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Chapter

INTRODUCTION

OBJECTIVES

In this chapter we will look
at a series of examples of
areas in the life sciences in
which statistics is used. with
the goal of understanding
the scope of the field of
statistics. We will also

* explain how experiments
differ from observational
studies.

+ discuss the concepts of
placebo effect, blinding,
and confounding.

» discuss the role of
random sampling in
statistics.

Example
LLI

.1 Statistics and the Life Sciences

Researchers in the life sciences carry out investigations in various settings: in the
clinic, in the laboratory, in the greenhouse, in the field. Generally, the resulting data
exhibit some variability. For instance, patients given the same drug respond some-
what differently; cell cultures prepared identically develop somewhat differently;
adjacent plots of genetically identical wheat plants yield somewhat different amounts
of grain. Often the degree of variability is substantial even when experimental con-
ditions are held as constant as possible.

The challenge to the life scientist is to discern the patterns that may be more or
less obscured by the variability of responses in living systems. The scientist must try
to distinguish the “signal” from the “noise.”

Statistics is the science of understanding data and of making decisions in the
face of variability and uncertainty. The discipline of statistics has evolved in response
to the needs of scientists and others whose data exhibit variability. The concepts and
methods of statistics enable the investigator to describe variability and to plan
research so as to take variability into account (i.e., to make the “signal” strong in
comparison to the background “noise” in data that are collected). Statistical meth-
ods are used to analyze data so as to extract the maximum information and also to
quantify the reliability of that information.

We begin with some examples that illustrate the degree of variability found in
biological data and the ways in which variability poses a challenge to the biological
researcher. We will briefly consider examples that illustrate some of the statistical
issues that arise in life sciences research and indicate where in this book the issues
are addressed.

The first two examples provide a contrast between an experiment that showed
no variability and another that showed considerable variability.

Vaccine for Anthrax  Anthrax is a serious disease of sheep and cattle. In 1881, Louis
Pasteur conducted a famous experiment to demonstrate the effect of his vaccine
against anthrax. A group of 24 sheep were vaccinated; another group of 24 unvac-
cinated sheep served as controls. Then, all 48 animals were inoculated with a viru-
lent culture of anthrax bacillus Table 1.1.1 shows the results! The data of Table 1.1.1
show no variability: all the vaccinated animals survived and all the unvaccinated
animals died. -
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Table 1.1.1 Response of sheep to anthrax

Treatment
Response Vaccinaled Nol vaccinated
Died of anthrax 0 24
Survived 24 0
Total 24 24
Percent survival 100% 0%

Bacteria and Cancer  Tostudy the effect of bacteria on tumor development, research-
ers used a strain of mice with a naturally high incidence of liver tumors. One group
of mice were maintained entirely germ free, while another group were exposed to
the intestinal bacteria Escherichia coli. The incidence of liver tumors is shown in
Table 1.1.27

Table 1.1.2 Incidence of liver tumors in mice

Treatment
Response E coli  Germ free
Liver tumors 8 19
Mo liver lumors 5 30
Total 13 49
Percent with liver tumaors 62% 30%

In contrast to Table 1.1.1, the data of Table 1.1.2 show variability; mice given the
same treatment did not all respond the same way. Because of this variability, the
results in Table 1.1.2 are equivocal; the data suggest that exposure to E coli increases
the risk of liver tumors, but the possibility remains that the observed difference in
percentages (62% versus 39%) might reflect only chance variation rather than an
effect of E. coli. If the experiment were replicated with different animals, the per-
centages might change substantially.

One way to explore what might happen if the experiment were replicated is
to simulate the experiment, which could be done as follows. Take 62 cards and
write “liver tumors”on 27 (= 8 + 19) of them and “no liver tumors™ on the other
35 (= 5 + 30). Shuffle the cards and randomly deal 13 cards into one stack (to
correspond to the E. coli mice) and 49 cards into a second stack. Next, count the
number of cards in the “E. coli stack™ that have the words “liver tumors™ on
them—to correspond to mice exposed to E coli who develop liver tumors—and
record whether this number is greater than or equal to 8. This process represents
distributing 27 cases of liver tumors to two groups of mice (E. cedi and germ free)
randomly, with E. coli mice no more likely, nor any less likely, than germ-free mice
to end up with liver tumaors.

If we repeat this process many times (say, 10,000 times, with the aid of a com-
puter in place of a physical deck of cards), it turns out that roughly 12% of the time
we get 8 or more E. coli mice with liver tumors. Since something that happens 12%
of the time is not terribly surprising, Table 1.1.2 does not provide significant evidence
that exposure to E. coli increases the incidence of liver tumors. [ ]
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In Chapter 10 we will discuss statistical techniques for evaluating data such as
those in Tables 1.1.1 and 1.1.2. Of course, in some experiments variability is minimal
and the message in the data stands out clearly without any special statistical analy-
sis. It is worth noting, however, that absence of variability is itself an experimental
result that must be justified by sufficient data. For instance, because Pasteur’s
anthrax data (Table 1.1.1) show no variability at all. it is intuitively plausible to con-
clude that the data provide “solid” evidence for the efficacy of the vaccination. But
note that this conclusion involves a judgment; consider how much less “solid™ the
evidence would be if Pasteur had included only 3 animals in each group, rather than
24, Statistical analyses can be used to make such a judgment, that is, to determine if
the variability is indeed negligible. Thus, a statistical view can be helpful even in the
absence of variability.

The next two examples illustrate additional questions that a statistical approach
can help to answer.

Flooding and ATP  In an experiment on root metabolism, a plant physiologist grew
birch tree seedlings in the greenhouse. He flooded four seedlings with water for one
day and kept four others as controls. He then harvested the seedlings and analyzed
the roots for adenosine triphosphate (ATP). The measured amounts of ATP (nmoles
per mg tissue ) are given in Table 1.1.3 and displayed in Figure 1.1.1°

Table 1.1.3 ATP concentration in 25 *
birch tree roots (nmol/mg)
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Figure 1.1.1 ATP concentration in birch tree rools

The data of Table 1.1.3 raise several questions: How should one summarize the
ATP values in each experimental condition? How much information do the data
provide about the effect of flooding? How confident can one be that the reduced
ATP in the flooded group is really a response to flooding rather than just random
variation? What size experiment would be required in order to firmly corroborate
the apparent effect seen in these data? -
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Chapters 2, 6, and 7 address questions like those posed in Example 1.1.3. One
question that we can address here is whether the data in Table 1.1.3 are consistent
with the claim that flooding has no effect on ATP concentration, or instead provide
significant evidence that flooding affects ATP concentrations. If the claim of no
effect is true, then should we be surprised to see that all four of the flooded observa-
tions are smaller than each of the control observations? Might this happen by chance
alone? If we wrote each of the numbers 1.05, 1.07 1.19, 1.45.1.49, 1.91, 1.70, and 2.04
on cards, shuffled the eight cards, and randomly dealt them into two piles, what is the
chance that the four smallest numbers would end up in one pile and the four largest
numbers in the other pile? It turns out that we could expect this to happen 1 time in
35 random shufflings, so “chance alone™ would only create the kind of imbalance
seen in Figure 1.1.1 about 2.9% of the time (since 1/35 = 0.029). Thus, we have some
evidence that flooding has an effect on ATP concentration. We will develop this idea
maore fully in Chapter 7

MAO and Schizophrenia Monoamine oxidase (MAQ) is an enzyme that is thought
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following: How were the patients selected? Were they chosen from a common hos-
pital population, or were the three groups obtained at different times or places?
Were precautions taken so that the person measuring the MAQ was unaware of the
patient’s diagnosis? Did the investigators consider various ways of subdividing the
patients before choosing the particular diagnostic categories used in Table 1.1.47 At
first glance, these questions may seem irrelevant—can we not let the measurements
speak for themselves? We will see, however, that the proper interpretation of data
always requires careful consideration of how the data were obtained.

Sections 1.2 and 1.3. as well as Chapters 2 and 8, include discussions of selection of
experimental subjects and of guarding against unconscious investigator bias. In Chapter 11
we will show how sifting through a data set in search of patterns can lead to serious mis-
interpretations and we will give guidelines for avoiding the pitfalls in such searches.

The next example shows how the effects of variability can distort the results of
an experiment and how this distortion can be minimized by careful design of the
experiment.

1.1.4 to play a role in the regulation of behavior. To see whether different categories of Exlall'ngle Foodl Choice by Insect Larvae The clcx\_fer root curculio, S'rrorm_ﬁf:-piduhu. is a root-
e v g v et v of MAC, sty s e s A e el e e
ected blood specimens from 42 patients and measured the ) activity in the ! - g -
T el s ey ol )
expressed as nmol benzylaldehyde product per 10° platelets per hour.”) Note that it . h " . -
!5 much easier to get a feeling _for the data by looking at the graph_(l:'lgure L12) ll_man {:le]dand “&n?ﬂﬂa;ﬁd ?mﬂm a;'a_llabéﬁ;tﬁ_fter H hto:Jrs,lhE:anvesllgl:lasl.or Cmi]!mm
it is to read through the data in the table. The use of graphical displays of data is a ! ?['flvaf]j% clearly made a chowce between root types 1he resulls are shown
very important part of data analysis. in-tabie L L.

ry impo P y = The data inTable 115 appear to suggest rather strongly that Sitona larvae prefer

nodulated roots. But our description of the experiment has obscured an important

point—we have not stated how the roots were arranged. To see the relevance of the

Table 1.1.4 MAO aclivity in patients with schizophrenia E arrangement, suppose the experimenter had used only one dish, placing all the nod-

. . = — ulated roots on one side of the dish and all the nonnodulated roots on the other side,
Diagnosis MAQ aclivily as shown in Figure 1.1.3{a), and had then released 120 larvae in the center of the dish.
I: 68 41 7.3 142 188 15— This experimental arrangement would be seriously deficient, because the data of
Chronic 99 74 119 52 78 t Table 1.1.5 would then permit several competing interpretations—for instance,

undifferentiated 78 BT 127 145 107 . . (a) perhaps the larvae really do prefer nedulated roots; or (b) perhaps the two sides

schizophrenia . i i : = : . of the dish were at slightly different temperatures and the larvae were responding to

(18 patients) B4 07 104 2w ' ' * temperature rather than nodulation; or (¢) perhaps one larva chose the nodulated
11 78 44 114 31 43| S . . * roots just by chance and the other larvae followed its trail. Because of these possi-

) ) 5 = : ¥ bilities the experimental arrangement shown in Figure 1.1.3(a) can vield only weak
Undifferentialed o 1s e sz 1o : » H information about larval food preference.
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Figure 1.1.2 MAO activity in patients with schizophrenia Other (no choice, died, lost) a2 (a) (b)
Total 120 Figure 1.1.3 Possible arrangements of food choice

. experiment. The dark-shaded areas contain nodulated
To analyze the MAO data. one would naturally want to make comparisons roc]::rs\and the light-shaded areas contain nonnodulated

among the three groups of patients, to describe the reliability of those comparisons, rools.
and to characterize the variability within the groups To go beyond the data to a bio- {a) A poor arrangement.
logical interpretation, one must also consider more subtle issues, such as the (b) A good arrangement.
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The experiment was actually arranged as in Figure 1.1.3(b), using six dishes
with nodulated and nonnodulated roots arranged in a symmetric pattern. Twenty
larvae were released into the center of each dish. This arrangement avoids the pit-
falls of the arrangement in Figure 1.1.3(a). Because of the alternating regions of
nodulated and nonnodulated roots, any fluctuation in environmental conditions
(such as temperature) would tend to affect the two root types equally. By using
several dishes, the experimenter has generated data that can be interpreted even if
the larvae do tend to follow each other. To analyze the experiment properly, we
would need to know the results in each dish; the condensed summary in Table 1.1.5
is not adequate. -

In Chapter 11 we will describe various ways of arranging experimental material
in space and time so as to yield the most informative experiment, as well as how to
analyze the data to extract as much information as possible and yet resist the temp-
tation to overinterpret patterns that may represent only random variation.

The following example is a study of the relationship between two measured
quantities.

Body Size and Energy Expenditure How much food does a person need? To inves-
tigate the dependence of nutritional requirements on body size, researchers used
underwater weighing techniques to determine the fat-free body mass for each of
seven men. They also measured the total 24-hour energy expenditure during condi-
tions of quiet sedentary activity: this was repeated twice for each subject. The results
are shown in Table 1.16 and plotted in Figure 1.1.4.°

Fal-free mass 24-hour energy ¥

Subject (kg) expenditure (kcal) — LI

1 193 1,851 1,03 Z 24004 -

2 503 2200 1,801 g

3 683 2283 2423 5

4 481 1885 1,701 220

5 576 1020 1,967 &

6 78.1 2,490 2.567 & 20004

7 76.1 2484 2653 :

1800 < »

Fat-free mass (kg)

Figure 1.1.4 Fal-free mass and energy expenditure in
seven men. Each man is represented by a different symbol.

