

Stephen Szydlik University of Wisconsin Oshkosh szydliks@uwosh.edu

Please contact Steve Szydlik at szydliks@uwosh.edu if you would like the Powerpoint version of this presentation. (This .pdf version does not allow proper representation of the animated GIFs in several of the slides.)

Themes

- "…Problems that occur in real settings do not often arrive neatly packaged."
 —NCTM Standards 2000(p. 334)
- "I have yet to see any problem, however complicated, which, when you looked at it in the right way, did not become still more complicated."

-*Poul Anderson* (1926-2001)

The Junk Food Problem

The calories in anything you eat come from three sources:

carbohydrates, fat, and protein.

Given the dietary information from some junk foods, find the number of calories that are present in a gram of carbohydrates, in a gram of fat and in a gram of protein.

$$10f + 34c + 2p = 240$$

My (Original) Plan

- Give introductory linear algebra students some modeling experience.
- Introduce students to linear algebra applications, specifically solving linear systems using an augmented matrix.
- "Junk Food Problem" was to be just one of several applications to consider during the class period.
- Light discussion on error and the challenges of working with real data.

The Plan for Students

- 1. Assign variables (f, c, p).
- 2. Use snack wrappers to collect data and set up a 3x3 linear system.
- Write the system as an augmented matrix, then row-reduce the matrix using technology.
- 4. Result: f=9 cal/g, c=4 cal/g, p=4 cal/g.

The Data

Item	Fat (g)	Carbs (g)	Protein (g)	Total Calories	[10	34	2	240
m&m 's	10	34	2	240	16	31	7	290
Cheez Its	16	31	7	290	1.5	21	2	100
Cracker Jacks	1.5	21	2	100	10	36	2	240
Oreos	10	36	2	240	14	37	3	280
Twix	14	37	3	280	3	27	2	140
NutriGrain	3	27	2	140	20	23	11	295
Trail Mix	20	23	11	295	25	9	13	300
Planter's Peanuts	25	9	13	300				

Example

	fat	carb	prot	Cal.]	[16	31	7	290
CheezIts	16	31	7	290		1.5	21	2	100
Cracker	1.5	21	2	100	$ \Rightarrow$	1.3		L	100
Jacks					-	14	37	3	280
Twix	14	37	3	280			01	C	
<pre>rref</pre>									
	f	≈ 9 3	802 cs	al/σ		1	0	0	9.302
$f \approx 9.302 \text{ cal/g}$ $c \approx 3.765 \text{ cal/g}$					\Leftarrow	0	1	0	3.765
<i>p</i> ≈ 3.496 cal/g						$\lfloor 0$	0	1	3.496

Problem!

	fat	carb	prot	Cal.	
m&m's	10	34	2	240	
Cracker Jacks	1.5	21	2	100	
Twix	14	37	3	280	

 $\Rightarrow \begin{bmatrix} 10 & 34 & 2 & & 24 \\ 1.5 & 21 & 2 & & 100 \\ 14 & 37 & 3 & & 280 \end{bmatrix}$ $\downarrow rref$

				\mathbf{i}	
$f \approx 8.679$ cal/g		[1	0	0	8.679
$c \approx 5.094 \text{ cal/g}$	\Leftarrow	0	1	0	5.094
$p \approx -10.0 \text{ cal/g}$		0	0	1	-10.0

Measuring Error

We want to solve the linear system Ax=b.

Given an approximate solution x_0 , we can calculate residual vector b- Ax_0 and measure the size $||b-Ax_0||$ to check the quality of the solution. We can measure the relative error by measuring

$$\frac{\left\|b-Ax_0\right\|}{\left\|b\right\|}.$$

Example: m&m's, Cracker Jacks, Twix

Given
$$A = \begin{bmatrix} 10 & 34 & 2 \\ 1.5 & 21 & 2 \\ 14 & 37 & 3 \end{bmatrix}, \quad x = \begin{bmatrix} f \\ c \\ p \end{bmatrix}, \quad b = \begin{bmatrix} 240 \\ 100 \\ 280 \end{bmatrix},$$

When
$$x_0 = \begin{bmatrix} 8.679 \\ 5.094 \\ -10.0 \end{bmatrix}$$
, $||b - Ax_0||$ and $\frac{||b - Ax_0||}{||b||}$. are essentially 0 (of course).
But when $x_0 = \begin{bmatrix} 9 \\ 4 \\ 4 \end{bmatrix}$, $\frac{||b - Ax_0||}{||b||} \approx 0.0265$.

The Point: Even though the data yield a horrible solution, the accepted solution is not a bad answer either.

Regression?

