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In this presentation Derive functions are provided for the computation of the
Moore-Penrose inverse of a matrix, as well as for solving systems of linear equa-
tions by means of the Moore-Penrose inverse. Making it possible to compute the
Moore-Penrose inverse easily with one of the most commonly used Computer Al-
gebra Systems — and to have the blueprint to write such a function in other Com-
puter Algebra Systems or in a matrix programming language such as Gauss — may

promote the use of generalised inverses in the teaching of linear algebra.
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Definition

For any matrix A there exists a unique Moore-Penrose inverse, denoted by A",

mxn nxm

which satisfies the four conditions

AATA=A 1)
ATAAT = A )
(A*A) = A"A 3)
(AAT) = AA (4)

Some properties

> If Ais anonsingular matrix, we have A" = A™,
> A"A and AA" are idempotent matrices

> r(A)=r(A"A)=tr(A*A)

> |If r( A):n,we have A" :(A’A)f1 A and ATA=1

mxn

> |f r( A):m ,We have A" = A’(AA’)f1 and AA* = |

mxn



Computation of the Moore-Penrose inverse of a (column) vector

1 47 i
s=a ifazo
o ifa=o
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A vector is a matrix with only one column and should be declared in Derive as such.

#1:

MPI¥(a) :=
If DIM(a') = 1
If (a'-a)11 =10
0-a'
a'fila'-al 11
"This 15 not a column vector!"

If a vector has symbolic elements, the MPIV function may possibly not be able to

compute its Moore-Penrose inverse.
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Computation of the Moore-Penrose inverse of a matrix

MPI function starts by calling the MPIV function with the first column of A. The re-

sult is the first row of A™ (which is only an intermediate result).

The MPI function then proceeds to the second column of A and computes the second

intermediate A" by transforming the previous result and appending another row. This

is repeated for all columns of A. After as many steps as the number of columns of A the

MPI function has found A".

Note that in each step the MPIV function is called. Hence, in the case of symbolic

elements the MPI function might be unable to compute A™.

MPICA, APLUS, aj, dt, €, bt, 1) :=
Frog

APLUS := MPIV(A COL [11D

1= 2

Loop
If 1 > DIMCA™)

#2: RETURM APLUS

aj := A COL [1]
dt = aj'-APLUS' - APLUS
€ = (IDENTITY_MATRIX(DIMCAY) — A COL [1, ..., 1 - 1]-APLUS].aj
bt = MPIV(c) + (1 - MPIV¥(c)-c)/(1 + dt-ajl-dt
APLUS := APPENDCAPLUS - APLUS-aj-bt, bt)
1 :+1




Application

We consider a system of linear equations (SLE)

AX=Db

mxnnxl  mxl
where A is a known coefficient matrix, b a vector of known constants, and x a vector of
unknown variables.
A system of linear equations Ax =b is consistent if and only if
AA'b=b (7)

If a system of linear equations Ax =b is consistent, its general solution is given by
x:A+b+( I —A*Ajz (8)
nxn nx1

where z is an arbitrary vector.

The following function SOLVESLE (in conjunction with a vector z with elements z1,
z2, ...) either solves a system of linear equations Ax =b, where the matrix A and the
vector b have been passed as parameters, or displays a message if the system is incon-

sistent.

#4.  z = YECTOR(WECTORCAPPENDC=z, 13, 1, 1), 7, 1, DIMCA'Y)

SOLWESLECA, b) :=
If A-MPI(A)-b =D
#5: MPI(A)-b + (IDENTITY_MATRIM(DIMENSIONCA'™IY — MPICAY-A).z

"Mo selution(s)!"




Example |

1 2 3
Consider the SLE Ax =b definedby A= (2 3}; b= (5}
2

3 2
A is a nonsingular matrix and therefore x=A"b :( ) J(

For any nonsingular matrix A condition (7) is fulfilled since AA*b=AAb=b.

Moreover, since (I —A*A)z :(I —A‘lA)z =0 for any z, the general solution (8)

simplifiesto x=A'b=A"b.

Example Il

1 2 3
Now consider the SLE defined by A= (2 4]; b= [5]
2

A is a singular matrix. Using the Moore-Penrose inverse of A we find that this SLE

2\(3 ir
51 2 10
5/\2 5

is inconsistent (note that AA" = 1 ):
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Example 111

1 2 3
Finally, consider the SLE defined by A:(2 4}; b:(;J

Using the Moore-Penrose inverse of A we find that this SLE is consistent:

{HRHE

The general solution now consists of an infinite number of vectors defined by

XzA“("AA)Z:[%}*[—% JU

In Derive we get the same results by applying the function SOLVESLE:

AA'b =[

gilno ol
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