A primary goal in the analysis of these data would be to describe the relation-
ship between fat-free mass and energy expenditure —to characterize not only the
overall trend of the relationship, but also the degree of scatter or variability in the
relationship. (Note also that, to analyze the data, one needs to decide how to handle
the duplicate observations on each subject.) -

Example

1.2.1

Section L2 Tvpes of Evidence  IT

The focus of Example 1.1.61s on the relationship between two variables: fat-free
mass and energy expenditure. Chapter 12 deals with methods for describing such
relationships, and also for quantifying the reliability of the descriptions.

A LOOK AHEAD

Where appropriate, statisticians make use of the computer as a tool in data analysis;
computer-generated output and statistical graphics appear throughout this book.
The computer is a powerful tool, but it must be used with caution. Using the com-
puter to perform calculations allows us to concentrate on concepts. The danger when
using a computer in statistics is that we will jump straight to the calculations without
looking closely at the data and asking the right questions about the data. Our goal is
to analyze, understand, and interpret data —which are numbers in a specific context—
not just to perform calculations.

In order to understand a data set it is necessary to know how and why the data
were collected. In addition to considering the most widely used methods in statistical
inference, we will consider issues in data collection and experimental design.
Together, these topics should provide the reader with the background needed to
read the scientific literature and to design and analyze simple research projects

The preceding examples illustrate the kind of data to be considered in this book.
In fact, each of the examples will reappear as an exercise or example in an appropri-
ate chapter. As the examples show, research in the life sciences is usually concerned
with the comparison of two or more groups of observations, or with the relationship
between two or more variables We will begin our study of statistics by focusing on a
simpler situation—observations of a single variable for a single group. Many of the
basic ideas of statistics will be introduced in this oversimplified context. Two-group
comparisons and more complicated analyses will then be discussed in Chapter 7 and
later chapters.

1.2 Types of Evidence

Besearchers gather information and make inferences about the state of nature in a
variety of settings. Much of statistics deals with the analysis of data, but statistical
considerations often play a key role in the planning and design of a scientific inves-
tigation. We begin with examples of the three major kinds of evidence that one
encounters.

Lightning and Deafness  On 15 July 1911, 65-year-old Mrs. Jane Decker was struck
by lightning while in her house. She had been deaf since birth, but after being struck,
she recovered her hearing, which led to a headline in the New York Times, “Light-
ning Cures Deafness.”” Is this compelling evidence that lightning is a cure for deaf-
ness? Could this event have been a coincidence? Are there other explanations for
her cure? ]

The evidence discussed in Example 1.2.1 is aneedotal evidence. An anecdote is
a short story or an example of an interesting event, in this case, of lightning curing
deafness. The accumulation of anecdotes often leads to conjecture and to scientific
investigation, but it is predictable pattern, not anecdote, that establishes a scientific
theory.
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Sexual Orientation  Some research has suggested that there is a genetic basis for sex-
val orientation. One such study involved measuring the midsagittal area of the anterior
commissure {AC) of the brain for 30 homosexval men. 30 heterosexual men. and 30
heterosexual women. The researchers found that the AC tends to be larger in hetero-
sexual women than in heterosexual men and that it is even larger in homosexuval men.
These data are summarized in Table 1.2.1 and are shown graphically in Figure 1.2.1.
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Figure 1.2.1 Midsagittal area of the anterior
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The data suggest that the size of the AC in homosexuval men is more like that of
heterosexual women than that of heterosexual men. When analyzing these data, we
should take into account two things. (1) The measurements for two of the homo-
sexual men were much larger than any of the other measurements: sometimes one
or two such outliers can have a big impact on the conclusions of a study. (2) Twenty-
four of the 30 homosexual men had AIDS, as opposed to 6 of the 30 heterosexual
men; if AIDS affects the size of the anterior commissure, then this factor could
account for some of the difference between the two groups of men. -

Example 1.2.2 presents an observational study. In an observational study the
researcher systematically collects data from subjects, but only as an observer and not
as someone who is manipulating conditions. By systematically examining all the data
that arise in observational studies, one can guard against selectively viewing and
reporting only evidence that supports a previous view. However, observational stud-
ies can be misleading due to confounding variables. In Example 1.2.2 we noted that
having AIDS may affect the size of the anterior commissure. We would say that the
effect of AIDS is confounded with the effect of sexual orientation in this study.

Note that the context in which the data arose is of central importance in statis-
tics. This is quite clear in Example 1.2.2. The numbers themselves can be used to
compute averages or to make graphs, like Figure 1.2.1, but if we are to understand
what the data have to say, we must have an understanding of the context in which
they arose. This context tells us to be on the alert for the effects that other factors,
such as the impact of AIDS, may have on the size of the anterior commissure. Data
analysis without reference to context is meaningless.

Example
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Health and Marriage A study conducted in Finland found that people who were
married at midlife were less likely to develop cognitive impairment (particularly
Alzheimer’s disease) later in life.* However, from an observational study such as this
we don't know whether marriage prevents later problems or whether persons who
are likely to develop cognitive problems are less likely to get married. -

Toxicity in Dogs  Before new drugs are given to human subjects, it is common prac-
tice to first test them in dogs or other animals. In part of one study, a new investiga-
tional drug was given to eight male and eight female dogs at doses of 8 mg/kg and
25 mg/kg. Within each sex, the two doses were assigned at random to the eight dogs.
Many “endpoints” were measured, such as cholesterol, sodium, glucose, and so on,
from blood samples, in order to screen for toxicity problems in the dogs before start-
ing studies on humans. One endpoint was alkaline phosphatase level (or APL, mea-
sured in UM). The data are shown in Table 1.2.2 and plotted in Figure 12210

Table 1.2.2 Alkaline phosphatase level (U) *
Dose (me/kg) Male Female _ 180 -
8 17 150 = .
154 127 % 1@ R
104 152 3 : ’ .
143 105 . . X
Average 143 133.5 j: .
25 80 101 "
144 113 .
138 161 * . .
131 197
Average 124.5 143 8 — .
I I I T
Dosz g 15 L] 15
Sex Female Male

Figure 1.2.2 Alkaline phosphatase level in dogs

The design of this experiment allows for the investigation of the interaction
between two factors: sex of the dog and dose. These factors interacted in the follow-
ing sense: For females, the effect of increasing the dose from 8 to 25 mg/kg was posi-
tive, although small (the average APL increased from 133.5 to 143 Uf), but for males
the effect of increasing the dose from 8 to 25 mg/’kg was negative (the average APL
dropped from 143 to 124.5 U/l). Techniques for studying such interactions will be
considered in Chapter 11. [ ]

Example 1.2.4 presents an experiment, in that the researchers imposed the
conditions—in this case, doses of a drug—on the subjects (the dogs). By randomly
assigning treatments {drug doses) to subjects (dogs). we can get around the problem
of confounding that complicates observational studies and limits the conclusions
that we can reach from them. Randomized experiments are considered the “gold
standard” in scientific investigation, but they can also be plagued by difficulties.
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Often human subjects in experiments are given a placebo—an inert substance,
such as a sugar pill. It is well known that people often exhibit a placebo response; that
is, they tend to respond favorably to any treatment, even if it is only inert. This psy-
chological effect can be quite powerful. Research has shown that placebos are effec-
tive for roughly one-third of people who are in pain; that is, one-third of pain
sufferers report their pain ending after being giving a “painkiller™ that is. in fact, an
inert pill. For diseases such as bronchial asthma, angina pectoris (recurrent chest
pain caused by decreased blood flow to the heart), and ulcers, the use of placebos has
been shown to produce clinically beneficial results in over 60% of palienli” Of
course, if a placebo control is used. then the subjects must not be told which group
they are in—the group getting the active treatment or the group getting the placebo.

Autism  Autism is a serious condition in which children withdraw from normal
social interactions and sometimes engage in aggressive or repetitive behavior. In
1997 an autistic child responded remarkably well to the digestive enzyme secretin.
This led to an experiment (a “clinical trial™) in which secretin was compared to a
placebo. In this experiment, children who were given secretin improved consider-
ably. However, the children given the placebo also improved considerably. There
was no statistically significant difference between the two groups. Thus, the favor-
able response in the secretin group was considered to be only a “placebo response,”
meaning, unfortunately, that secretin was not found to be beneficial (beyond induc-
ing a positive response associated simply with taking a substance as part of an
experiment).!? -

The word placebo means “I shall please.” The word nocebo (“1 shall harm™) is
sometimes used to describe adverse reactions to perceived, but nonexistent, risks.
The following example illustrates the strength that psychological effects can have.

Bronchial Asthma A group of patients suffering from bronchial asthma were given
a substance that they were told was a chest-constricting chemical. After being given
this substance, several of the patients experienced bronchial spasms. However, dur-
ing part of the experiment, the patients were given a substance that they were told
would alleviate their symptoms. In this case, bronchial spasms were prevented. In
reality. the second substance was identical to the first substance: Both were distilled
waler. It appears that it was the power of suggestion that brought on the bronchial
spasms; the same power of suggestion prevented spasms. ™ -

Similar to placebo treatment is sham treatment, which can be used on animals as
well as humans. An example of sham treatment is injecting control animals with an
inert substance such as saline. In some studies of surgical treatments, control animals
{even, occasionally, humans) are given a “mock™ surgery.

Renal Denervation A surgical procedure called “renal denervation” was developed
to help people with hypertension who do not respond to medication. An early study
suggested that renal denervation (which uses radiotherapy to destroy some nerves in
arteries feeding the kidney) reduces blood pressure. In that experiment, patients who
recelved surgery had an average improvement in systolic blood pressure of 33 mmHg
more than did control patients who received no surgery. Later an experiment was
conducted in which patients were randomly assigned to one of two groups. Patients in
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the treatment group received the renal denervation surgery. Patients in the control
group received a sham operation in which a catheter was inserted, as in the real oper-
ation, but 2{) minutes later the catheter was removed without radiotherapy being
used. These patients had no way of knowing that their operation was a sham. The
rates of improvement in the two groups of patients were nearly identical. -

BLINDING

In experiments on humans, particularly those that involve the use of placebos, blinding
is often used. This means that the treatment assignment is kept secret from the
experimental subject. The purpose of blinding the subject is to minimize the extent
to which his or her expectations influence the results of the experiment. If subjects
exhibit a psychological reaction to getting a medication, that placebo response will
tend to balance out between the two groups so that any difference between the
groups can be attributed to the effect of the active treatment.

In many experiments the persons who evaluate the responses of the subjects are
also kept blind; that is, during the experiment they are kept ignorant of the treatment
assignment. Consider, for instance, the following:

In a study to compare two treatments for lung cancer, a radiologist reads X-rays (o
evaluate cach paticnt's progress The X-ray films are coded so that the radiologist
cannot tell which treatment each patient received.

Mice are fed one of three dieis; the effects on their liver are assayed by a rescarch
assistant who does not know which diet cach mouse received.

Of course, somenne needs to keep track of which subject is in which group, but
that person should not be the one who measures the response variable. The most
obvious reason for blinding the person making the evaluations is to reduce the pos-
sibility of subjective bias influencing the observation process itself: Someone who
expects or wanis certain results may unconsciously influence those results. Such bias
can enter even apparently “objective” measurements through subtle variation in dis-
section techniques, titration procedures, and so on.

In medical studies of human beings, blinding often serves additional purposes.
For one thing, a patient must be asked whether he or she consents to participate in a
medical study. Suppose the physician who asks the question already knows which
treatment the patient will receive. By discouraging certain patients and encouraging
others, the physician can (consciously or unconsciously) create noncomparable treat-
ment groups. The effect of such biased assignment can be surprisingly large, and it has
been noted that it generally favors the “new”™ or “experimental” treatment.” Another
reason for blinding in medical studies is that a physician may (consciously or uncon-
sciously) provide more psychological encouragement, or even better care, to the
patients who are receiving the treatment that the physician regards as superior.

An experiment in which both the subjects and the persons making the evalua-
tions of the response are blinded is called a double-blind experiment. The first mam-
mary artery ligation experiment described in Example 1.2.7 was conducted as a
double-blind experiment.

