations have 0, 1 or ∞ solutions

Concepts discovered and discussed

- Restrictions/relationships ↔ equations
- Functions vs. equations (variables vs. unknowns)
- Standard form vs. slope-intercept form
- Number of equations (restrictions) vs. number of unknowns (freedom):
 - Typical number of solutions
 - Exceptions
- In standard form, coefficients determine slope and right hand side determines y- (or x-) intercept
- Gaussian elimination is driven by coefficients, not by right hand side
- Systems of linear equations have 0, 1 or ∞ solutions
- All with a simple 15-minute example

Thanks for your interest.