Computing the Moore-Penrose inverse of a matrix with a Computer Algebra System

KARSTEN SCHMIDT
Schmalkalden University of Applied Sciences, Germany
Email: kschmidt@fh-sm.de

In this presentation Derive functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems - and to have the blueprint to write such a function in other Computer Algebra Systems or in a matrix programming language such as Gauss - may promote the use of generalised inverses in the teaching of linear algebra.

Associated paper to appear in
International Journal of Mathematical Education in Science and Technology 2008

Definition

For any matrix $\underset{m \times n}{\boldsymbol{A}}$ there exists a unique Moore-Penrose inverse, denoted by $\underset{n \times m}{\boldsymbol{A}^{+}}$, which satisfies the four conditions

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{A} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{A}^{+} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)^{\prime}=\boldsymbol{A}^{+} \boldsymbol{A} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\boldsymbol{A} \boldsymbol{A}^{+}\right)^{\prime}=\boldsymbol{A} \boldsymbol{A}^{+} \tag{4}
\end{equation*}
$$

Some properties
$>$ If \boldsymbol{A} is a nonsingular matrix, we have $\boldsymbol{A}^{+}=\boldsymbol{A}^{-1}$.
> $\boldsymbol{A}^{+} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{+}$are idempotent matrices
$\Rightarrow \mathrm{r}(\boldsymbol{A})=\mathrm{r}\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)=\operatorname{tr}\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)$
$>$ If r $(\underset{m \times n}{\boldsymbol{A}})=n$, we have $\boldsymbol{A}^{+}=\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\prime}$ and $\boldsymbol{A}^{+} \boldsymbol{A}=\boldsymbol{I}$
$>$ If $r(\underset{m \times n}{\boldsymbol{A}})=m$, we have $\boldsymbol{A}^{+}=\boldsymbol{A}^{\prime}\left(\boldsymbol{A} \boldsymbol{A}^{\prime}\right)^{-1}$ and $\boldsymbol{A} \boldsymbol{A}^{+}=\boldsymbol{I}$

Computation of the Moore-Penrose inverse of a (column) vector

$$
\boldsymbol{a}^{+}=\left\{\begin{array}{cl}
\frac{1}{\boldsymbol{a}^{\prime} \boldsymbol{a}} \boldsymbol{a}^{\prime} & \text { if } \boldsymbol{a} \neq \boldsymbol{o} \tag{5}\\
\boldsymbol{o}^{\prime} & \text { if } \boldsymbol{a}=\boldsymbol{o}
\end{array}\right.
$$

A vector is a matrix with only one column and should be declared in Derive as such.

```
MPIV(a) :=
    If DIM(a') = 1
        If (a':a) |1\downarrow1 = 0
    #1:
                        0.a'
                a'/(a'-a) +1\downarrow1
            "This is not a columm vector!"
```

If a vector has symbolic elements, the MPIV function may possibly not be able to compute its Moore-Penrose inverse.
\#l: LOAD(C: Programme\TI Educationder ive 6\Math (MP.mth)
\#2: a : $=\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]$
\#3:

$$
\operatorname{MPIV}(a)=\left[\left[\frac{1}{x^{2}+5}, \frac{2}{x^{2}+5}, \frac{x}{x^{2}+5}\right]\right]
$$

\#4: $\quad b:=\left[\begin{array}{c}2 \cdot y \\ 0\end{array}\right]$
\#5

$$
\operatorname{MPIV}(b)=\operatorname{IF}\left(y=0,0 \cdot\left[\begin{array}{c}
2 \cdot y \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
2 \cdot y \\
0
\end{array}\right] \cdot\left(\left[\begin{array}{c}
2 \cdot y \\
0
\end{array}\right] \cdot\left[\begin{array}{c}
2 \cdot y \\
0
\end{array}\right]\right)_{1,1}-1\right)
$$

Computation of the Moore-Penrose inverse of a matrix

MPI function starts by calling the MPIV function with the first column of \boldsymbol{A}. The result is the first row of \boldsymbol{A}^{+}(which is only an intermediate result).