- Using all of the data yields an overdetermined system of 8 equations and 3 unknowns.
- Use regression for a least-squares solution:

Given
$$A = \begin{bmatrix} 10 & 34 & 2 \\ 16 & 31 & 7 \\ 1.5 & 21 & 2 \\ 10 & 36 & 2 \\ 14 & 37 & 3 \\ 3 & 27 & 2 \\ 20 & 23 & 11 \\ 25 & 9 & 13 \end{bmatrix}$$
 $x = \begin{bmatrix} f \\ c \\ p \end{bmatrix}$ $b = \begin{bmatrix} 240 \\ 290 \\ 100 \\ 140 \\ 280 \\ 140 \\ 295 \\ 300 \end{bmatrix}$

Solve $A^T A x = A^T b$ to find

 $f \approx 7.398$ cal/g, $c \approx 3.518$ cal/g, $p \approx 6.690$ cal/g

Investigation

Go down a dimension and consider two different linear systems:

$$\begin{cases} 0.25x - y = -1 \\ 2x - y = 6 \end{cases} \quad \text{versus} \quad \begin{cases} 0.25x - y = -1 \\ 0.2x - y = -1.2 \end{cases}$$

Both systems have the solution (4,2).

But what if the systems arose from real data? Change the constant terms slightly:

Solution≈(3.9,1.9)

Solution (6,2.4)

A very small change to the second system caused a HUGE change in the solution. WHY?

The Algebra

$$\begin{bmatrix}
0.25x - y = -202 - 0.9 \\
0.20x - y = -1.2 \\
0.05x = 022 0.3 \\
x = 266
\end{bmatrix}$$

The left hand sides of the two equations are similar. This leads to an x with a very small coefficient after elimination of the y variable. So a small change in the right-hand constant causes a dramatic change in the solution when we divide by that coefficient.

Well-conditioned System

Ill-conditioned System

The Geometry 63 65 5 5 3 3. 0.2x-y=-1.2 0.2x-y=-1.2 2 0.25x-y=-1.000 0.25x-y=-1.000 -2 8 . 10 6 Π 10 -2 ż 6 8 -1 -1 -2[]] -2³ Intersection: (4.00,2.00) Intersection: (4.00,2.00) Well-conditioned Ill-conditioned System System

The Geometry 63 65 5 5 4 3 3. 0.2x-y=-1.2 0.2x-y=-1.2 2 0.25x-y=-1.000 0.25x-y=-1.000 -2 10 6 8 Ż -2 Π ż 6 -1 -2 -1 -2³ Intersection: (4.00,2.00) Intersection: (4.00,2.00)

10

8

Ill-conditioned

System

Well-conditioned System

The Geometry 63 65 5 5. 3 0.2x-y=-1.2 0.2x-y=-1.2 2 0.25x-y=-1.000 0.25x-y=-1.000 -2 8 . 10 6 -2 10 ż 6 8 -1 -1 -2[]] -2³ Intersection: (4.00,2.00) Intersection: (4.00,2.00) Well-conditioned Ill-conditioned System System

Is this the Problem with the "Junk Food Problem?"

m&m's: 10 f + 34 c + 2 p = 240**Cracker Jacks:** 1.5 f + 21 c + 2 p = 100**Twix:** 14 f + 37 c + 3 p = 280

"Actual Data?"

m&m's: 10.4 f + 34.2 c + 2.3 p = 239.6**Cracker Jacks:** 1.3 f + 20.6 c + 1.55 p = 100.3**Twix:** 13.6 f + 36.6 c + 2.7 p = 279.6

Intersection: (9.0, 4.0, 4.0)

Is this the Problem with the "Junk Food Problem?"

m&m's: 10 f + 34 c + 2 p = 240**Cracker Jacks:** 1.5 f + 21 c + 2 p = 100**Twix:** 14 f + 37 c + 3 p = 280

"Actual Data?"

m&m's: 10.4 f + 34.2 c + 2.3 p = 239.6**Cracker Jacks:** 1.3 f + 20.6 c + 1.55 p = 100.3**Twix:** 13.6 f + 36.6 c + 2.7 p = 279.6

Intersection: (9.0, 4.0, 4.0)

Resolution

The Problem: The data is too similar in its proportions of fat, carbs, and protein. In particular, most of the snacks are high fat, high carb, low protein.

The Resolution: Include some more diverse data, using a higher protein snack.

Power Bar Protein Plus: 6f + 37 c + 23 p = 290Cracker Jacks: 1.5 f + 21 c + 2 p = 100Twix: 14f + 37 c + 3 p = 280Solution $\approx (9.34, 3.69, 4.23)$

Final Thoughts

- Junk Food Problem as a springboard problem:
 - Condition number of a matrix: measures how a small change in b affects the solutions to the linear system Ax=b.
 - 2. Least Squares/Regression
- Deeper discussion of solution error.

Stephen Szydlik University of Wisconsin Oshkosh szydliks@uwosh.edu