THE NEED FOR CONTROL GROUPS

Clofibrate  An experiment was conducted in which subjects were given the drug
clofibrate, which was intended to lower cholesterol and reduce the chance of death
from coronary disease. The researchers noted that many of the subjects did not take
all the medication that the experimental protocol called for them to take. They
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calculated the percentage of the prescribed capsules that each subject took and
divided the subjects into two groups according to whether or not the subjects took at
least 80% of the capsules they were given. Table 1.2.3 shows that the 5-year mortality
rate for those who took at least 80% of their capsules was much lower than the cor-
responding rate for subjects who took fewer than 80% of the capsules. On the sur-
face, this suggests that taking the medication lowers the chance of death. However,
there was a placebo control group in the experiment and many of the placebo sub-
jects took fewer than B0% of their capsules. The mortality rates for the two placebo
groups—those who adhered to the protocol and those who did not —are quite simi-
lar to the rates for the clofibrate groups.

Table 1.2.3 Mortality rates for the clofibrate experiment

Clofibrate Placebo
Adherence n 5-year mortality n S-year mortality
=R0%. TO& 15.0% 1813 151%
<R, 157 24.46%, BE2 2E2%

The clofibrate experiment seems to indicate that there are two kinds of subjects:
those who adhere to the protocol and those who do not. The first group had a much
lower mortality rate than the second group. This might be due simply to better health
habits among people who show stronger adherence to a scientific protocol for 5 vears
than among people who only adhere weakly, if at all. A further conclusion from the
experiment is that clofibrate does not appear to be any more effective than placebo in
reducing the death rate. Were it not for the presence of the placebo control group, the
researchers might well have drawn the wrong conclusion from the study and attributed
the lower death rate among strong adherers to clofibrate itself, rather than to other
confounded effects that make the strong adherers different from the nonadherers. 16

The Common Cold Many years ago, investigators invited university students who
believed themselves to be particularly susceptible to the common cold to be part of
an experiment. Volunteers were randomly assigned to either the treatment group, in
which case they took capsules of an experimental vaccine, or to the control group, in
which case they were told that they were taking a vaccine, but in fact were given a
placebo—capsules that looked like the vaccine capsules but that contained lactose
in place of the vaccine.'” As shown in Table 1.2.4, both groups reported having dra-
matically fewer colds during the study than they had had in the previous year. The
average number of colds per person dropped 70% in the treatment group. This
would have been startling evidence that the vaccine had an effect, except that the
corresponding drop in the control group was 69%. -

Table 1.2.4 Number of colds in cold-vaccine experiment

Vacrine Placebo
n 201 03
Average number of colds
Previous year (from memory) 56 52
Current year 17 16
% reduction T0% 69%

Example

1.2.10
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We can attribute much of the large drop in colds in Example 1.2.9 to the placebo
effect. However, another statistical concern is panel bias, which is bias attributable
to the study having influenced the behavior of the subjects—that is, people who
know they are being studied often change their behavior. The students in this study
reported from memory the number of colds they had suffered in the previous year.
The fact that they were part of a study might have influenced their behavior so that
they were less likely to catch a cold during the study. Being in a study might also have
affected the way in which they defined having a cold —during the study, they were
“instructed to report to the health service whenever a cold developed” —so that
some illness may have gone unreported during the study. (How sick do you have to
be before you classify yourself as having a cold?)

Diet and Cancer Prevention A diet that is high in fruits and vegetables may yield
many health benefits, but how can we be sure? During the 1990s, the medical com-
munity believed that such a diet would reduce the risk of cancer. This belief was
based on comparisons from case-control studies. In such studies patients with cancer
were matched with “control subjects™ —persons of the same age, race, sex, and so
on—who did not have cancer; then the diets of the two groups were compared, and
it was found that the control patients ate more fruits and vegetables than did the
cancer patients. This would seem to indicate that cancer rates go down as consump-
tion of fruits and vegetables goes up. The use of case-control studies is quite sensible
because it allows researchers to make comparisons (e.g., of diets, etc.) while taking
into consideration important characteristics such as age.

Nonetheless, a case-control study is not perfect. Not all people agree to be inter-
viewed and to complete health information surveys, and these individuals thus might
be excluded from a case-control study. People who agree to be interviewed about
their health are generally more healthy than those who decline to participate. In
addition to eating more fruits and vegetables than the average person, they are also
less likely to smoke and more likely to exercise.™ Thus, even though case-control
studies took into consideration age, race, and other characteristics, they overstated
the benefits of fruits and vegetables. The observed benefits are likely also the result
of other healthy lifestyle factors.® Drawing a cause—effect conclusion that fruit and
vegetable consumption protects against cancer is dangerous. [ ]

HISTORICAL CONTROLS

Researchers may be particularly reluctant to use randomized allocation in medical
experiments on human beings. Suppose, for instance, that researchers want to evalu-
ate a promising new treatment for a certain illness. It can be argued that it would be
unethical to withhold the treatment from any patients, and that therefore all current
patients should receive the new treatment. But then who would serve as a control
group? One possibility is to use historical controls—that is. previous patients with the
same illness who were treated with another therapy. One difficulty with historical
controls is that there is often a tendency for later patients to show a better response —
even to the same therapy—than earlier patients with the same diagnosis. This ten-
dency has been confirmed. for instance, 'téy comparing experiments conducted at the
same medical centers in different _vears' One major reason for the tendency is that
the overall characteristics of the patient population may change with time. For

*A more informative kind of study 5 a prospective study or cohort study in which pecple with varying diets are
folkowed over time 1o see how many of them develop cancer; however, such a study can be diffioult (o carry out.
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instance, because diagnostic technigues tend to improve, patients with a given diag-
nosis (say, breast cancer) in 2001 may have a better chance of recovery (even with the
same treatment) than those with the same diagnosis in 1991 because they were diag-
nosed earlier in the course of the disease. This is one reason that patients diagnosed
with kidney cancer in 1995 had a 61% chance of surviving for at least 5 years but
those with the same diagnosis in 2005 had a 73% S-year survival rate !

Medical researchers do not agree on the validity and value of historical controls.
The following example illustrates the importance of this controversial issue.

Coronary Artery Disease Disease of the coronary arteries is often treated by sur-
gery (such as bypass surgery), but it can also be treated with drugs only. Many studies
have attempted to evaluate the effectiveness of surgical treatment for this common
disease. In a review of 29 of these studies, each study was classified as to whether it
used randomized controls or historical controls; the conclusions of the 29 studies are
summarized in Table 12.5.2!

Table 1.2.5 Coronary artery disease studies

Conclusion about
effectiveness of surgery
Type of controls ~ Effective Mot effective  Total number of studies
Randomized 1 7 B
Historical 16 3 21

It would appear from Table 1.2.5 that enthusiasm for surgery is much more com-
mon among researchers who use historical controls than among those who use ran-
domized controls. ]

Healthcare Trials A medical intervention, such as a new surgical procedure or drug,
will often be used at one time in a nonrandomized clinical trial and at another time
in a clinical trial of patients with the same condition who are assigned to groups
randomly. Nonrandomized trials, which include the use of historical controls, tend to
overstate the effectiveness of interventions. One analysis of many pairs of studies
found that the nonrandomized trial showed a larger intervention effect than the cor-
responding randomized trial 22 times out of 26 comparisons; see Table 1.2.6.2
Besearchers concluded that overestimates of effectiveness are “due to poorer prog-
nosis in non- randoml}' selected control groups compared with randomly selected
control groups.” Z That is, if you give a new drug to relatively healthy patients and
compare them to very sick patients taking the standard drug, the new drug is going
to look better than it really is.

Even when randomization is used, trials may or may not be run double-blind. A
review of 230 controlled trials found that trials that were not run double-blind pro-
duced stgmf[canlly larger estimates of treatment effects than did trials that were
double-hlind. -

Table 1.2.6 Randomized versus nonrandomized trials

Larger estimate of effect of the
{common) intervention

Mol randomized Randomized Tolal
Number of studies | n 4 %
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Proponents of the use of historical controls argue that statistical adjustment can
provide meaningful comparison between a current group of patients and a group of
historical controls; for instance, if the current patients are younger than the historical
controls, then the data can be analyzed in a way that adjusts, or corrects, for the effect
of age. Critics reply that such adjustment may be grossly inadequate.

The concept of historical controls is not limited to medical studies. The issue
arises whenever a researcher compares current data with past data. Whether the
data are from the lab, the field, or the clinic, the researcher must confront the ques-
tion: Can the past and current results be meaningfully compared? One should always
at least ask whether the experimental material, and/or the environmental conditions,

may have changed enough over time to distort the comparison.

Exercises 1.2.1-1.2.10

1.2.1 Fluoridation of drinking water has long been a con-
troversial issue in the United States. One of the first com-
munities o add Muoride to their waler was Newburgh,
New York. In March 1944, a plan was announced Lo begin
to add fluoride to the Newburgh water supply on April 1
of that year. During the month of April, cilizens of
Newburgh complained of digestive problems, which were
altributed to the Ouoridation of the waler. However,
there had been a delay in the installation of the Muorida-
lion equipment so that Muoridation did not begin until
May 2.~ Explain how the placebo effect/nocebo effect is
related to this example.

1.2.2 Olestra is a no-calorie, no-fat additive that is used
in the production of some potato chips. After the Food
and Drug Administration approved the use of olestra,
some consumers complained that olestra caused stomach
cramps and diarrhea. A randomized, double-blind experi-
ment was conducted in which some subjects were given
hags of potato chips made with olestra and other subjects
were given ordinary polato chips. In the olestra group,
38% of the subjects reported having gastrointestinal
symptoms. However, in the group given regular polato
chips the corresponding percentage was 37%. (The two
percentages are nol statistically significantly different. )
Explain how the placebo effect/nocebo effect is related Lo
this example. Also explain why it was important for this
experiment to be double-blind.

1.2.3 (Hypothetical) In a study of acupunciure, palients
with headaches are randomly divided into two groups.
Omne group is given acupuncture and the other group is
given aspirin. The acupuncturist evaluates the effective-
ness of the acupuncture and compares it to the results
from the aspirin group. Explain how lack of blinding
hiases the experiment in favor of acupuncture.

1.2.4 Randomized, controlled experiments have found
that ma.mln Cis not effective in treating terminal cancer
pai:lanﬁ. However, a 1976 research paper reporied that
terminal cancer patients given vitamin C survived much

longer than did historical controls. The patients treated
with vitamin C were selected b; surgeons from a group of
cancer patients in a hospital.™ Explain how this experi-
ment was biased in favor of vilamin C.

1.2.5 On 3 November 2009, the blog lifehacker.com con-
tained a posting by an individual with chronic toenail fun-
gus. He remarked that after many years of suffering and
trying all sorts of cures, he resorted to sanding his toenail
as Lhin as he could tolerate, [ollowed by daily application
of vinggar and hydrogen-peroxide-soaked bandaids on
his toenail. He repeated the vinegar peroxide bandaging
for 100 days. After this time his nail grew out and the fun-
gus was pone. Using the language of statistics, what kind
of evidence is this? Is this convincing evidence that this
procedure is an effective cure of toenail fungus?

1.2.6 For each of the following cases [(a) (b)].

(1) state whether the study should be observational or
experimental.

(1T} state whether the study should be run blind, double-
blind, or neither. If the study should be run blind or
double-blind, who should be blinded?

(a) An investigation of whether taking aspirin
reduces one’s chance of having a heart attack.

(b) An investigation of whether babies born into
poor families {family income below $25.000) are
more likely to weigh less than 3.5 pounds al birth
than habies born into wealthy families (family
income above $635,000).

1.2.7 For each of the following cases |{a) and (b)),

(1) state whether the study should be observational or
experimental.

(1T} state whether the study should be run blind, double-

blind, or neither. If the study should be run blind or
double-blind, who should be blinded?

(a) An investigation of whether the size of the
midsagittal plane of the anterior commissure
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(a part of the brain) of 4 man is related to the
sexual orientation of the man.

(b) An investigation of whether drinking more than
1 liter of water per day helps with weight loss for
people who are trying (o lose weight.

1.2.8 (Hypothetical) In onder Lo assess the effectiveness of a
new lertilizer, researchers applied the fertilizer o the lomato
plants on the wesl side of a ganden but did not fertilize the
plants on the east side of the garden. They later measured the
wiights of the tomatoes produced by each plant and found
that the fertilized plants grew larger tomatoes than did the
nonfertilized plants They concluded that the fertilirer works.
(a) Was this an experiment or an observational study? Why?
(b) This study is seriously flawed. Use the language of

statistics o explain the faw and how this affects the

validity of the conclusion reached by the researchers

(c) Could this study have used the concept of blinding
(i.e., does the word “blind™ apply to this study)? If so,
how? Could it have been double-blind? If so0, how?

