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1. INTRODUCTION The first sections of this paper represent an imaginary lecture,
very near the beginning of a linear algebra course. We chose two matrices A and C , on the
principle that examples are amazingly powerful. The reader is requested to be exceptionally
patient, suspending all prior experience—and suspending also any hunger for precision and
proof. Please allow a partial understanding to be established first.

I believe there is value in naming these matrices. The words “difference matrix” and
“sum matrix” tell how they act. It is the action of matrices, when we form Ax and Cx and
Sb, that makes linear algebra such a dynamic and beautiful subject.

2. A FIRST EXAMPLE In the future I will begin my linear algebra class with these
three vectors a1, a2, a3:

a1 D

2

4

1

�1

0

3

5 a2 D

2

4

0

1

�1

3

5 a3 D

2

4

0

0

1

3

5 :

The fundamental operation on vectors is to take linear combinations. Multiply these
vectors a1, a2, a3 by numbers x1, x2, x3 and add. This produces the linear combination
x1a1 C x2a2 C x3a3 D b:

x1

2

4

1

�1

0

3

5 C x2

2

4

0

1

�1

3

5 C x3

2

4

0

0

1

3

5 D

2

4

x1

x2 � x1

x3 � x2

3

5 D

2

4

b1

b2

b3

3

5 : (1)

(I am omitting words that would be spoken while writing that vector equation.) A key step
is to rewrite (1) as a matrix equation:

Put the vectors a1, a2, a3 into the columns of a matrix A

Put the multipliers x1, x2, x3 into a vector x
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Then A times x is exactly x1a1Cx2a2Cx3a3. This is more than a definition of Ax, because
the rewriting brings a crucial change in viewpoint. At first, the x’s were multiplying the
a’s. Now, the matrix A is multiplying the vector x. The matrix acts on x, to give a
combination of the columns of A:
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5 : (2)

When the x’s are known, the matrix A takes their differences. We could imagine an
unwritten x0 D 0, and put in x1 � x0 to complete the pattern. A is a difference matrix.
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One more step to a new viewpoint. Suppose the x’s are not known but the b’s are
known. Then Ax D b becomes an equation for x, not an equation for b. We start with the
differences (the b’s) and ask which x’s have those differences.

Linear algebra is always interested first in b D 0:

Ax D 0 is
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x2 � x1
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5 : Then
x1 D 0

x2 D 0

x3 D 0

(3)

For this matrix, the only solution to Ax D 0 is x D 0. That may seem automatic but it’s not.
A key word in linear algebra (we are foreshadowing its importance) describes this situation.
These column vectors a1, a2, a3 are independent. The combination x1a1 C x2a2 C x3a3

is Ax D 0 only when all the x’s are zero.
Move now to nonzero differences b1 D 1, b2 D 3, b3 D 5. Is there a choice of x1, x2,

x3 that produces those differences? Solving the three equations in forward order, the x’s
are 1; 4; 9:

Ax D b
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This case x D 1; 4; 9 has special interest. When the b’s are the odd numbers in order, the
x’s are the perfect squares in order. But linear algebra is not number theory—forget that
special case ! For any b1, b2, b3 there is a neat formula for x1, x2, x3:
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This general solution includes the examples with b D 0; 0; 0 (when x D 0; 0; 0) and
b D 1; 3; 5 (when x D 1; 4; 9). One more insight will complete the example.

We started with a linear combination of a1, a2, a3 to get b. Now b is given and equa-
tion (5) finds x. That solution shows three new vectors whose combination gives x:
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This is beautiful. The equation Ax D b is solved by x D Sb. The matrix S is the
“inverse” of the matrix A. The difference matrix is inverted by the sum matrix. Where A

took differences of the x’s, the new matrix S in (6) takes sums of the b’s.
The linear algebra symbol for the inverse matrix is A�1 (not 1=A). Thus S D A�1

and also A D S�1. This example shows how linear algebra goes in parallel with calculus.
Sums are the inverse of differences, and integration S is the inverse of differentiation A:

Ax D dx

dt
D b.t/ is solved by x.t/ D Sb D

Z t

0

b: (7)

The student who notices that the integral starts at x.0/ D 0, and connects this to the earlier
suggestion that x0 D 0, is all too likely to become a mathematician.
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3. THE SECOND EXAMPLE This example begins with almost the same three vectors—
only one component is changed:
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The combination x1c1 C x2c2 C x3c3 is again a matrix multiplication Cx:
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With the new vector in the third column, C is a “cyclic” difference matrix. The differences
of x’s with “wraparound” give the new b’s. The reverse direction begins with the b’s and
asks for the x’s.

We always start with 0; 0; 0 as the b’s. You will see the change: nonzero x’s can have
zero differences. As long as the x’s are equal, their differences will all be zero:
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The zero solution x D 0 is included (when x1 D 0). But 1; 1; 1 and 2; 2; 2 and �; �; � are
also solutions—all these constant vectors have zero differences and solve Cx D 0. The
columns c1; c2; c3 are dependent and not independent.

This misfortune produces a new difficulty, when we try to solve Cx D b:
2
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x1 � x3

x2 � x1

x3 � x2

3

5 D

2

4

b1

b2

b3

3

5 cannot be solved unless b1 C b2 C b3 D 0:

The three left sides add to zero, because x3 is now cancelled by �x3. So the b’s on the right
side must add to zero. There is no solution like equation (5) for every b1, b2, b3. There is
no inverse matrix like S . The cyclic matrix C is singular.

4. SUMMARY Both examples began by putting vectors into the columns of a matrix.
Combinations of the columns (with multipliers x) became Ax and Cx. Difference matrices
A and C (non-cyclic and cyclic) multiplied x—that was an important switch in thinking.
The details of those column vectors made Ax D b solvable for all b, while Cx D b is not
always solvable. The words that express the contrast between A and C are a crucial part of
the language of linear algebra:

The vectors a1, a2, a3 are independent.
The nullspace for Ax D 0 contains only x D 0.
The equation Ax D b is solved by x D Sb.
The square matrix A has the inverse matrix S D A�1.
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The vectors c1, c2, c3 are dependent.
The nullspace for Cx D 0 contains every “constant vector” x1, x1, x1.
The equation Cx D b cannot be solved unless b1 C b2 C b3 D 0.
C has no inverse matrix.

A picture of the three vectors, the a’s on the left and the c’s on the right, explains the
difference in a useful way. On the left, the three directions are independent. The a’s don’t
lie in a plane. Their combinations x1a1 C x2a2 C x3a3 produce every three-dimensional
vector b. The good multipliers x1; x2; x3 are given by x D Sb.
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On the right, the vectors c1; c2; c3 are dependent. The c’s do lie in a plane. Each
vector has components adding to 1 � 1 D 0, so all combinations of these vectors will have
b1 C b2 C b3 D 0. The differences x1 � x3; x2 � x1; x3 � x2 can never be 1; 1; 1.

Almost unconsciously, those examples illustrate one way of teaching mathematics. The
ideas and the words are used before they are fully defined. I believe we learn our own
language this way—by hearing words, trying to use them, making mistakes (matrices are
not dependent, vectors are not singular), and eventually getting it right. A proper definition
is certainly needed, it is not at all an afterthought. But it could be an afterword.

5. FUTURE LECTURE: GRAM-SCHMIDT PRODUCES ORTHOGONAL VEC-
TORS Sections 5, 6, 7 are not for the student, at least not yet. The reader deserves some
fun too. We look at the same matrices A and C with three new questions—orthogonalization,
eigenvalues, and singular values.

