Shortest paths, soap films, and mathematics

Joint Mathematics Meetings, January 2015

Shortest paths, soap films, and mathematics

Michael Dorff
Brigham Young University mdorff@mathematics.byu.edu

Puzzle

Shortest paths, soap films, and mathematics

Michael Dorff

The shortest path connecting these two points is

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Puzzle

Shortest paths, soap films, and mathematics

Michael Dorff

The shortest path connecting these two points is

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Puzzle

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

What is the shortest path connecting these four points?

Some possible solutions include the following:

Some possible solutions include the following:

Some possible solutions include the following:

Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

Some possible solutions include the following:
Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Some possible solutions include the following:

Length $=3$
Length ≈ 3.41

Length ≈ 2.83

Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

Some possible solutions include the following:

Length $=3$

Length ≈ 3.41

Length ≈ 2.83

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

What is the correct answer?

Steiner Problem

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
What is the shortest path connecting these four points?

Steiner Problem

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
What is the shortest path connecting these four points?

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

$$
\text { Let } \begin{aligned}
f(x) & =x+4\left(\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1-x}{2}\right)^{2}}\right) \\
& =x+2 \sqrt{1+(1-x)^{2}}
\end{aligned}
$$

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

$$
\text { Let } \begin{aligned}
f(x) & =x+4\left(\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1-x}{2}\right)^{2}}\right) \\
& =x+2 \sqrt{1+(1-x)^{2}}
\end{aligned}
$$

Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}}$

Shortest paths

Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

Soap films

Shortest paths, soap films, and mathematics

Michael Dorff

$$
=x+2 \sqrt{1+(1-x)^{2}}
$$

Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\Rightarrow \quad 3(1-x)^{2}=1
$$

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths

Puzzle
Steiner problem
Solution
Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad 3(1-x)^{2}=1 \\
& \Rightarrow \quad x=1-\frac{1}{\sqrt{3}}
\end{aligned}
$$

Soap films

Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

$$
=x+2 \sqrt{1+(1-x)^{2}}
$$

Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad 3(1-x)^{2}=1 \\
& \Rightarrow \quad x=1-\frac{1}{\sqrt{3}}
\end{aligned}
$$

So, Length $=\left(1-\frac{1}{\sqrt{3}}\right)+2\left(\sqrt{1+\frac{1}{3}}\right)$

Shortest paths, soap films, and mathematics

Michael Dorff

$$
\text { Let } \begin{aligned}
f(x) & =x+4\left(\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{1-x}{2}\right)^{2}}\right) \\
& =x+2 \sqrt{1+(1-x)^{2}} .
\end{aligned}
$$

Shortest paths
Puzzle
Steiner problem
Solution
Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad 3(1-x)^{2}=1 \\
& \Rightarrow \quad x=1-\frac{1}{\sqrt{3}}
\end{aligned}
$$

So, Length $=\left(1-\frac{1}{\sqrt{3}}\right)+2\left(\sqrt{1+\frac{1}{3}}\right)=1+\sqrt{3} \approx 2.73$.

Shortest paths, soap films, and mathematics

Michael Dorff

$$
=x+2 \sqrt{1+(1-x)^{2}}
$$

Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad 3(1-x)^{2}=1 \\
& \Rightarrow \quad x=1-\frac{1}{\sqrt{3}}
\end{aligned}
$$

So, Length $=\left(1-\frac{1}{\sqrt{3}}\right)+2\left(\sqrt{1+\frac{1}{3}}\right)=1+\sqrt{3} \approx 2.73$.
Note that $\sin \theta=\frac{\frac{1}{2}}{\frac{1}{2} \sqrt{1+\frac{1}{3}}}=\frac{\sqrt{3}}{2}$

Shortest paths, soap films, and mathematics

Michael Dorff

$$
=x+2 \sqrt{1+(1-x)^{2}}
$$

Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad 3(1-x)^{2}=1 \\
& \Rightarrow \quad x=1-\frac{1}{\sqrt{3}}
\end{aligned}
$$

So, Length $=\left(1-\frac{1}{\sqrt{3}}\right)+2\left(\sqrt{1+\frac{1}{3}}\right)=1+\sqrt{3} \approx 2.73$.
Note that $\sin \theta=\frac{\frac{1}{2}}{\frac{1}{2} \sqrt{1+\frac{1}{3}}}=\frac{\sqrt{3}}{2} \Rightarrow \theta=60^{\circ}$.