1.2.9 Reseachers studied 1,718 persons over age 63 living
in North Carolina. They found that those who attended
religious services regularly were more likely to have
strong immune systems (as determined by the blood lev-
els of the protein interleukin-6) than those who didn't.™
Does this mean that attending religious services improves
one’s health? Why or why not?

1.2.10 Researchers studied 300,818 golfers in Sweden
and found that the “standardized mortality ratios™ for
golfers, adjusting for age, sex, and socioeconomic status,
were lower than for nongolfers, meaning that golfers tend
to live longer Does this mean that playing goll improves
one’s health? Why or why not?

I.3 Random Sampling

In order to address research questions with data. we first must consider how those
data are to be gathered. How we gather our data has tremendous implications on
our choice of analysis methods and even on the validity of our studies. In this section
we will examine some common types of data-gathering methods with special empha-
sis on the simple random sample.

SAMPLES AND POPULATIONS

Before gathering data, we first consider the scope of our study by identifying the
population. The population consists of all subjects/animals/specimens/plants, and so
on, of interest. The following are all examples of populations:

« All birch tree seedlings in Florida
+ All raccoons in Montafia de Oro State Park

= All people with schizophrenia in the United States

« All 100-ml water specimens in Chorro Creek

Typically we are unable to observe the entire population; therefore, we must be con-
tent with gathering data from a subset of the population, a sample of size n. From
this sample we make inferences about the population as a whole (see Figure 1.3.1).
The following are all examples of samples:

+ A selection of eight (n = 8) Florida birch seedlings grown in a greenhouse.

Figure 1.3.1 Sampling
from a population

Population

Random sampling

Sample of n
Inference
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+ Thirteen(n = 13)raccoonscapturedin traps at the Montana de Oro campground.

= Forty-two (n = 42) patients with schizophrenia who respond to an advertise-
ment in a U.S. newspaper.

= Ten (n = 10) 100-ml vials of water collected one day at 10 locations along
Chorro Creek.

Remark There is some potential for confusion between the statistical meaning of
the term sample and the sense in which this word is sometimes used in biology. If a
biologist draws blood from 20 people and measures the glucose concentration in
each, she might say she has 20 samples of blood. However, the statistician says she
has one sample of 20 glucose measurements; the sample size is n = 20. In the inter-
est of clarity, throughout this book we will use the term specimen where a biologist
might prefer sample. So we would speak of glucose measurements on a sample of 20
specimens of blood.

Ideally our sample will be a representative subset of the population; however,
unless we are careful, we may end up obtaining a hiased sample. A biased sample
systematically overestimates or systematically underestimates a characteristic of the
population. For example, consider the raccoons from the sample described previously
that are captured in traps at a campground. These raccoons may systematically differ
from the population; they may be larger (from having ample access to food from
dumpsters and campers), less timid (from being around people who feed them), and
may be even longer lived than the general population of raccoons in the entire park.

One method to ensure that samples will be (in the long run) representative of
the population is to use random sampling.

DEFINITION OF A S5IMPLE RANDOM SAMPLE

Informally, the process of obtaining a simple random sample can be visualized in
terms of labeled tickets, such as those used in a lottery or raffle. Suppose that each
member of the population (e.g.. raccoon, patient, plant) is represented by one ticket,
and that the tickets are placed in a large box and thoroughly mixed. Then n tickets
are drawn from the box by a blindfolded assistant, with new mixing after each ticket
is removed. These n tickets constitute the sample. (Equivalently, we may visualize
that n assistants reach in the box simultaneously, each assistant drawing one ticket.)
More abstractly, we may define random sampling as follows.

A Simple Random Sample

A simple random sample of nitems is a sample in which (a) every member of the
population has the same chance of being included in the sample, and (b) the
members of the sample are chosen independently of each other. [Requirement
(b) means that the chance of a given member of the population being chosen
does not depend on which other members are chosen.|®

¥Technically, requirement (b) is that every pair of members of the population has the same chance of being
selected for the sample, every group of 3 members of the population has the same chance of being selected for
the sample, and so on. In contrast (o this, suppose we had 2 population with 30 persons in it and we wrote the
names of 3 persons on each of 10 tickets. We could then choose one ticket in order 10 get 2 sample of size n =3,
bust this would not be a simple mndom sample, since the pair {1.2) could end up in the sample but the pair (1,4)
could not. Here the selections of members of the sample are not independent of each other. (This kind of sam-
pling is known as “cluster sampling,” with 10 disters of size 3.) IF the population is infinite, then the technical
definition that all subsets of a given size are equally likely 1o be sebected as part of the sample is equivalent to the
requirement that the members of the sample are chosen independently.
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Simple random sampling can be thought of in other. equivalent, ways We may
envision the sample members being chosen one at a time from the population; under
simple random sampling, at each stage of the drawing, every remaining member of
the population is equally likely to be the next one chosen. Another view is to con-
sider the totality of possible samples of size a. If all possible samples are equally
likely to be obtained, then the process gives a simple random sample.

EMPLOYING RANDOMMESS

When conducting statistical investigations, we will need to make use of randomness.
As previously discussed, we obtain simple random samples randomly —every mem-
ber of the population has the same chance of being selected. In Chapter 7 we shall
discuss experiments in which we wish to compare the effects of different treatments
on members of a sample. To conduct these experiments we will have to assign the
treatments to subjects randomly—so that every subject has the same chance of
receiving treatment A as they do treatment B

Unfortunately, as a practical matter, humans are not very capable of mentally
employing randomness. We are unable to eliminate unconscious bias that often leads us
tosystematically exclude or include certain individuals in oursample (orat least decrease
or increase the chance of choosing certain individuals). For this reason, we must use
external resources for selecting individuals when we want a random samiple: mechanical
devices such as dice, coins, and lottery tickets; electronic devices that produce random
digits such as computers and calculators; or tables of random digits such as Table 1 in the
back of this book. Although straightforward, using mechanical devices such as tickets in
a box is impractical, so we will focus on the use of random digits for sample selection.

HOW TO CHOOSE A RANDOM SAMPLE

The following is a simple procedure for choosing a random sample of n items from a
finite population of items.

(a) Create the sampling frame: a list of all members of the population with unique
identification numbers for each member. All identification numbers must have
the same number of digits: for instance, if the population contains 75 items, the
identification numbers could be 01,02,...,73.

(b) Read numbers from Table 1, a calculator, or computer. Reject any numbers that
do not correspond to any population member. (For example, if the population
has 75 items that have been assigned identification numbers 01,02, ..., 75, then
skip over the numbers 76, 77 . .., 99, and 00.) Continue until # numbers have
been acquired. (Ignore any repeated occurrence of the same number.)

(c) The population members with the chosen identification numbers constitute the
sample.

The following example illustrates this procedure.

Suppose we are to choose a random sample of size 6 from a population of 75 mem-
bers. Label the population members 01, 02, ..., 75. Use Table 1, a calculator, or a
computer to generate a string of random digits.®* For example, our calculator might
produce the following string:

B3BT179401625345975309822
*Most caloubators generate random numbers expressed as dedimal numbers between 0 and 1; bo convert these o

random digits simply ignore the keading zero and decimal and read the dipits that fllow the decimal. To generate
a long string of random digits, simply call the random number function on the caloulitor repeatedty.
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As we examine two-digit pairs of numbers, we ignore numbers greater than 75 as
well as any pairs that identify a previously chosen individual.

B BT 17 8+ 01 625345 7 539822

Thus, the population members with the following identification numbers will consti-
tute the sample: 1701, 62,53, 45,22, -

Remark In calling the digits in Table 1 or your calculator or computer random dig-
its, we are using the term random loosely. Strictly speaking, random digits are digits
produced by a random process—for example, tossing a 10-sided die. The digits in
Table 1 ar in your calculator or computer are actually pseudorandom digits; they are
generated by a deterministic (although possibly very complex) process that is
designed to produce sequences of digits that mimic randomly generated sequences

Remark If the population is large, then computer software can be quite helpful in
generating a sample. If you need a random sample of size 13 from a population with
2,500 members, have the computer (or calculator) generate 15 random numbers
between 1 and 2,500, (If there are duplicates in the set of 15, then go back and get
more random numbers.)

PRACTICAL CONCERNS WHEN RANDOM SAMPLING

In many cases, obtaining a proper simple random sample is difficult or impossible.
For example, to obtain a random sample of raccoons from Montafia de Oro State
Park. one would first have to create the sampling frame, which provides a unique
number for each raccoon in the park. Then, after generating the list of random num-
bers to identify our sample, one would have to capture those particular raccoons.
This is likely an impossible task.

In practice, when it is possible to obtain a proper random sample, one should.
When a proper random sample is impractical, it is important to take all precautions
to ensure that the subjects in the study may be viewed as if they were obtained by
random sampling from some population. That is, the sample should be comprised of
individuals that all have the same chance of being selected from the population, and
the individuals should be chosen independently. To do this, the first step is to define
the population. The next step is to scrutinize the procedure by which the observa-
tional units are selected and to ask: Could the observations have been chosen at
random? With the raccoon example, this might mean that we first define the popula-
tion of raccoons by creating a sharp geographic boundary based on raccoon habitat
and place traps at randomly chosen locations within the population habitat using a
variety of baits and trap sizes. (We could use random numbers to generate latitude
and longitude coordinates within the population habitat.) Although still less than
ideal (some raccoons might be trap shy, and baby raccoons may not enter the traps
at all), this is certainly better than simply capturing raccoons at one nonrandomly
chosen atypical location (e.g., the campground) within the park. Presumably, the vast
majority of raccoons now have the same chance of being trapped (i.e., equally likely
to be selected), and capturing one raccoon has little or no bearing on the capture of
any other (i.e., they can be considered to be independently chosen). Thus, it seems
reasonable to treat the observations as if they were chosen at random.

NOMNSIMPLE RANDOM SAMPLING METHODS

There are other kinds of sampling that are random in a sense, but that are not simple.
Two common nonsimple random sampling technigues are the random cluster sample
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Figure 1.3.2 Random
cluster sampling. The dots
represent individuals
wilhin the population that
are grouped into clusiers
(circles). Individuals in
entire clusters are sampled
from the population to
form the sample.

Example
1.3.2

Figure 1.3.3 Stratified
random sampling. The dots
represent individuals
wilhin the population that
are grouped into strata.
Individuals from each
stratum are randomly
sampled and combined to
form the sample.

and stratified random sample. To illustrate the concept of a cluster sample, consider a
maodification to the lottery method of generating a simple random sample. With clus-
ter sampling, rather than assigning a unigue ticket (or ID number) for each member
of the population, 1Ds are assigned to entire groups of individuals. As tickets are
drawn from the box, entire groups of individuals are selected for the sample as in the
following example and Figure 1.3.2.

Population

6
8 AES

La Graciosa Thistle The La Graciosa thistle { Cirsium loncholepis) is an endangered
plant native to the Guadalupe Dunes on the central coast of California. In a seed
germination study, 30 plants were randomly chosen from the population of plants in
the Guadalupe Dunes and all seeds from the 30 plants were harvested. The seeds
form a cluster sample from the population of all La Graciosa thistle seeds in Guada-
lupe while the individual plants were used to identify the clusters. -

A stratified random sample is chosen by first dividing the population into
strata—homogeneous collections of individuals. Then, many simple random samples
are taken—one within each stratum—and combined to comprise the sample (see
Figure 1.3.3). The following is an example of a stratified random sample.

Population
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Sand Crabs In a study of parasitism of sand crabs (Emerita analoga), researchers
obtained a stratified random sample of crabs by dividing a beach into 5-meter strips
parallel to the water’s edge. These strips were chosen as the strata because crab
parasite loads may differ systematically based on the distance to the water’s edge.
thus making the parasite load for crabs within each stratum more similar than loads
across strata. The first stratum was the 5-meter strip of beach just under the water’s
edge parallel to the shoreline. The second stratum was the 3-meter strip of beach just
above the shoreline, followed by the third and fourth strata—the next two 5-meter
strips above the shoreline. Within each strata, 25 crabs were randomly sampled,
yielding a total sample size of 100 crabs™* -

The majority of statistical methods discussed in this textbook will assume we are
working with data gathered from a simple random sample. A sample chosen by sim-
ple random sampling is often called a random sample. But note that it is actually the
process of sampling rather than the sample itself that is defined as random: random-
ness is not a property of the particular sample that happens to be chosen.

