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The fractal in Figure 1 appears to say “Yes” at the topmost level, then “No” at the
secondary level, and “Yes” at the tertiary level, and so on, all the way down. We outline
how to generate such sets. Variations on these ideas make a fun and instructive project in
a linear algebra class. All that is needed is a little familiarity with linear transformations of
the plane.

Figure 1: A Yes-No fractal

A Sierpinski prelude

We first consider a simpler fractal example.
Informally, a fractal is a planar set whose parts are similar to its whole. The Sierpinski

triangle S of Figure 2(b) is a classic example. At its outermost level, S is contained in an
equilateral triangle with vertices (0, 0), (4, 0), and (2, 2

√
3). As indicated in Figure 2(a), S

appears to be the union of three smaller equilateral triangles each of side length 2 and each
of which is a translate of a 1

2
-scaled copy of S. We use these observations to sharpen our

definition of a fractal. We say that a function T is a contraction of the plane if there is a
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2 × 2 matrix M and a vector b for which T (x) = Mx + b with |Mx| < |x| for all x (except
0) in the plane. Let F be a family of contractions. More formally, we define a fractal A
corresponding to F as a set of points in the plane for which

A =
⋃

T ∈ F

T (A).

a. A labeling scheme b. The fractal S

Figure 2: The Sierpinski triangle

A corresponding family of contractions for S has as its members:

T1(x) = x/2, T2(x) = x/2 + (2, 0), T3(x) = x/2 + (1,
√

3).

(The matrix M in each of these contractions is 1

2
times the identity matrix.) According to the

labeling scheme of Figure 2(a), T1 maps S into triangle 1, T2 maps S into triangle 2, and T3

maps S into triangle 3. Although we omit a proof, S is indeed equal to T1(S)∪T2(S)∪T3(S).
One way to graph the fractal corresponding to this family is to start with an arbitrary point
X; for convenience, we take a point inside the large equilateral triangle of Figure 2(a), such
as (0.3, 0.1). Randomly choose a contraction T (from the family) and plot T (X), calling
the resulting point X. Then repeat the instructions of the last sentence a suitable number
of times. As the repetition number increases, so does the resolution of the fractal. A little
Mathematica code, readily adaptable into any computer algebra system, generates Figure
2(b):
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F[x , n ]:= If[ n ≤ 33, x/2,

If[ n ≤ 67, x/2 + {2, 0}, x/2 + {1,
√

3 }] ];

Block[ {bag, i, X }, X = {0.3, 0.1}; bag = { };
Do[ X = F[X, Random[ Integer, 100 ] ];

bag = Append[ bag, X ], {i, 1, 1000}];
ListPlot[ bag, AspectRatio → Automatic ] ];

In the above code, the initial value of X is (0.3, 0.1) and the repetition number is 1000 (so
as to plot 1000 points). Figure 2(b) is a plot of approximately 30,000 points, all of whose
points are very close to points in S, which means that the image is a faithful artistic portrait
of the ideal set S.

A Yes-No Construction Outline

To generate Figure 1 we first of all find families of functions corresponding to two fractals,
one of which says “Yes” all the way down and the other of which says “No.” On a rectangular
grid G whose lower-left and upper-right corners are (0, 0) and (30, 20), we layout a design
of the word “Yes,” breaking it into the twelve natural rectangles as indicated in Figure 3.
We layout a similar scheme for “No” on G, this time using thirteen natural rectangles to do
so.

Figure 3: A labeling scheme for “Yes”

Next, for each of these smaller rectangles, find a contraction which transforms G onto
the smaller one. For example, the contraction corresponding to rectangle 1 of Figure 3 is
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obtained by shrinking G appropriately and then rotating it counterclockwise by 90◦ and
finally translating the result so as to form the stem of the letter “Y”:

T1(x) =

[

0 −0.092
0.4 0

]

x +

[

4.5
0

]

.

Let Y be the twelve contractions for “Yes,” and N be the thirteen contractions for “No.”

0 5 10 15 20 25 30

0

5

10

15

20

0 5 10 15 20 25
0

5

10

15

20

a. A “Yes” fractal b. A “No” fractal

Figure 4: Single-minded fractals

Adaptations of the Mathematica code of the previous section generate Figure 4.
With Y and N defined, we are ready to generate a double-minded fractal. As before, we

start with an arbitrary point X. Randomly choose a contraction T from Y and randomly
choose a contraction U from N ; plot T (U(X)), calling the resulting point X. Repeat the
instructions of the last sentence a suitable number of times. The result is Figure 1. That
is, we have implicitly defined a family of 156 transformations by composing the 12 and 13
explicitly defined transformations of Y and N .

Some related exercises

Finally, here are a few problems to try in the classroom.

• Generate a double-minded fractal that starts with “No” on the outermost level.

• Generate a triple-minded fractal that cycles through the alternatives “Yes-Maybe-No.”

• Adapt the CAS code in this note so as to zoom in on any portion of the fractal. For
example, Figure 5 zooms in on the left-hand leg of the “N” in “No” in the middle arm
of the “E” of “Yes.”
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Figure 5: Zooming in on a fractal

Discussion of algorithms to generate fractals, including the randomized method of this note,
can be found in any fractal text such as [1] or [2].
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