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Seminar of mathematics for engineering

Introduce examples of engineering use
to increase students interest at learning mathematics.

Electrical Optimization Mechanical
Engineering and Simulation Engineering

Elasticity and
Materials’
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Automatics
and Control




In the following slides a brief
introduction to electrical engineering

will be carried out as an examp

iInformation  collected durir
seminar:

e Guideline for teachers

» Exercises for students
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Circuit analysis

Study of the system
of equations derived

from the Ohm’s and
Kirchoff's laws




Circuit analysis

: : » M meshes with N nodes and B
C I'CU |t branches.

: : » Determine currents and tensions
ObJeCtWe distribution (i, u, ), 1<k <B

» Ohm's law:», = R,i, +e, ,each branch
where e, is the generated tension

TOOlS * Kirchoffs’ law: Euk =0, In each node

i, =0, In each mesh




Circuit analysis

STEP 1

 Ohm’s law establishes an isomorphism between currents and
tensions so that we just need to refer to one of both variables

(KCL) i, =0 in each node.
(KVL) Ri =—%e Ineachmesh.
STEP 2 2K =2

« One node equations is redundant so that we have N+M-1=B
equations with B unknowns.

« Itis a consistent determined system because so it IS its
homogeneous associate (if e, =0, there Is not energy contribution,
meaning that the currents Wilrturn to be null).

STEP 3

« Therefore:

dim {solutions KCL}=B-(N-1)=M

« The mesh currents are linearly independent. Then, they are a

basis of this subspace



Circuit analysis

EXERCISE 1 DIMENSIONAND BASIS OF THE
SUBSPACE OF SOLUTIONS OF KLC

Consider the following mesh Being E the set of possible

h current’s distributions, find out the
subset verifying the Kirchoff’s
law Zikz()

MESH CURRENTS

Prove that it Is a subspace T

. *_
parametrized by the mesh Dy

currents. = D




Alternating currents

Use of complex numbers
as representation of

electrical magnitudes for
alternating currents




Direct current
representation

Alternating currents

« Set of Real
numbers

Generalization

Reality |

Cosenoidal

m(t) = J2m cos(wt +a)

M: root mean square value (rms)

a. phase angle
w. frequency (constant)

Alternating current
representation

o Set of Complex
numbers

=
!

Representation
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M :Meia




Alternating currents

Kirchoff’s laws (linear correspondence)

+ (KVL) 24=0 in each node.
* (KCL) > U, =0 ineach mesh.

Ohm’s law (field structure):

U . .
» L2 =7, Zisthe impedance.

Ik
+ Thanksto m'(¢)=jom() itincludes
* Resistancecase u(¢)=Ri(t) U=RI
 Condensercase i(7)=Cu'() [
* Coil case u(t)=Li'(t) U= joLl




Alternating currents
EXERCISE 2 KLCFORALTERNATING CURRENTS

Calculate the current resultant of incrementing it with two others
of 75% and 50% of rms, shifted 120° and 90° respectively

i, (£)=0'75v2, Cos(at +7—9 i (1) =052, (IB(&I-I%Z)




Alternating currents )
EXERCISE 3 PARALLELRESONANCE

Prove for the circuit that the impedance is real if only if

L L
L= |=_R? Z=—
@ C and then RC

| —

O
|




Magnetic couplers

Circulant matrices
appearing as magnetic

couplers of some type of
motors and inductance
machinery




Magnetic couplers

» Inductance operator (particular case from the matrix called circulant):

« The following statements are equivalent:
s Z IS a circulant matrix
= Z diagonalized by orthogonal transformation

1 1 1
F 1 1 a° a j%ﬂ
=—= a=e
\/5 1 a d°

- If Aand B are circulant matrices, the matrices A+B and AB are also
circulant, and their eigenvalues are the sum and product,
respectively, of those of A and B.

- From a technical point of view, the eigenvalues give the
decomposition on monophasics.



Magnetic couplers )
EXERCISE 4 EIGENVECTORS OF A CIRCULANT MATRIX

Prove that any circulant matrix
a b

C
A=|c a b a,b,ceC
b ¢ a

diagonalizes with the transformation S
1 1 1

S=l1 a «a° a3 =1
1 a° «a
Calculate the diagonal form.