SAMPLING ERROR

How can we provide a rationale for inference from a limited sample to a much larger
population? The approach of statistical theory is to refer to an idealized model of the
sample—population relationship. In this model, which is called the random sampling
madel, the sample is chosen from the population by random sampling. The model is
represented schematically in Figure 1.3.1

The random sampling model is useful becauvse it provides a basis for answering
the guestion, How representative (of the population) is a sample likely to be? The
madel can be used to determine how much an inference might be influenced by
chance, or “luck of the draw.” More explicitly. a randomly chosen sample will usually
not exactly resemble the population from which it was drawn. The discrepancy
between the sample and the population is called chance error due to sampling or
sampling error. We will see in later chapters how statistical theory derived from the
random sampling model enables us to set limits on the likely amount of error due to
sampling in an experiment. The guantification of such error is a major contribution
that statistical theory has made to scientific thinking.

Because our samples are chosen randomly, there will always be sampling error
present. If we sample nonrandomly, however, we may exacerbate the sampling error
in unpredictable ways such as by introducing sampling bias, which is a systematic
tendency for some individuals of the population to be selected more readily than
others. The following two examples illustrate sampling bias.

Lengths of Fish A biologist plans to study the distribution of body length in a cer-
tain population of fish in the Chesapeake Bay. The sample will be collected using a
fishing net. Smaller fish can more easily slip through the holes in the net. Thus,
smaller fish are less likely to be caught than larger ones, so the sampling procedure
is biased. -

Sizes of Merve Cells A neuroanatomist plans to measure the sizes of individual
nerve cells in cat brain tissue. In examining a tissue specimen, the investigator must
decide which of the hundreds of cells in the specimen should be selected for mea-
surement. Some of the nerve cells are incomplete because the microtome cut through
them when the tissue was sectioned. If the size measurement can be made only on
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complete cells, a bias arises because the smaller cells had a greater chance of being
missed by the microtome blade. -

When the sampling procedure is biased, the sample may not accurately repre-
sent the population, because it is systematically distorted. For instance, in Example
1.2.4 smaller fish will tend to be underrepresented in the sample, so the length of the
fish in the sample will tend to be larger than those in the population.

The following example illustrates a kind of nonrandomness that is different
from bias.

Sucrose in Beet Roots An agronomist plans to sample beet roots from a field in
order to measure their sucrose content. Suppose she were to take all her specimens
from a randomly selected small area of the field. This sampling procedure would not
be biased but would tend to produce too homogeneous a sample, because environ-
mental variation across the field would not be reflected in the sample. [ ]

Example 1.3.6illustrates an important principle that is sometimes overlooked in
the analysis of data: In order to check applicability of the random sampling model,
one needs to ask not only whether the sampling procedure might be biased, but also
whether the sampling procedure will adequately reflect the variability inherent in
the population. Faulty information about variability can distort scientific conclu-
sions just as seriously as bias can.

We now consider some examples where the random sampling model might rea-
sonably be applied.

Fungus Resistance in Corn A certain variety of corn is resistant to fungus disease.
To study the inheritance of this resistance, an agronomist crossed the resistant vari-
ety with a nonresistant variety and measured the degree of resistance in the progeny
plants. The actual progeny in the experiment can be regarded as a random sample
from a conceptual population of all potential progeny of that particular cross. =

When the purpose of a study is to compare two or more experimental condi-
tions, a very narrow definition of the population may be satisfactory, as illustrated in
the next example.

Mitrite Metabolism  Tostudy the conversion of nitrite to nitrate in the blood, research-
ers injected four New Zealand White rabbits with a solution of radioactively labeled
nitrite molecules. Ten minutes after injection, they measured for each rabbit the per-
centage of the nitrite that had been converted to nitrate ™ Although the four animals
were not literally chosen at random from a specified population, it might be reason-
able, nevertheless. to view the measurements of nitrite metabolism as a random sam-
ple from similar measurements made on all New Zealand White rabbits. (This
formulation assumes that age and sex are irrelevant to nitrite metabolism.) [ ]

Treatment of Ulcerative Colitis A medical team conducted a study of two therapies,
A and B, for treatment of ulcerative colitis. All the patients in the study were referral
patients in aclinicin a large city. Each patient was observed for satisfactory “response”
to therapy. In applying the random sampling model, the researchers might want to
make an inference to the population of all ulcerative colitis patients in urban referral
clinics. First, consider inference about the actual probabilities of response; such an
inference would be valid if the probability of response to each therapy is the same at

Example

1.3.10
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all urban referral clinics. However. this assumption might be somewhat questionable,
and the investigators might believe that the population should be defined very nar-
rowly —for instance, as “the type of ulcerative colitis patients who are referred to this
clinic.” Even such a narrow population can be of interest in a comparative study. For
instance. if treatment A is better than treatment B for the narrow population, it might
be reasonable to infer that A would be better than B for a broader population (even
if the actual response probabilities might be different in the broader population). In
fact, it might even be argued that the broad population should include all ulcerative
colitis patients, not merely those in urban referral clinics. -

It often happens in research that, for practical reasons, the population actually
studied is narrower than the population that is of real interest. In order to apply the
kind of rationale illustrated in Example 1.3.9, one must argue that the results in the
narrowly defined population {or, at least, some aspects of those results) can mean-
ingfully be extrapolated to the population of interest. This extrapolation is not a
statistical inference: it must be defended on biological, not statistical, grounds.

In Section 2.8 we will say more about the connection between samples and pop-
ulations as we further develop the concept of statistical inference.

NONSAMPLING ERRORS

In addition to sampling errors, other concerns can arise in statistical studies. A non-
sampling error is an error that is not caused by the sampling method; that is, a non-
sampling error is one that would have arisen even if the researcher had a census of
the entire population. For example, the way in which guestions are worded can
greatly influence how people answer them, as Example 1.3.10 shows.

Abortion Funding In 1991, the U.S. Supreme Court made a controversial ruling
upholding a ban on abortion counseling in federally financed family-planning clinics.
Shortly after the ruling, a sample of 1,000 people were asked, “As you may know, the
ULS. Supreme Court recently ruled that the federal government is not required to use
taxpaver funds for family planning programs to perform, counsel, or refer for abor-
tion as a method of family planning. In general, do you favor or oppose this ruling?”
In the sample, 48% favored the ruling, 48% were opposed, and 4% had no opinion.

A separate opinion poll conducted at nearly the same time, but by a different
polling organization, asked over 1,200 people, “Do you favor or oppose that
Supreme Court decision preventing clinic doctors and medical personnel from dis-
cussing abortion in family-planning clinics that receive federal funds?” In this sam-
ple, 33% favored the decision and 65% opposed it.** The difference in the
percentages favoring the opinion is too large to be attributed to chance error in the
sampling. It seems that the way in which the question was worded had a strong
impact on the respondents. -

Another type of nonsampling error is nonresponse bias, which is bias caused by
persons not responding to some of the questions in a survey or not returning a written
survey. It is common to have only one-third of those receiving a survey in the mail
complete the survey and return it to the researchers. (We consider the people receiv-
ing the survey to be part of the sample, even if some of them don't complete the entire
survey, or even return the survey at all.) If the people who respond are unlike those
who choose not to respond —and this is often the case, since people with strong feel-
ings about an issue tend to complete a questionnaire, while others will ignore it—then
the data collected will not accurately represent the population.
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Example
L.3.11

Example
1.3.12

Exercises 1.3.1-1.3.7

HIV Testing A sample of 949 men were asked if they would submit to an HIV test
of their blood. Of the 782 who agreed to be tested. 8 (102%) were found to be HIV
positive. However, some of the men refused to be tested. The health researchers
conducting the study had access to serum specimens that had been taken earlier
from these 167 men and found that 9 of them (5.4%) were HIV positive” Thus,
those who refused to be tested were much more likely to have HIV than those who
agreed to be tested. An estimate of the HIV rate based only on persons who agree
to be tested is likely to substantially underestimate the true prevalence. -

There are other cases in which an experimenter is faced with the vexing problem
of missing data—that is, observations that were planned but could not be made. In
addition to nonresponse, this can arise because experimental animals or plants die,
because equipment malfunctions, or because human subjects fail to return for a
follow-up observation.

A common approach to the problem of missing data is to simply use the remain-
ing data and ignore the fact that some observations are missing. This approach is
temptingly simple but must be used with extreme caution, because comparisons
based on the remaining data may be seriously biased. For instance. if observations on
some experimental mice are missing because the mice died of cavses related to the
treatment they received, it is obviously not valid to simply compare the mice that
survived. As another example, if patients drop out of a medical study becavse they
think their treatment is not working, then analysis of the remaining patients could
produce a greatly distorted picture.

Naturally, it is best to make every effort to avoid missing data. But if data are
missing. it is crucial that the possible reasons for the omissions be considered in
interpreting and reporting the results.

Data can also be misleading if there is bias in how the data are collected. People
have difficulty remembering the dates on which events happen and they tend to give
unreliable answers if asked a question such as “How many times per week do you
exercise?” They may also be biased as they make observations, as the following
example shows.

Sugar and Hyperactivity Mothers who thought that their young sons were “sugar
sensitive” were randomly divided into two groups. Those in the first group were told
that their sons had been given a large dose of sugar, whereas those in the second
group were told that their sons had been given a placebo. In fact, all the boys had
been given the placebo. Nonetheless, the mothers in the first group rated their sons
to be much more hyglg:ractive during a 23-minute study period than did the mothers
in the second group.™ Neutral measurements found that boys in the first group were
actually a bit less active than those in the second group. Numerous other studies
have failed to find a link between sugar consumption and activity in children, despite
the widespread belief that sugar cavses hyperactive behavior. It seems that the
expectations that these mothers had colored their observations.” -

1.3.1 Ineach of the [ollowing studies, identify which sam-
pling technique best describes the way the data were col-
lected (or could be treated as if they were collected):
simple random sampling. random cluster sampling. or
stratified random sampling. For cluster samples identify
the clusters, and for stratified samples identily the strata,

(a) All 257 leukemia patients from three randomly
chosen pediatric clinics in the United States were
enrolled in a clinical trial for a new drug.

(b) A total of twelve 10-g soil specimens were collected
from random locations on a farm to study physical
and chemical soil profiles.

(c) In a pollution study three 100-ml air specimens were
collected at each of four specific altitudes (100 m,
500 m, 1000 m, 2000 m) for a total of twelve 100-mil
specimens

(d) A total of 20 individual grapes were picked, one from
each of 20 random vines in a vineyard, to evaluate
readiness for harvest.

(e) Twenty-four dogs (eight randomly chosen small
breed, eight randomly chosen medium breed, and
eight randomly chosen large breed) were enrolled in
an experiment (o evaluale a new Lraining program.

1.3.2 For each of the following studies, identily the
source(s) of sampling bias and describe (i) how it might
affect the study conclusions and (ii) how you might aller
the sampling method to avoid the bias.

(a) Eight hundred volunteers were recruited from
nightclubs to enroll in an experiment Lo evaluate a
new treatment for social anxiety.

(b) In a water pollution study, waler specimens were
collected from a stream on 135 rainy days

(c) To study the size (radius) distribution of scrub oaks
(shrubby oak trees). 20 oak trees were selected by
using random latitude/longitude coordinates. 1T the
random coordinate fell within the canopy of a tree,
the tree was selected; if nol, another random location
was penerated.

1.3.3 For each of the following studies, identify the
source(s) of sampling bias and describe (i) how it might
affect the study conclusions and (i) how you might alter
the sampling method to avoid the bias

(a) Tostudy the size distribution of rock cod ( Epinepheius
puscus) off the coast of southeastern Australia,
scientists recorded the lengths and weights for all cod
captured by a commercial fishing vessel on one day
(using standard hook-and-line fishing methods).

(b) A nutritionist is interested in the ealing habits of
college students and observes whal each student who
enters a dining hall between 8:00 AM. and 8:30 A.M.
chooses for breakfast on a Monday morning.

(c) To study how fast an experimental painkiller
relieves headache pain residents of a nursing home
who complain of headaches are given the painkiller
and are later asked how quickly their headaches
subsided.

1.3.4 (A fun activity) Write the digits 1,2, 3,4 in order on

an index card. Bring this card to a busy place (e.g.. dining

hall, library, university union) and ask at least 30 people

Lo look at the card and select one of the digits al random

in their head. Record their responses.

(a) If people can think “randomly,” about what fraction
of the people should respond with the digit 17 27 3747
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(b) Whal fraction of those surveyed responded with the
digit 17 27 37 47

(c) Do the results suggest anything about people’s ability
Lo choose randomly?

1.3.5 Consider a population consisting of 600 individuals
with unique IDs: 001, 002, ..., 600. Use the following
string of random digits to select a simple random sample
of 5 individuals. List the 1Ds of the individuals selected
fior your sample.