Shortest paths, soap films, and mathematics

Michael Dorff

$$
=x+2 \sqrt{1+(1-x)^{2}}
$$

Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad 3(1-x)^{2}=1 \\
& \Rightarrow \quad x=1-\frac{1}{\sqrt{3}}
\end{aligned}
$$

So, Length $=\left(1-\frac{1}{\sqrt{3}}\right)+2\left(\sqrt{1+\frac{1}{3}}\right)=1+\sqrt{3} \approx 2.73$.
Note that $\sin \theta=\frac{\frac{1}{2}}{\frac{1}{2} \sqrt{1+\frac{1}{3}}}=\frac{\sqrt{3}}{2} \Rightarrow \theta=60^{\circ}$.

Therefore, the lines meet at

Shortest paths, soap films, and mathematics

Michael Dorff

$$
=x+2 \sqrt{1+(1-x)^{2}}
$$

Then $0=f^{\prime}(x)=1+\frac{-2(1-x)}{\sqrt{1+(1-x)^{2}}} \Rightarrow 2(1-x)=\sqrt{1+(1-x)^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad 3(1-x)^{2}=1 \\
& \Rightarrow \quad x=1-\frac{1}{\sqrt{3}}
\end{aligned}
$$

So, Length $=\left(1-\frac{1}{\sqrt{3}}\right)+2\left(\sqrt{1+\frac{1}{3}}\right)=1+\sqrt{3} \approx 2.73$.
Note that $\sin \theta=\frac{\frac{1}{2}}{\frac{1}{2} \sqrt{1+\frac{1}{3}}}=\frac{\sqrt{3}}{2} \Rightarrow \theta=60^{\circ}$.

Therefore, the lines meet at 120° angles.

Question: How can we generalize this problem?

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Question: How can we generalize this problem?
(1) Use more points:

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff
Question: How can we generalize this problem?
(1) Use more points: What is the shortest path connecting n points?

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff
Question: How can we generalize this problem?
(1) Use more points: What is the shortest path connecting n points?
-
${ }^{B}$ •

- D
-

${ }^{\bullet}$ E

Question: How can we generalize this problem?
(1) Use more points: What is the shortest path connecting n points?

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces
(2) Go up a dimension:

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces
(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces
(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?
(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?

minimizes distance
in a plane

(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?

Steiner Problem:

(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?

Steiner Problem:

(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?

Steiner Problem:

(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?

Steiner Problem:

What does this?
(2) Go up a dimension: What is the analogue of the Steiner problem in one dimension higher?

Steiner Problem:

minimizes distance	in a plane
(1-d object)	(2-d world)
\Downarrow	\Downarrow
(2-d object)	(3-d world)
minimizes area	in space

What does this? soap films and minimal surfaces

Soap Films

Michael Dorff

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing

Soap films model surfaces that minimize area in space.

Soap Films

Shortest paths, soap films, and mathematics

Soap films model surfaces that minimize area in space.

Let's model some minimal surfaces!

Minimal surfaces in \mathbb{R}^{3}

Michael Dorff

- minimize area locally

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Minimal surfaces in \mathbb{R}^{3}

- minimize area locally
- look like saddle surfaces,

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Minimal surfaces in \mathbb{R}^{3}

- minimize area locally
- look like saddle surfaces,
- at each point, the bending upward in one direction

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Minimal surfaces in \mathbb{R}^{3}

Shortest paths, soap films, and mathematics

- minimize area locally
- look like saddle surfaces,
- at each point, the bending upward in one direction is matched with the bending downward in the orthogonal direction.

Minimal surfaces in \mathbb{R}^{3}

Shortest paths, soap films, and mathematics

- minimize area locally
- look like saddle surfaces,
- at each point, the bending upward in one direction is matched with the bending downward in the orthogonal direction.

Examples

catenoid

Scherk doubly-periodic

Examples

Shortest paths, soap films, and mathematics

Michael Dorff

Enneper

helicoid

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Examples

Shortest paths, soap films, and mathematics

Michael Dorff

Enneper

helicoid

Shortest paths
Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Twisted Scherk

Costa-Hoffman-Meeks

Shortest paths, soap films, and mathematics

Michael Dorff

Shortest paths

Thank you!

Puzzle
Steiner problem
Solution
Generalizing
Soap films
Minimal surfaces

Shortest paths, soap films, and mathematics

Michael Dorff

Thank you!