The MPI function then proceeds to the second column of \boldsymbol{A} and computes the second intermediate \boldsymbol{A}^{+}by transforming the previous result and appending another row. This is repeated for all columns of \boldsymbol{A}. After as many steps as the number of columns of \boldsymbol{A} the MPI function has found \boldsymbol{A}^{+}.

Note that in each step the MPIV function is called. Hence, in the case of symbolic elements the MPI function might be unable to compute \boldsymbol{A}^{+}.

```
MPI(A, APLUS, aj, dt, \(c, b t, \quad\) ) :=
    Prog
        APLUS : MPIW(A COL [1])
        ] := 2
        Loop
            If \(]>\operatorname{DIM}\left(A^{\prime}\right)\)
                RETURN APLUS
            \(a j:=A . G O L[]]\)
            dt := aj'.APLUS'.APLUS
            \(\varepsilon:=\) (IDENTITY_MATRIX(DIM(A) - A COL [1, ... \(]\) - 1].APLUS).aj
                \(b t:=\operatorname{MPIV}(c)+(1-\operatorname{MPIV}(c) \cdot c) /(1+d t \cdot a j) \cdot d t\)
                APLUS : APPEND(APLUS - APLUS•aj•bt, bt)
                ] :+ 1
```


Application

We consider a system of linear equations (SLE)

$$
\underset{m \times n}{\boldsymbol{A}} \boldsymbol{x} \times 1=\underset{m \times 1}{\boldsymbol{b}}
$$

where \boldsymbol{A} is a known coefficient matrix, \boldsymbol{b} a vector of known constants, and \boldsymbol{x} a vector of unknown variables.

A system of linear equations $\boldsymbol{A x}=\boldsymbol{b}$ is consistent if and only if

$$
\begin{equation*}
A A^{+} \boldsymbol{b}=\boldsymbol{b} \tag{7}
\end{equation*}
$$

If a system of linear equations $\boldsymbol{A x}=\boldsymbol{b}$ is consistent, its general solution is given by

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}+\left(\underset{n \times n}{\boldsymbol{I}}-\boldsymbol{A}^{+} \boldsymbol{A}\right) \underset{n \times 1}{\boldsymbol{Z}} \tag{8}
\end{equation*}
$$

where \mathbf{z} is an arbitrary vector.
The following function SOLVESLE (in conjunction with a vector \mathbf{z} with elements $\mathbf{z 1}$, z2, ...) either solves a system of linear equations $\boldsymbol{A x}=\boldsymbol{b}$, where the matrix \boldsymbol{A} and the vector \boldsymbol{b} have been passed as parameters, or displays a message if the system is inconsistent.


```
    \(50 L\) VESLE \((A, b):=\)
        If A.MPI(A) \(b=b\)
    \#5: \(\quad M P I(A) \cdot b+(I D E N T I T Y\) MATRIX(DIMENSION(A') \()-M P I(A) \cdot A) \cdot z\)
        "No solution(s)!"
```


Example I

Consider the SLE $\boldsymbol{A x}=\boldsymbol{b}$ defined by $\quad \boldsymbol{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right) ; \quad \boldsymbol{b}=\binom{\frac{3}{2}}{\frac{7}{2}}$
\boldsymbol{A} is a nonsingular matrix and therefore $\quad \boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}=\left(\begin{array}{cc}-3 & 2 \\ 2 & -1\end{array}\right)\binom{\frac{3}{2}}{\frac{7}{2}}=\binom{\frac{5}{2}}{-\frac{1}{2}}$

For any nonsingular matrix \boldsymbol{A} condition (7) is fulfilled since $\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{b}=\boldsymbol{A} \boldsymbol{A}^{-1} \boldsymbol{b}=\boldsymbol{b}$.
Moreover, since $\left(\boldsymbol{I}-\boldsymbol{A}^{+} \boldsymbol{A}\right) \mathbf{z}=\left(\boldsymbol{I}-\boldsymbol{A}^{-1} \boldsymbol{A}\right) \mathbf{z}=\boldsymbol{o}$ for any \mathbf{z}, the general solution (8) simplifies to $\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}=\boldsymbol{A}^{-1} \boldsymbol{b}$.