TIBI21876442121593T87803547216596851

1.3.6 {Sampling exercise) Refer to the collection of 100
ellipses shown in the accompanying figure, which can be
thought of as representing a natural population of the
mythical organism C. ellipticus. The ellipses have been
given identification numbers 00, 01, . .., 99 for conve-
nignce in sampling. Certain individuals of C. ellipticus are
mutants and have two Lail bristles.

(a) Use your judgment o choose a sample of size 10 from
the population that you think is representative of the
entire population. Note the number of mutants in the
sample

(b} Use random digits (from Table 1 or your calculator or
compauter) o choose a random sample of size 10 from
the population and note the number of mutants in the
sample

1.3.7 {Sampling exercise) Refer to the collection of 100

ellipses.

(a) Use random digits {from Table 1 or your calculator or
computer) to choose a random sample of size 5 from
the population and note the number of mutants in the
sample.

(b) Repeat part (a) nine more times, for a total of 10
samples. (Some of the 10 samples may overlap.)

To facilitate pooling of results from the entire class, report
your resullts in the following format:

Number of Frequency (no. of

mutants Nonmutants samples)

] 5

1 4

2 3

3 2

4 1

3 0
Total: 10
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Chapter

DESCRIPTION OF SAMPLES
AND POPULATIONS

OBJECTIVES

In this chapter we will study
how to describe data. In
particular, we will

* show how frequency
distributions are used to
make bar charts and
histograms.

* compare the mean and
median as measures of
center.

* demonstrate how to
construct and read a
variety of graphics
including dotplots,
boxplots, and
scatterplots.

* compare several
measures of variability
with emphasis on the
standard deviation.

* examine how
transformations of
variables affect
distributions.

* consider the relationship
between populations and
samples.

2.1 Introduction

Statistics is the science of analyzing and learning from data. In this section we intro-
duce some terminology and notation for dealing with data.

VARIABLES

We begin with the concept of a variable. A variable is a characteristic of a person or
a thing that can be assigned a number or a category. For example, blood type (A, B,
AB, O) and age are two variables we might measure on a person.

Blood type is an example of a categorical variable*: A categorical variable is a
variable that records which of several categories a person or thing is in. Examples of
categorical variables are

Blood type of a person: A, B,AB,O
Sex of a fish: male, female

Color of a flower: red, pink, white
Shape of a seed: wrinkled, smooth

Age is an example of a numeric variable, that is, a variable that records the
amount of something. A continuous variable is a numeric variable that is measured
on a continuous scale. Examples of continuous variables are

Weight of a baby
Cholesterol concentration in a blood specimen
Optical density of a solution

A variable such as weight is continuous because, in principle, two weights can be
arbitrarily close together. Some types of numeric variables are not continuous but
fall on a discrete scale, with spaces between the possible values A discrete variable
is a numeric variable for which we can list the possible values. For example, the num-
ber of eggs in a bird’s nest is a discrete variable because only the values 0,1,2,3, ...,
are possible. Other examples of discrete variables are

Number of bacteria colonies in a petri dish
Number of cancerous lymph nodes detected in a patient
Length of a DNA segment in basepairs

*For some categorical variables, the categories can be arrayed in 2 meaningful rank order. Such 4 variable is said
to be ordinal. For example, the response of a patient to therapy might be none, partial, or complete.
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The distinction between continuous and discrete variables is not a rigid one. After
all, physical measurements are always rounded off. We may measure the weight of a
steer to the nearest kilogram, of a rat to the nearest gram, or of an insect to the near-
est milligram. The scale of the actual measurements is always discrete, strictly speak-
ing. The continuous scale can be thought of as an approximation to the actual scale
of measurement.

OBSERVATIONAL UNITS

When we collect a sample of n persons or things and measure one or more variables
on them, we call these persons or things ohservational units or cases. The following
are some examples of samples.

Sample Variahle Ohservational unit
150 babies born in a cerlain hospital Birthweight (kg) A baby
73 Cecropia moths caught in a trap Sex A moth
&1 plants that are a progeny of a single Flower color A plant

parental cross
Bacterial colonies in each of six petri dishes  Number of colonies A petri dish

NOTATION FOR VARIABLES AND OBSERVATIONS

We will adopt a notational convention to distinguish between a variable and an
observed value of that variable. We will denote variables by uppercase letters such as
Y. We will denote the observations themselves (that is. the data) by lowercase letters
such as y. Thus, we distinguish, for example, between ¥ = birthweight (the variable)
and y = 7.9 Ib (the observation). This distinction will be helpful in explaining some

fundamental ideas concerning variability.

Exercises 2.1.1-2.1.5

For each of the following settings in Exercises 2.1.1-2.1.5,
(1) identify the variable(s) in the study, (i) for each
variable tell the type of variable {e.g.. categorical and
ordinal, discrete, etc.), (iii) identify the observational unit
(the thing sampled). and (iv) delermine the sample size.

2.1.1

(a) A paleontologist measured the width (in mm) of the
last upper molar in 36 specimens of the extinct
mammal Acropithecus rigidus.

(b) The birthweight, date of birth, and the mother's race
were recorded for each of 65 babies.

2.1.2

(a) A physician measured the height and weight of cach
of 37 children.

(b) During a blood drve, a blood bank offered (o check
the cholesterol of anyone who donated blood. A total
of 129 persons donated blood. For each of them, the
blood type and cholesterol levels were recorded.

1.1.3

(a) A hiologist measured the number of leaves on each of
25 planis

(b) A physician recorded the number of seizures thal
each of 20 patients with severe epilepsy had during an
eight-week period.

2.1.4

(a) A conservationist recorded the weather (clear, partly
cloudy, cloudy, rainy) and number of cars parked at
noon at a trailhead on each of 15 days.

(b) An enologist measured the pH and residual sugar
content (1) of seven barrels of wine.

2.1.5

(a) A biologist measured the body mass (g) and sex of
each of 123 blue jays

(b) A biologist measured the lifespan (in days), the thorax
length (in mm}), and the percent of lime spent sleeping
fior each of 125 fruit Mies.

Example
2.2.1

Figure 2.2.1 Bar chart of
color of 182 poinsettias

Example
2.2.2
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2.2 Frequency Distributions

A first step toward understanding a set of data on a given variable is to explore the data
and describe the data in summary form. In this chapter we discuss three mutually com-
plementary aspects of data description: frequency distributions, measures of center, and
measures of dispersion. These tell us about the shape, center, and spread of the data.

A frequency distribution is simply a display of the frequency, or number of
occurrences, of each value in the data set. The information can be presented in tabu-
lar form or, more vividly, with a graph. A bar chart is a graph of categorical data
showing the number of observations in each category. Here are two examples of
frequency distributions for categorical data.

Color of Poinsettias Poinsettias can be red, pink, or white. In one investigation of
the hereditary mechanism controlling the color, 182 progeny of a certain parental
cross were categorized by color.! The bar graph in Figure 2.2.1 is a visual display of

the results given in Table 2.2.1. -
100 —
m —
. Table 2.2.1 Color of 182 poinsettias
2 6
il Frequency
E 10 Color (number of plants)
Red 108
20 Pink 4
o While 40
Red Pink White
Calor Total 182

School Bags and Meck Pain  Physiologists in Australia were concerned that carrying a
school bag loaded with heavy books was a cause of neck pain in adolescents, so they
asked a sample of 585 teenage girls how often they get neck pain when carrying their
school bag (never, almost never. sometimes, often, always). A summary of the results
reported to them is given in Table 2.2.2 and displayed as a bar graph in Figure 2.2.2(a) 2
As the variable incidence is an ordinal categorical variable, our tables and graphs
should respect the natural ordering. Figure 2.2.2(b) shows the same data but with the
categories in alphabetical order (a default setting for much software ), which obscures

the information in the data. -
carrying a school bag
Frequency
Incidence (number of girls)
Mever 179
Almaost never 159
Somelimes 173
Often 64
Always 10
Total 385
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Figure 2.2.2 (a) Bar chart
of incidence of neck pain
reporied by 585 adolescenls;
(b) the same data bul with
the categories in
alphabetical order

Samples and Populations

1500
& 100
E
=
£ 50
0
MNever Almost Sometimes Often Always
never
Pain incidence
(@)
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w100
=
2
-
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]
Almost Always Mewver Often Sometimes
never
Pain incidence
(b)

A dotplot is a simple graph that can be used to show the distribution of a numeric
variable when the sample size is small. To make a dotplot, we draw a number line
covering the range of the data and then put a dot above the number line for each
observation, as the following example shows.

Example Infant Mortality Table 2.2.3 shows the infant mortality rate (infant deaths per 1,000
2.2.3 live births) in each of seven countries in South Asia, as of 2013 The distribution is
shown in Figure 2.2.3. -
Table 2.2.3 Infant mortality in
seven South Asian
countries
Infant mortality
rale (deaths per
Country 1000 live births)
Bangladesh 473
Bhutan 400
India 446
Maldives 255 + . P .
T T T T T T 1
Nepal 418 0 10 2 30 10 50 0
Pakistan 504 Infant mortality rate
Sri Lanka 9.2 Figure 2.2.3 Dwlplot of infant morlalily in seven South Asian countries

Example
1.1.4
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When two or more observations take on the same value, we stack the dots in a
dotplot on top of each other. This gives an effect similar to the effect of the barsin a
bar chart. If we create bars in place of the stacks of dots, we then have a histogram.
A histogram is like a bar chart. except that a histogram displays a numeric variable,
which means that there is a natural order and scale for the variable. In a bar chart the
amount of space between the bars (if any) is arbitrary, since the data being displayed
are categorical. In a histogram the scale of the variable determines the placement of
the bars The following example shows a dotplot and a histogram for a frequency
distribution.

Litter Size of Sows A group of thirty-six 2-year-old sows of the same breed
{3 Duroc, ; Yorkshire) were bred to Yorkshire boars. The number of piglets surviving
to 21 days of age was recorded for each sow.” The results are given in Table 2.2.4 and

displayed as a dotplot in Figure 2.2.4 and as a histogram in Figure 2.2.5. m
T-bh 2.2.4 Number of surviving piglets of 36 sows l i
Frequeny R P
Number of piglets (number of sows) _{ J-' !s Iln llz lld ]lﬁ
5 1 Number of surviving piglets
f 0 Figure 2.2.4 Doltplol of number of surviving
7 2 piglets of 36 sows
& 3 —
9 3 &= —
10 9
11 8 6
12 5 g
13 3 747
14 2 = 5
Total 3 r
o _! I I
5 & 7 & 9 W0 11 12 13 14 15
MNumber of surviving piglets
Figure 2.2.5 Histogram of number of surviving
piglels of 36 sows
RELATIVE FREQUENCY
The frequency scale is often replaced by a relative frequency scale:
. Frequency
Relative frequency = —

The relative frequency scale is useful if several data sets of different sizes (n's) are to
be displayed together for comparison. As another option. a relative frequency can be
expressed as a percentage frequency. The shape of the display is not affected by the
choice of frequency scale, as the following example shows.
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Example
2.2.5

Figure 2.2.6 Bar chart of
poinsettia colors on three
scales:

(a) Frequency

() Relative frequency

(c) Percent frequency

Example
2.2.6

Color of Poinsettias  The poinsettia color distribution of Example 2.2.1 is expressed
as frequency, relative frequency, and percent frequency in Table 2.2.5 and Figure
226 =

Table 2.2.5 Color of 182 poinsettias

Relative Percent
Color Frequency frequency  [requency
Red 108 59 59
Pink 34 19 19
White 40 22 2
Total 182 Loo 100
(@) by ch
120
0.6 =7 60% -
100
m -
04 1 407 —
&0 -
02 4 20m
0
o= 0= o Red Pink White
Color

GROUPED FREQUENCY DISTRIBUTIONS

In the preceding examples, simple ungrouped frequency distributions provided con-
cise summaries of the data. For many data sets, it is necessary to group the data in
order to condense the information adequately. (This is usually the case with continu-
ous variables ) The following example shows a grouped frequency distribution.

