The Problem with the "Titu Fand Problem" Snacks

Stephen Szydlik
University of Wisconsin Oshkosh
szydliks@uwosh.edu

Please contact Steve Szydlik at szydliks@uwosh.edu if you would like the Powerpoint version of this presentation. (This .pdf version does not allow proper representation of the animated GIFs in several of the slides.)

Themes

- "...Problems that occur in real settings do not often arrive neatly packaged."
- NCTM Standards 2000(p. 334)
- "I have yet to see any problem, however complicated, which, when you looked at it in the right way, did not become still more complicated."
- Poul Anderson (1926-2001)

The Junk Food Problem

The calories in anything you eat come from three sources: carbohydrates, fat, and protein.
Given the dietary information from some junk foods, find the number of calories that are present in a gram of carbohydrates, in a gram of fat and in a gram of protein.

Example:

$$
10 f+34 c+2 p=240
$$

My (Original) Plan

- Give introductory linear algebra students some modeling experience.
- Introduce students to linear algebra applications, specifically solving linear systems using an augmented matrix.
- "Junk Food Problem" was to be just one of several applications to consider during the class period.
- Light discussion on error and the challenges of working with real data.

The Plan for Students

1. Assign variables (f, c, p).
2. Use snack wrappers to collect data and set up a 3×3 linear system.
3. Write the system as an augmented matrix, then row-reduce the matrix using technology.
4. Result: $f=9 \mathrm{cal} / g, c=4 \mathrm{cal} / g, p=4 \mathrm{cal} / g$.

The Data

Item	Fat (\mathbf{g})	Carbs (\mathbf{g})	Protein (\mathbf{g})	Total Calories
m\&m's	10	34	2	240
Cheez Its	16	31	7	290
Cracker Jacks	1.5	21	2	100
Oreos	10	36	2	240
Twix	14	37	3	280
NutriGrain	3	27	2	140
Trail Mix	20	23	11	295
Planter's Peanuts	25	9	13	300

16 \& 31 \& 7 \& 290

1.5 \& 21 \& 2 \& 100

10 \& 36 \& 2 \& 240

14 \& 37 \& 3 \& 280

3 \& 27 \& 2 \& 140

20 \& 23 \& 11 \& 295

25 \& 9 \& 13 \& 300\end{array}\right]\)

Example

	fat	carb	prot	Cal.
CheezIts	$\mathbf{1 6}$	$\mathbf{3 1}$	$\mathbf{7}$	$\mathbf{2 9 0}$
Cracker Jacks	$\mathbf{1 . 5}$	$\mathbf{2 1}$	$\mathbf{2}$	$\mathbf{1 0 0}$
Twix	$\mathbf{1 4}$	$\mathbf{3 7}$	$\mathbf{3}$	$\mathbf{2 8 0}$

1.5 \& 21 \& 2 \& 100

14 \& 37 \& 3 \& 280\end{array}\right]\)

Problem!

	fat	carb	prot	Cal.
m\&m's	$\mathbf{1 0}$	$\mathbf{3 4}$	$\mathbf{2}$	$\mathbf{2 4 0}$
Cracker Jacks	$\mathbf{1 . 5}$	$\mathbf{2 1}$	$\mathbf{2}$	$\mathbf{1 0 0}$
Twix	$\mathbf{1 4}$	$\mathbf{3 7}$	$\mathbf{3}$	$\mathbf{2 8 0}$

1.5 \& 21 \& 2 \& 100

14 \& 37 \& 3 \& 280\end{array}\right]\)
$\sum \mathrm{rref}$

$$
\underset{\substack{\boldsymbol{f} \approx \mathbf{8 . 6 7 9} \mathrm{cal} / \mathbf{g} \\
\boldsymbol{p} \approx \mathbf{\approx} \approx \mathbf{5 0 9 4} \mathbf{~ c a l} / \mathbf{g} \\
\hline \mathbf{~ c a l} / \mathrm{g}}}{ } \Leftarrow\left[\begin{array}{lll:r}
1 & 0 & 0 & 8.679 \\
0 & 1 & 0 & 5.094 \\
0 & 0 & 1 & -10.0
\end{array}\right]
$$

Measuring Error

We want to solve the linear system $A x=b$.
Given an approximate solution x_{0}, we can calculate residual vector $b-A x_{0}$ and measure the size $\left\|b-A x_{0}\right\|$ to check the quality of the solution. We can measure the relative error by measuring

$$
\frac{\left\|b-A x_{0}\right\|}{\|b\|} .
$$

Example: m\&m's, Cracker Jacks, Twix

$$
\text { Given } A=\left[\begin{array}{lll}
10 & 34 & 2 \\
1.5 & 21 & 2 \\
14 & 37 & 3
\end{array}\right], \quad x=\left[\begin{array}{l}
f \\
c \\
p
\end{array}\right], \quad b=\left[\begin{array}{c}
240 \\
100 \\
280
\end{array}\right],
$$

When $x_{0}=\left[\begin{array}{l}8.679 \\ 5.094 \\ -10.0\end{array}\right],\left\|b-A x_{0}\right\|$ and $\frac{\left\|b-A x_{0}\right\|}{\|b\|}$. are essentially 0 (of course).
But when $\quad x_{0}=\left[\begin{array}{l}9 \\ 4 \\ 4\end{array}\right], \frac{\left\|b-A x_{0}\right\|}{\|b\|} \approx 0.0265$.
The Point: Even though the data yield a horrible solution, the accepted solution is not a bad answer either.