Example II

Now consider the SLE defined by $\quad \boldsymbol{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) ; \quad \boldsymbol{b}=\binom{\frac{3}{2}}{\frac{7}{2}}$
\boldsymbol{A} is a singular matrix. Using the Moore-Penrose inverse of \boldsymbol{A} we find that this SLE is inconsistent (note that $\boldsymbol{A} \boldsymbol{A}^{+} \neq \boldsymbol{I}$):

$$
\boldsymbol{A A}^{+} \boldsymbol{b}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{25} & \frac{2}{25} \\
\frac{2}{25} & \frac{4}{25}
\end{array}\right)\binom{\frac{3}{2}}{\frac{7}{2}}=\left(\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{4}{5}
\end{array}\right)\binom{\frac{3}{2}}{\frac{7}{2}}=\binom{\frac{17}{10}}{\frac{17}{5}} \neq \boldsymbol{b}
$$

Example III

Finally, consider the SLE defined by $\quad \boldsymbol{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) ; \quad \boldsymbol{b}=\binom{\frac{3}{2}}{3}$
Using the Moore-Penrose inverse of \boldsymbol{A} we find that this SLE is consistent:

$$
\boldsymbol{A} \boldsymbol{A}^{+} \boldsymbol{b}=\left(\begin{array}{cc}
\frac{1}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{4}{5}
\end{array}\right)\binom{\frac{3}{2}}{3}=\binom{\frac{3}{2}}{3}=\boldsymbol{b}
$$

The general solution now consists of an infinite number of vectors defined by

$$
\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b}+\left(\boldsymbol{I}-\boldsymbol{A}^{+} \boldsymbol{A}\right) \mathbf{z}=\binom{\frac{3}{10}}{\frac{3}{5}}+\left(\begin{array}{cc}
\frac{4}{5} & -\frac{2}{5} \\
-\frac{2}{5} & \frac{1}{5}
\end{array}\right)\binom{z_{1}}{\boldsymbol{z}_{2}}
$$

In Derive we get the same results by applying the function SOLVESLE:

\#2

$$
\operatorname{SOLVESLE}\left[\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{3}{2} \\
\frac{7}{2}
\end{array}\right]\right)=\left[\begin{array}{c}
\frac{5}{2} \\
-\frac{1}{2}
\end{array}\right]
$$

\#3:

$$
\left.\operatorname{soLVESLE}\left[\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{3}{2} \\
\frac{7}{2}
\end{array}\right]\right)=\text { No solution(} 3\right)!
$$

\#4:

$$
\operatorname{soLVESLE}\left[\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{c}
3 \\
2 \\
3
\end{array}\right]\right]=\left[\begin{array}{c}
\frac{4 \cdot z 1}{5}-\frac{2 \cdot z 2}{5}+\frac{3}{10} \\
-\frac{2 \cdot z 1}{5}+\frac{z 2}{5}+\frac{3}{5}
\end{array}\right]
$$

References

[1] Moore, E.H., 1920, On the Reciprocal of the General Algebraic Matrix (Abstract). Bulletin of the American Mathematical Society, 26, 394-395.
[2] Penrose, R., 1955, A Generalized Inverse for Matrices. Proceedings of the Cambridge Philosophical Society, 51, 406-413.
[3] Greville, T.N.E., 1960, Some Applications of the Pseudoinverse of a Matrix. SIAM Review, 2, 15-22.
[4] Rao, C.R., 1962, A Note on a Generalized Inverse of a Matrix with Applications to Problems in Mathematical Statistics. Journal of the Royal Statistical Society B, 24, 152-158.
[5] Rao, C.R. and Mitra, S.K., 1971, Generalized Inverse of Matrices and Its Applications (New York: Wiley).
[6] Ben-Israel, A. and Greville, T.N.E., 2003, Generalized Inverses: Theory and Applications, $2^{\text {nd }}$ edition (New York: Springer).