Serum CK  Creatine phosphokinase (CK) is an enzyme related to muscle and brain
function. As part of a study to determine the natural variation in CK concentration,
blood was drawn from 36 male volunteers. Their serum concentrations of CK
(measured in U/} are given in Table 2.2.6.° Table 2.2.7 shows these data grouped into
classes. For instance, the frequency of the class [20,40) (all values in the interval
20 = y < 40y is 1, which means that one CK value fell in this range. The grouped fre-
quency distribution is displayed as a histogram in Figure 2.2.7 [ ]

Table 2.2.6 Serum CK values for 36 men

121 &2 100
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Table 2.2.7 Frequency distribution of serum
CK values for 36 men

151 68 58

Frequency (number
zi 1:?' 12: 2:_:{1' 1:; 13; Serum CK (LU1) of men)
20,40 1
19 14 110 113 118 203 :441 m; B
f2 83 &7 93 2 110 I EA].EN]) ;
5 11 70 48 05 42 ’
[80,100) 8
(100,120} 8
i [120,140) 3
. ] [140,1600) 2
] [160,180) 1
E (180,200} 0
34—
g [200,220) 2
= . Total 6
0 T T 11

20 1] 100

140 180 20

CK concentration (U1}

Figure 2.2.7 Histogram of serum CK

concentrations for 36 men

Figure 2.2.8 Shape
features of the CK
distribution

A grouped frequency distribution should display the essential features of the
data. For instance, the histogram of Figure 2.2.7 shows that the average CK value is
about 100 U/, with the majority of the values falling between 60 and 140 U/ In addi-
tion, the histogram shows the shape of the distribution. Note that the CK values are
piled up around a central peak. or mode. On either side of this mode, the frequencies
decline and vltimately form the tails of the distribution. These shape features are
labeled in Figure 2.2.8. The CK distribution is not symmetric but is a bit skewed to
the right, which means that the right tail is more stretched out than the left.*

Mode

/

Right tail

Left tail

X -
[ ] ]

#To help remember which tail of a skewed distribution & the longer (ail, think of skew as stretch. Which side of
the distribution & more stretched away from the center? A distribution that is skewed to the right 5 one in which
thi right tail stretches out more than the lefl
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Example

2.2.T

Figure 2.2.9 Heights of
students, using 7 classes
(class width = 3)

When making a histogram, we need to decide how many classes to have and how
wide the classes should be. If we use computer software to generate a histogram, the
program will choose the number of classes and the class width for us, but most soft-
ware allows the user to change the number of classes and to specify the class width.
If a data set is large and is quite spread out, it is a good idea to look at more than one
histogram of the data, as is done in Example 2.2.7

Heights of Students A sample of 510 college students were asked how tall they
were. Note that they were not measured; rather, they just reported their heights®
Figure 2.2.9 shows the distribution of the self-reported values, using 7 classes and a
class width of 3 (inches). By using only 7 classes, the distribution appears to be rea-

sonably symmetric, with a single peak around 66 inches.

150

Frequency
=

E-

0= T T T T
53 &0 &5 70 75 80

Height (inches)

Figure 2.2.10 shows the height data, but in a histogram that uses 18 classes and a class
width of 11. This view of the data shows two modes—one for women and one for men.

Figure 2.2.11 shows the height data again. this time using 37 classes, each of width
0.5. Using such a large number of classes makes the distribution look jagged. In this
case, we see an alternating pattern between classes with lots of observations and
classes with few observations. In the middle of the distribution we see that there were
many students who reported a height of 63 inches, few who reported a height of 63.5
inches, many who reported a height of 64 inches, and so on. It seems that most stu-

dents round off to the nearest inch! -
50
&
40
z E
g;iﬂ S 30
= g
10
0 I | T T | 0 of | | lnﬂ-n |
: &0 £ o 73 & 55 60 65 0 75 a0

Height {inches)
Figure 2.2.10 Heights of studenis, using 18 classes

(class width = 1.1)

Height (inches)

Figure 2.2.11 Heights of students, using 37 classes
(class width = 0.5)

INTERPRETING AREAS IN A HISTOGRAM

A histogram can be looked at in two ways. The tops of the bars sketch out the
shape of the distribution. But the areas within the bars also have a meaning. The
area of each bar is proportional to the corresponding frequency. Consequently, the

Figure 2.2.12 Histogram
of CK distribution. The
shaded area is 42% of the
total area and represents
42%, ol the observations

Figure 2.2.13
Approximation of a
histogram by a smooth
curve
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area of one or several bars can be interpreted as expressing the number of obser-
vations in the classes represented by the bars. For example. Figure 2.2.12 shows a
histogram of the CK distribution of Example 2.2.6. The shaded area is 42% of the
total area in all the bars. Accordingly, 42% of the CK values are in the correspond-
ing classes: that is, 15 of 36 or 42% of the values are between 60 U/T and 100 U/L*
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p. ] L] 100 JE ] 180 20

CK concentration (L)1)

The area interpretation of histograms is a simple but important idea. In our later
work with distributions we will find the idea to be indispensable.

SHAPES OF DISTRIBUTIONS

When discussing a set of data, we want to describe the shape, center, and spread of
the distribution. In this section we concentrate on the shapes of frequency distribu-
tions and illustrate some of the diversity of distributions encountered in the life sci-
ences. The shape of a distribution can be indicated by a smooth curve that
approximates the histogram, as shown in Figure 2.2.13.

Some distributional shapes are shown in Figure 2.2.14. A common shape for
biological data is unimodal (has one mode) and is somewhat skewed to the right. as
in (c). Approximately bell-shaped distributions, as in (a), also occur. Sometimes a
distribution is symmetric but differs from a bell in having long tails; an exaggerated
version is shown in (b). Left-skewed (d) and exponential (¢) shapes are less com-
mon. Bimodality (two modes), as in (f). can indicate the existence of two distinct
subgroups of observational units.

Motice that the shape characteristics we are emphasizing, such as number of modes
and degree of symmetry, are scale freg; that is, they are not affected by the arbitrary choices
of vertical and horizontal scale in plotting the distribution. By contrast, a characteristic
such as whether the distribution appears short and fat, or tall and skinny, is affected by
how the distribution is plotted and so is not an inherent feature of the biclogical variable.

*Srictly speaking, between 60 UV and 99 UL inclusive.
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The following three examples illustrate biological frequency distributions with
various shapes. In the first example, the shape provides evidence that the distribu-
tion is in fact biological rather than nonbiological.

A

(a) Symmetric, bell-shaped

AN

(b} Symmetric, not bell-shaped

N\

(c) Skewad to the right

(d) Skewed o the left

2N

{e) Exponential (f) Bimodal

Example
2.2.8

Figure 2.2.15 Sizes of
microfossils

Figure 2.2.14 Shapes of distributions

Microfessils In 1977, paleontologists discovered microscopic fossil structures,

resembling algae, in rocks 3.3 billion years old. A central question was whether these
structures were biological in origin. One line of argument focused on their size dis-
tribution, which is shown in Figure 2.2.15. This distribution, with its unimodal and
rather symmetric shape, resembles that of known microbial populations, but not that
of known nonbiological structures,” =

u

20

10

0 T T 1
1 2 3 4

Diameter (pm)

Fequency

Example
2.2.9

Figure 2.2.16 Time
intervals between electrical
discharges in rat muscle
cells

Example
2.2.10

Figure 2.2.17 Brain
weights
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Cell Firing Times A neurobiologist observed discharges from rat muscle cells grown
in culture together with nerve cells. The time intervals between 308 successive dis-
charges were distributed as shown in Figure 2.2.16. Note the exponential shape of
the distribution.® =

Frequency
= B8 B

T I 1
5 10 15 p. 1}

Time (seconds)

=

Brain Weight In 1888, P Topinard published data on the brain weights of hun-
dreds of French men and women. The data for males and females are shown in
Figure 2.2.17(a) and (b). The male distribution is fairly symmetric and bell shaped:
the female distribution is somewhat skewed to the right. Part (c) of the figure
shows the brain weight distribution for males and females combined. This com-
bined distribution is slightly bimodal g m
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Example
2.2.11

Figure 2.2.18 Weights of
princess bean seeds: (a)
from an open-bred
population; (b) from an
inbred line

Example
2.2.12

Figure 2.2.19 Distribution
of serum ALT
measurements (a) for 129
volunteers; (b) for 109
assays of the same
specimen

SOURCES OF VARIATION

In interpreting biological data, it is helpful to be aware of sources of variability. The
variation among observations in a data set often reflects the combined effects of
several underlying factors. The following two examples illustrate such situations.

Weights of Seeds In a classic experiment to distinguish environmental from
genetic influence, a geneticist weighed seeds of the princess bean Phaseolus valgaris.
Figure 2.2.18 shows the weight distributions of {a) 5,494 seeds from a commercial
seed lot, and (b) 712 seeds from a highly inbred line that was derived from a single
seed from the original lot. The variability in {a) is due to both environmental and
genetic factors:in (b), because the plants are nearly genelicalw identical, the varia-
tion in weights is due largely to environmental influence. " Thus, there is less

variability in the inbred line. -
1060 200
& fry
- 3
gz e
I &
0 | T | T 0 1 | — 1
1} 0 400 &00 BOO 0 200 400 00 BOO
Weight {mg) Weight (mg)

() ()

Serum ALT  Alanine aminotransferase (ALT) is an enzyme found in most human
tissues. Part (a) of Figure 2.2.19 shows the serum ALT concentrations for
129 adult volunteers. The following are potential sources of variability among the
measurements:

1. Interindividual
(a) Genetic
(b) Environmental
2. Intraindividual
(a) Biological: changes over time
(b) Analytical: imprecision in assay

The effect of the last source —analytical variation—can be seen in part (b) of
Figure 2.2.19, which shows the frequency distribution of 109 assays of the same

specimen of serum; the figure shows that the ALT assay is fairly imprecise.!! -
50
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Exercises 2.2.1-2.2.9
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2.2.1 A paleontologist measured the width (in mm) of
the last upper molar in 36 specimens of the extinct
mammal Acropithecus rigidus. The resulls were as
follows:'?

6.1 3T .0 6.3 6.0 57
6.1 b 59 .1 6.2 .0
6.3 6.2 6.1 6.2 6.0 57
6.2 b 57 6.3 6.2 57
6.2 .l 59 6.5 54 6.7
59 .l 59 39 6.1 6.1

(a) Construct a frequency distribution and display it as a
table and as a histogram.

() Describe the shape of the distribution.

2.2.2 In a study of schizophrenia, researchers measured
the activity of the enzyme monoamine oxidase (MAO) in
the blood platelets of 18 patients. The resulls (expressed
as nmoles bcnz;’la]dchyde product per 108 platelels)
were as follows:!

6.8 B4 BT 119 142 188
9.9 4.1 LUV b 52 7.8
T8 74 T3 106 145 107

Construct a dotplot of the data.

2.2.3 Consider the data presented in Exercise 2.2.2.
Construct a frequency distribution and display il as a
table and as a histogram.

2.2.4 A dendritic tree is a branched structure that ema-
nates from the body of a nerve cell. As part of a study of
brain development, 36 nerve cells were laken [rom the
brains of newborn guinea pigs The investigators counted
the number of dendritic branch segments emanating from
each nerve cell. The numbers were as follows:

I3 30 3 28 31 29 M 3 30
27 21 43 51 35 31 49 35 24
26 20 21 20 37 27 28 33 33
23 37 27T 40 48 41 20 30 57

Construct a dotplot of the data.

2.2.5 Consider the data presented in Exercise 2.2.4.
Construct a frequency distribution and display il as a
table and as a histogram.

2.2.6 The total amount of protein produced by a dairy
cow can be estimated from periodic testing of her milk.
The following are the total annual protein production val-
ues (Ib) for twenty-gight 2-year-old Holstein cows. Diet,
milking procedures, and other conditions were the same
for all the animals ™

425 481 477 434 4100 397 438
545 528 496 502 529 500 465
539 408 513 496 477 445 346
471 495 445 565 490 508 426

Construct a frequency distribution and display it as a
table and as a histogram.

2.2.7 For each of 31 healthy dogs, a veterinarian mea-
sured the glucose concentration in the anterior chamber
of the right eye and also in the blood serum. The follow-
ing data are the anterior chamber glucose measurements,
expressed as a percentage of the blood glucose.”

Bl B8 93 93 W Ta T3 B4
78 B4 81 R 8O Bl 96 B2
™70 B B8 B0 TO 13175
B8 102 115 89 82 79 106

Construct a frequency distribution and display it as a
table and as a histogram.

2.2.8 Agronomists measured the vield of a variety of

hybrid corn in 16 locations in Illinois. The data, in bushels
per acre, were'’

241 230 w7 219 268 167

204 14 178 158 153

187 181 196 149 183
(a) Construct a dotplot of the data.
(b) Diescribe the shape of the distribution.
2.2.9 (Computer problem) Trypanosomes are parasiles
that cause disease in humans and animals In an early
study of trypanosome morphology, researchers measured
the lengths of 500 individual trypanosomes Laken from
the blood of a rat. The results are summarized in the
accompanying frequency distribution.'®

Frequency Frequency

Length {number of Length (mumber of

(pm) individuals) (pm) individuals)
15 1 27 36
16 3 ] 41
17 21 9 48
£ 27 an ]
19 23 31 43
20 15 32 27
21 0 33 23
22 15 34 0]
23 19 33 4
24 21 3
25 34 37 1
26 4 38 1
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(a) Construct a histogram of the data using 24 classes () Construct a histogram of the data using only 6 classes.