Regression?

- Using all of the data yields an overdetermined system of 8 equations and 3 unknowns.
- Use regression for a least-squares solution:

Given $\quad A=\left[\begin{array}{lll}10 & 34 & 2 \\ 16 & 31 & 7 \\ 1.5 & 21 & 2 \\ 10 & 36 & 2 \\ 14 & 37 \\ 3 & 27 & 3 \\ 20 & 2 & 2 \\ 25 & 9 & 11 \\ 25 & 9 & 13\end{array}\right] \quad x=\left[\begin{array}{l}f \\ c \\ p\end{array}\right] b=\left[\begin{array}{l}240 \\ 20 \\ 100 \\ 140 \\ 20 \\ 140 \\ 20 \\ 300\end{array}\right]$
Solve $A^{T} A x=A^{T} b$ to find
$f \approx 7.398 \mathrm{cal} / \mathrm{g}, c \approx 3.518 \mathrm{cal} / \mathrm{g}, p \approx 6.690 \mathrm{cal} / \mathrm{g}$

Investigation

Go down a dimension and consider two different linear systems:

$$
\left\{\begin{array} { c }
{ 0 . 2 5 x - y = - 1 } \\
{ 2 x - y = 6 }
\end{array} \quad \text { versus } \quad \left\{\begin{array}{c}
0.25 x-y=-1 \\
0.2 x-y=-1.2
\end{array}\right.\right.
$$

Both systems have the solution $(4,2)$.
But what if the systems arose from real data?
Change the constant terms slightly:

$$
\begin{array}{ll}
\left\{\begin{array}{c}
0.25 x-y=-0.9 \\
2 x-y=6
\end{array}\right. & \left\{\begin{array}{c}
0.25 x-y=-0.9 \\
0.2 x-y=-1.2
\end{array}\right. \\
\text { Solution } \approx(3.9,1.9) & \text { Solution }(6,2.4)
\end{array}
$$

Solution $\approx(3.9,1.9)$
A very small change to the second system caused a HUGE change in the solution. WHY?

The Algebra

$$
\begin{gathered}
\left\{\begin{array}{c}
0.25 x-y=-0-0.9 \\
0.20 x-y=-1.2
\end{array}\right. \\
\begin{array}{c}
0.05 x=0.2 \\
x=\mathbb{K}_{6}
\end{array} \\
\hline .3
\end{gathered}
$$

The left hand sides of the two equations are similar. This leads to an x with a very small coefficient after elimination of the y variable. So a small change in the right-hand constant causes a dramatic change in the solution when we divide by that coefficient.

The Geometry

Well-conditioned System

Ill-conditioned System

The Geometry

Well-conditioned System

Ill-conditioned System

The Geometry

Well-conditioned System

Ill-conditioned System

The Geometry

Well-conditioned System

Ill-conditioned System

Is this the Problem with the "Junk Food Problem?"

m\&m's: $10 f+34 c+2 p=240$
Cracker Jacks: $1.5 f+21 c+2 p=100$
Twix: $14 f+37 c+3 p=280$

Intersection: (8.7, 5.1,-10.0)

"Actual Data?"

m\&m's: $10.4 f+34.2 c+2.3 \quad p=239.6$
Cracker Jacks: $1.3 f+20.6 c+1.55 p=100.3$
Twix: $13.6 f+36.6 c+2.7 \quad p=279.6$

Intersection: (9.0.4.0, 4.0)

Is this the Problem with the "Junk Food Problem?"

m\&m's: $10 f+34 c+2 p=240$
Cracker Jacks: $1.5 f+21 c+2 p=100$
Twix: $14 f+37 c+3 p=280$

Intersection: (8.7. 5.1,-10.0)

"Actual Data?"

m\&m's: $10.4 f+34.2 c+2.3 \quad p=239.6$
Cracker Jacks: $1.3 f+20.6 c+1.55 p=100.3$
Twix: $13.6 f+36.6 c+2.7 \quad p=279.6$

Intersection: (9.0. 4.0, 4.0)

Resolution

The Problem: The data is too similar in its proportions of fat, carbs, and protein. In particular, most of the snacks are high fat, high carb, low protein.
The Resolution: Include some more diverse data, using a higher protein snack.

Power Bar
Protein Plus: $6 f+37 c+23 p=290$
Cracker Jacks: $1.5 f+21 c+2 p=100$
Twix: $14 f+37 c+3 p=280$

Solution $\approx(9.34,3.69,4.23)$

Final Thoughts

- Junk Food Problem as a springboard problem:

1. Condition number of a matrix: measures how a small change in b affects the solutions to the linear system $\mathrm{Ax}=\mathrm{b}$.
2. Least Squares/Regression

- Deeper discussion of solution error.

Stephen Szydlik

University of Wisconsin Oshkosh
szydliks@uwosh.edu