The vectors a1; a2; a3 are not orthogonal. Then the matrix ATA is not diagonal. Since
that symmetric matrix appears over and over in applications, it is safer to orthogonalize the
vectors in advance. Gram-Schmidt is the easiest way to do it (but not the best way [1; 3]).
By removing the projections of a2 onto a1 and a3 onto a2, we go from the a’s to orthogonal
vectors:
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When those are normalized to unit vectors, they are the columns of an orthogonal matrix
Q. It is connected to the original A by A D QR, where R is upper triangular (because all
steps involved earlier vectors and not later vectors [4]). The real pleasure is the pattern of
fractions in equation (10), leading to a neat orthogonal basis in every dimension n.
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And the real content, when a future lecture orthogonalizes the second example c1; c2; c3;

is to see the Gram-Schmidt process fall short:
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The third column of Q is empty because c1; c2; c3 lie in a plane.

6. EIGENVALUES AND EIGENVECTORS The eigenvectors of the triangular ma-
trix A are its diagonal entries 1; 1; 1. The eigenvectors (or lack of them) are more interest-
ing: the only eigenvectors are multiples of the last column 0; 0; 1. The Jordan form J is a
single 3 by 3 block, reached by a matrix G with “generalized eigenvectors”:

J D G�1AG D
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1 1 0

0 1 1

0 0 1
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5 : (12)

This gives an example for discussion, but it’s not at the heart of the course. It makes a sharp
contrast with C .

In the matrix C , each column is a cyclic permutation P times the previous column.
Then C D I � P is a circulant matrix [1], and its diagonals wrap around (unlike A).
Circulants are polynomials in the cyclic permutation matrix P , so they all commute.

The eigenvectors of every circulant (including P and C ) are the columns of the Fourier
matrix F . All entries in F are nth roots of 1; our example has n D 3. The cube root
w D ei� has � D 2�=3. Then w3 D 1 is the key to verifying the three eigenvectors of P

in the columns of F :
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Each column of (13) shows P x D �x. The columns of F are multiplied by the eigenvalues
1; w2; w4 of P . Then the eigenvalues of C D I � P must be 1 � 1; 1 � w2; 1 � w4. That
eigenvalue 1 � 1 D 0 confirms that C is singular. The other two eigenvalues are complex.

Circulant matrices play a major role as “filters” in signal processing. The output Cx

is a convolution of the input x with the column c1. Again the matrix acts! Where x0 D 0

was natural for the non-cyclic matrix A, x0 D x3 is natural for C . There is a small closed
friendly world of periodic vectors and circulant matrices, in which w3 D 1 (or wn D 1)
and everything repeats.

One more important point. Since circulants commute, C TC equals CC T. Then C is a
normal matrix, and its eigenvectors in F are orthogonal. This is one reason for the great
success of the Discrete Fourier Transform:

Orthogonal eigenvectors of C F
T
F D
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4

3

3

3

3

5 : (14)
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7. SINGULAR VALUES AND SINGULAR VECTORS Every matrix A has orthonor-
mal singular vectors. The equation Axi D �ixi changes to Avi D �iui . There are two
orthonormal sequences, the v’s and the u’s. If those are the columns of V and U , the vector
equation Avi D �i ui becomes a matrix equation AV D U †. Then A D U †V �1 is the
celebrated Singular Value Decomposition of A, with V �1 D V

T.
A personal note: Numerical linear algebra has just lost its foremost leader, Gene Golub

of Stanford University. Gene will always be associated with the SVD. He showed us how
to compute it and how to use it—this small paper is dedicated to a most remarkable friend.

The SVD separates A into r rank one pieces �iuiv
T
i in order of their importance (based

on the sizes of the �i > 0). When the rank r of A is less than m or n, there will be m � r

more u’s and n � r more v’s (orthonormal bases for the nullspaces of AT and A).
Naturally we hope that the difference matrices A and C have attractive decompositions.

The eigenvectors of C are already orthogonal (in F ), and normalizing to unit vectors vi

gives V D F=
p

3. But the eigenvalues 1�w2 and 1�w4 are not the � ’s, real and positive.
We need to adjust C v D �v to C v D �u, by writing each complex � as �e i� (and then
u is ei� v). The particular matrix C has � D j�j D

p
3 and � D ˙�=6, because the two

terms in � D 1 � w2 and 1 � w4 form 30-30-120 isosceles triangles.

