## Learning engineering to teach mathematics

## January 2010 <br> San Francisco

Josep FERRER*, Carmen ORTIZ** , Marta PEÑA*
*Universitat Politècnica de Catalunya (Spain)
**Universidad de Extremadura (Spain)

## Seminar of mathematics for engineering

Introduce examples of engineering use to increase students interest at learning mathematics.

Electrical
Engineering

Optimization and Simulation

Mechanical
Engineering

Elasticity and Materials' Resistance

## Automatics

 and ControlIn the following slides a brief introduction to electrical engineering will be carried out as an example of the information collected during the seminar:

- Guideline for teachers
- Exercises for students


## Circuit analysis

Study of the system of equations derived from the Ohm's and Kirchoff's laws

## Circuit analysis

## Circuit

- $M$ meshes with $N$ nodes and $B$ branches.


## Objective

- Determine currents and tensions distribution ( $i_{k}, u_{k}$ ), $1 \leq k \leq B$.
- Ohm's law: $u_{k}=R_{k} i_{k}+e_{k}$, each branch


## Tools

 where $\mathbf{e}_{k}$ is the generated tension- Kirchoffs' law: $\sum u_{k}=0$, in each node $\sum i_{k}=0$, in each mesh


## Circuit analysis

## STEP 1

- Ohm's law establishes an isomorphism betveen currents and tensions so that we just need to refer to one of both variables
(KCL) $\quad \sum i_{k}=0 \quad$ in each node.
(KVL) $\quad \sum R_{k} i_{k}=-\sum e_{k} \quad$ in each mesh.


## STEP 2

- One node equations is redundant so that we have $N+M-1=B$ equations with $B$ unknowns.
- It is a consistent determined system because so it is its homogeneous associate (if $e_{k}=0$, there is not energy contribution, meaning that the currents will turn to be null).


## STEP 3

- Therefore: $\operatorname{dim}\{$ solutions $K C L\}=B-(N-1)=M$
- The mesh currents are linearly independent. Then, they are a basis of this subspace


## Circuit analysis <br> EXERCISE 1 dimensionand basisof the SUBSPACE OF SOLUTIONS OF KLC

Consider the following mesh


Being $E$ the set of possible current's distributions, find out the subset verifying the Kirchoff's law

$$
\sum i_{k}=0
$$

## Mesh currents

Prove that it is a subspace parametrized by the mesh currents.


## Alternating currents

Use of complex numbers as representation of electrical magnitudes for alternating currents

## Alternating currents

## Direct current representation

Generalization

## Alternating current representation

- Set of Complex numbers

|  | Cosenoidal $m(t)=\sqrt{2} M \cos (\omega t+\alpha)$ <br> M : root mean square value (rms) $\alpha$ : phase angle $\omega$ : frequency (constant) |  | Fasorial $\underline{M}=M e^{i \alpha}$ |
| :---: | :---: | :---: | :---: |

## Alternating currents

## Kirchoff's laws (linear correspondence)

- (KVL) $\sum_{\underline{I_{k}}=0}$ in each node.
- (KCL) $\sum \underline{U_{k}}=0$ in each mesh.


## Ohm's law (field structure):

- $\frac{U_{k}}{I_{I_{k}}}=Z_{k} \quad Z_{k}$ is the impedance.
- Thanks to $m^{\prime}(t)=j \omega m(t)$ it includes
- Resistance case $u(t)=R i(t) \quad \underline{U}=R \underline{I}$
- Condenser case $i(t)=C u^{\prime}(t) \quad \underline{I}=j \omega C \underline{U}$
- Coil case $\quad u(t)=L i^{\prime}(t) \quad \underline{U}=j \omega L \underline{I}$


## Alternating currents EXERCISE 2 klcforalternating currents

Calculate the current resultant of incrementing it with two others of $75 \%$ and $50 \%$ of rms , shifted $120^{\circ}$ and $90^{\circ}$ respectively

$$
i_{1}(t)=0^{\prime} 75 \sqrt{2} I_{0} \cos \left(\omega t+\frac{\pi}{3}\right) \quad i_{2}(t)=0^{\prime} 50 \sqrt{2} I_{0} \cos \left(\omega t+\frac{\pi}{4}\right)
$$



## Alternating currents EXERCISE 3 PARALLELRESONANCE

Prove for the circuit that the impedance is real if only if

$$
\omega L=\sqrt{\frac{L}{C}-R^{2}} \quad \text { and then } \quad Z=\frac{L}{R C} .
$$



## Magnetic couplers

Circulant matrices appearing as magnetic couplers of some type of motors and inductance machinery

## Magnetic couplers

- Inductance operator (particular case from the matrix called circulant):

$$
Z=\left(\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
c_{3} & c_{1} & c_{2} \\
c_{2} & c_{3} & c_{1}
\end{array}\right) \in M_{3}(\mathbb{C})
$$

- The following statements are equivalent:
- $Z$ is a circulant matrix
- Z diagonalized by orthogonal transformation

$$
F=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right) \quad a=e^{j \frac{2 \pi}{3}}
$$

- If $A$ and $B$ are circulant matrices, the matrices $A+B$ and $A B$ are also circulant, and their eigenvalues are the sum and product, respectively, of those of $A$ and $B$.
- From a technical point of view, the eigenvalues give the decomposition on monophasics.


## Magnetic couplers <br> EXERCISE 4 EIGENVECTORS OF A CIRCULANTMATRIX

Prove that any circulant matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right) \quad a, b, c \notin \mathbb{C}
$$

diagonalizes with the transformation $S$

$$
S=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \alpha & \alpha^{2} \\
1 & \alpha^{2} & \alpha
\end{array}\right) \quad \alpha^{3}=1
$$

Calculate the diagonal form.