�w2

p
3

1

shows � D �ei� D
p

3ei�=6

�=3

The decomposition of the first example A into U †V T is especially interesting. This
difference matrix is non-cyclic and non-normal. Entirely different bases of u’s and v’s are
required to reach Avi D �i ui . The rules say that the u’s and v’s are eigenvectors of AAT

and ATA. (They have the same positive eigenvalues � 2
i .) Our example leads to second

difference matrices:

AAT D

2

4

1 �1 0

�1 2 �1

0 �1 2

3

5 ATA D

2

4

2 �1 0

�1 2 �1

0 �1 1

3

5 (15)

Since the eigenfunctions in �d 2u=dx2 D �u are sines and cosines, we may hope that the
eigenvectors here are discrete sines and cosines. Wonderfully, they are.

That first row of AAT suggests a boundary condition du=dx D 0. Then the u’s will
be cosines. The first row of ATA has already been linked to v0 D 0. Then the v’s will be
sines. The SVD of the difference matrix A has a meaning for discrete calculus:

Av D �u is a discrete form of
d

dx
sin �x D � cos �x: (16)
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With patience and MATLAB or Mathematica, these sines and cosines in V and U can
be made to appear:
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7
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7
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�
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6
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�

14
cos
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14
cos

5�

14

cos
3�
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5

Av1 D �1ui

Av2 D �2u2

Av3 D �3u3

The rows of U are the rows of V in reverse order, because the same is true in (15). All
columns have the same three numbers (apart from signs). It is remarkable to find orthogonal
matrices with this property. I don’t know a full list of such matrices.
8. SECOND DIFFERENCE MATRICES We are close to something important for
calculus and differential equations and linear algebra. Allow me to mention it here, after
the main point (the early lecture) is completed. That lecture chose “backward differences”
but there were really three good options:

Forward difference u.x C h/ � u.x/

h

Backward difference u.x/ � u.x � h/

h

Centered difference u.x C h/ � u.x � h/

2h

When u.x/ D x, all three give the correct derivative u 0 D 1. But for u.x/ D x2, only
the centered difference gives 2x. It has second order accuracy, and is preferred in scientific
computation—when a differential equation becomes discrete, which is calculus in reverse.

One more big step. A forward difference of a backward difference is a second differ-
ence. The numbers 1; �1 go up a level to 1; �2; 1:

Second difference u.x C h/ � 2u.x/ C u.x � h/

h2

This is u 00 D d=dx.du=dx/, made discrete and centered. It is the start of computa-
tional science, and we have to express it with matrices. That step starts from n values
u1; u2; : : : ; un (take u0 D0 and unC1 D0) and produces n second differences. Go carefully
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here, the student is learning to convert formulas at n points into a matrix multiplication
(and division by h2):

d 2u

dx2
matches

�Ku

h2
with Ku D
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4

2 �1 0

�1 2 �1

0 �1 2

3

5

2

4

u1

u2

u3

3

5 : (17)

I reversed signs to �1; 2; �1 to reach my favorite matrix K. It is a “second difference
matrix” and it has wonderful properties. May I beg you to write this matrix K on the
board, along with the analogous 4 by 4 matrix, and ask the class for their properties:

First answer always: K is symmetric
Second answer frequently: K has three nonzero diagonals (tridiagonal)
Third answer sometimes: K is invertible (det Kn D n C 1)
Fourth answer never: K is positive definite

But that fourth answer—the idea of a positive definite matrix—unifies the whole course.
K is seen and named much earlier. Its pivots are positive and its eigenvalues are positive.
It appears as ATA when the backward difference matrix A has a fourth row 0; 0; �1: At
that point we know about rectangular matrices and least squares, which is their number one
application and invariably leads to ATA.

Could I end where I began, with the essential words of linear algebra? A is now rect-
angular, and the idea of rank has to be learned—by example, by definition, and by the key
theorems rank.A/ D rank.AT/ D rank.ATA/:

Vectors are independent A has full column rank ATA is invertible
2
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0
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7
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and symmetric
positive definite

�
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