(Le., one class for each integer length, from 15 to 38).

Discuss how this histogram gives a gualitatively

{b) What feature of the histogram suggesls Lhe different impression than the histogram from part (a).
interpretation that the 500 individuals are a mixture

of two distinct Lypes?

Example
2.3.1

Figure 2.3.1 Plot of the
lamb weight-gain data

2.3 Descriptive Statistics: Measures of Center

For categorical data. the frequency distribution provides a concise and complete
summary of a sample. For numeric variables, the frequency distribution can usefully
be supplemented by a few numerical measures. A numerical measure calculated
from sample data is called a statistic.® Descriptive statistics are statistics that describe
aset of data. Usually the descriptive statistics for a sample are calculated in order to
provide information about a population of interest (see Section 2.8). In this section
we discuss measures of the center of the data. There are several different ways to
define the “center” or “typical value™ of the observations in a sample. We will con-
sider the two most widely used measures of center: the median and the mean.

THE MEDIAN

Perhaps the simplest measure of the center of a data set is the sample median. The
sample median is the value that most nearly lies in the middle of the sample—it is
the data value that splits the ordered data into two equal halves. To find the median,
first arrange the observations in increasing order. In the array of ordered observa-
tions, the median is the middle value (if n is odd) or midway between the two middle
values (if n is even). We denote the median of the sample by the symbol ¥ (read
“y-tilde™). Example 2.3.1 illustrates these definitions.

Weight Gain of Lambs The following are the 2-week weight gains (Ib) of six young
lambs of the same breed that had been raised on the same diet:"

1m 13 19 2 10 1
The ordered observations are
1 2 10 11 13 19

The median weight gain is

10+ 11 _1051b

The median divides the sorted data into two equal pieces (the same number of
observations fall above and below the median). Figure 2.3.1 shows a dotplot of the

lamb weight-gain data, along with the location of ¥. [ ]
& & & W * L3
[ I T I 1
i} 5 lﬂT 15 20
¥
Weight gain (1b)

*Numerical measures based on the entire population are called parameters, which are discussed in greater detail
in Section 18,

Example

2.3.2

Example

2.3.3
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Weight Gain of Lambs Suppose the sample contained one more lamb, with the
seven ranked observations as follows:
12 10 10 11 13 19

For this sample, the median weight gain is

¥y=101b
(Notice that in this example there are two lambs whose weight gain is equal to the
median. The fourth observation—the second 10—is the median.) [ ]

A more formal way to define the median is in terms of rank position in the
ordered array (counting the smallest observation as rank 1, the next as 2, and so on).
The rank position of the median is equal to

(05)m + 1)

Thus, if n = 7, we calculate (0.5)(n + 1) = 4. so that the median is the fourth larg-
est observation: if n = 6, we have (0.5)(n + 1) = 3.5, so that the median is midway
between the third and fourth largest observations. Note that the formula (0.5)(n + 1)
does not give the median, it gives the location of the median within the ordered list
of the data.

THE MEAN

The most familiar measure of center is the ordinary average or mean (sometimes called
the arithmetic mean). The mean of a sample (or “the sample mean™) is the sum of the
observations divided by the number of observations. If we denote a variable by ¥, then
we denote the observations in a sample by ¥y, ¥, .., ¥q and we denote the mean of the
sample by the symbol ¥ (read “y-bar”™). Example 2.3.3 illustrates this notation.

Weight Gain of Lambs The following are the data from Example 23.1:
11 13 19 2 10 1

Here y; = 11,y; = 13, and so on, and y; = 1. The sum of the observations is
1M +13+ --- +1 =536 We can write this using “summation notation” as
E?:]}'j = 36. The symbol E:‘:l_‘l?.' means to “add vp the y’s” Thus, when
n=6% =W +Y¥+¥+ ¥+ ¥+ ¥ In this case we get i,y =
M+13+19+2+10+1=56

The mean weight gain of the six lambs in this sample is

_ M +13+19+2+10+1
y= 6
6

6
=9331b

n

THE SAMPLE MEAN  The general definition of the sample mean is

EJ’:‘
? _ i=1

n

where the y;'s are the observations in the sample and n is the sample size (that
is, the number of ¥;'s).
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[ | 7
. s » D Tm 15 2
15
gl ¥
0 : N Weight gain {Ib}
Weight 22 w® Figure 2.3.3 Plot of the lamb weight-gain
Figure 2.3.2 Plol of the lamb weighl-gain data data with the sample mean as the fulcrum of

with the sample median as the fulcrum of a balance

Example
1.3.4

Example
1.3.5

While the median divides the data into two equal pieces (Le., the same number
of observations above and below), the mean is the “point of balance™ of the data.
Figure 2.3.2 shows a dotplot of the lamb weight-gain data, along with the location of
¥.1f the data points were children on a weightless seesaw, then the seesaw would tip
if the fulcrum were placed at ¥ despite there being the same number of children on
either side. The children on the left side (below ¥) tend to sit further from ¥ than the
children on the right (above ¥) causing the seesaw to tip. However, if the fulcrum
were placed at ¥, the seesaw would exactly balance as in Figure 2.3.3. [ ]

The difference between a data point and the mean is called a deviation:
deviation; = y; — ¥. The mean has the property that the sum of the deviations from
the mean is zero—that is, £ (y; — ¥) = 0.1n this sense, the mean is a center of the
distribution—the positive deviations balance the negative deviations.

Weight Gain of Lambs  For the lamb weight-gain data, the deviations are as follows:
deviation; =y —¥=11-933 = 147
deviation; = y; —F =13 - 933 = 347
deviation; = y; — ¥ =19 - 933 = 047
deviationy = ys —F= 2-933=-733
deviations = ys — ¥ =10 — 933 = 047
deviation; = y; —F= 1 -—933 = —833
The sum of the deviations is . (y; — ¥) = 1.67 + 3.67 + 967 — 733 + 067 —
833 =0 -

Robustness A statistic is said to be robust if the value of the statistic is relatively unaf-
fected by changes in a small portion of the data, even if the changes are dramatic ones.
The median is a robust statistic, but the mean is not robust because it can be greatly
shifted by changes in even one observation. Example 2.3.5 illustrates this behavior.

Weight Gain of Lambs Recall that for the lamb weight-gain data
1.2 10 11 13 19

we found
¥=1933andy = 105

Suppose now that the observation 19 is changed. How would the mean and median
be affected? You can visualize the effect by imagining moving the right-hand dot in
Figure 2.3.3. Clearly the mean could change a great deal; the median would not be
affected. For instance,

Table 2.3.1 Fifty-one cricket singing times (min)

43
241
6.6
73
4.0
26
4.0

ERY
04
6.2
16
[
0.2
27

Example

174
56
2.0
38
12
0.7
16

2.3.6

23
37
&
0.5
43
115
35
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If the 19 is changed to 14, the mean becomes 8.3 and the median does not change.
If the 19 is changed to 29, the mean becomes 11 and the median does not change.

These changes are not wild ones: that is, the changed samples might well have arisen
from the same feeding experiment. Of course, a huge change, such as changing the
19 to 100, would shift the mean very drastically. Note that it would not shift the
median at all. -

VISUALIZING THE MEAN AND MEDIAN

We can visualize the mean and the median in relation to the histogram of a distribu-
tion. The median divides the area under the histogram roughly in half because it
divides the observations roughly in half [“roughly” because some observations may
be tied at the median. as in Example 2.3.3(b). and because the observations within
each class are not uniformly distributed across the class]. The mean can be visualized
as the point of balance of the histogram: If the histogram were made out of plywood,
it would balance if supported at the mean.

If the frequency distribution is symmetric, the mean and the median are equal
and fall in the center of the distribution. If the frequency distribution is skewed. both
measures are pulled toward the longer tail, but the mean is usually pulled farther
than the median. The effect of skewness is illustrated by the following example.

Cricket Singing Times Male Mormon crickets (Anabrus simplex) sing to attract
mates. A field researcher measured the duration of 51 unsuccessful songs—that is,
the time until the singing male gave up and left his perch. 2 Figure 234 shows the
histogram of the 51 singing times. Table 2.3.1 gives the raw data. The median is
3.7 min and the mean is 43 min. The discrepancy between these measures is due
largely to the long straggly tail of the distribution: the few unusually long singing
times influence the mean, but not the median. ™

08 15 07 37| & -

52 30 42 35| 2

20 37 47 & 5

07 45 22

17 18 14 —— —1
500 12 141 " i ! 0

28 07 86 FF Singing lime {min)

Figure 2.3.4 Histogram of cricket singing limes

MEAN VERSUS MEDIAN

Both the mean and the median are usually reasonable measures of the center of a
data set. The mean is related to the sum; for example, if the mean weight gain of
100 lambs is 9 b, then the total weight gain is 900 Ib, and this total may be of primary
interest since it translates more or less directly into profit for the farmer. In some
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situations the mean makes very little sense. Suppose, for example, that the observa-
tions are survival times of cancer patients on a certain treatment protocol, and that
maost patients survive less than 1 year, while a few respond well and survive for 5 or
even 10 years. In this case, the mean survival time might be greater than the survival
time of most patients; the median would more nearly represent the experience of a
“typical” patient. Note also that the mean survival time cannot be computed until
the last patient has died:; the median does not share this disadvantage. Situations in
which the median can readily be computed, but the mean cannot, are not uncommaon
in bioassay. survival, and toxicity studies.

We have noted that the median is more robust than the mean. If a data set con-
tains a few observations rather distant from the main body of the data—that is, a
long, straggly tail—then the mean may be unduly influenced by these few unusual
observations. Thus, the “tail” may “wag the dog” —an undesirable situation. In such
cases, the robustness of the median may be advantageous.

An advantage of the mean is that in some circumstances it is more efficient than
the median. Efficiency is a technical notion in statistical theory: roughly speaking, a
method is efficient if it takes full advantage of all the information in the data. Partly
because of its efficiency, the mean has played a major role in classical methods in

2.3.11 The accompanying table gives the litter sire
(number of piglets surviving to 21 days) for each of 36
s0Ws (as in Example 2.2.4). Determine the median litter
size, ( Hint: Note thal there is one 3, bul there are two 75,
Lhree 8s, elc.)

2.3.13 Here is a histogram.

Section 2.4 Boxplots
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statistics.

Exercises 2.3.1-2.3.14

2.3.1 Invent a sample of size 5 for which the sample
mean is 20 and not all the observations are equal.

2.3.2 Invent a sample of size 5 for which the sample
mean is 20 and the sample median is 15.

2.3.3 A researcher applied the carcinogenic (cancer-
causing) compound benzo(a)jpyrene to the skin of five
mice, and measured the concentration in the liver Lis-
sue after 48 hours. The results (nmol’gm) were as
follows:”!

63 59 7 69 359
Dietermine the mean and the median.

2.3.4 Consider the data from Exercise 2.3.3. Do the cal-
culated mean and median support the claim that, in gen-
eral, liver tissue concentration after 48 hours differs from
6.3 nmoligm?

2.3.5 Six men with high serum cholesterol participated in

astudy to evaluale the effects of diet on cholesterol level.

Al the beginning of the sludﬁlheir serum cholesterol lev-
els (mg/dl) were as [ollows:

366 327 274 292 174 230
Dietermine the mean and the median.
2.3.6 Consider the data from Exercise 2.3.5. Suppose an
additional observation equal to 400 were added Lo the

sample. What would be the mean and the median of the
seven observations?

2.3.7 The weighl gains of beel sleers were measured over
a 140-day test period. The average daily gains (Ibiday) of
9 sleers on the same diel were as [ollows:

389 351 397 331 321

336 367 324 37

Determine the mean and median.

2.3.8 Consider the data from Exercise 2.3.7 Are the cal-
culated mean and median consistent with the claim that,
in general, steers gain 3.5 Ihday? Are they consistent with
aclaim of 4.0 [hvday?

2.3.9 Consider the data from Exercise 2.3.7 Suppose an
additional observation equal to 2.46 were added to the
sample. What would be the mean and the median of the
10 observations?

2.3.10 As part of a classic experiment on mutations, 10
aliquots of identical size were laken from the same cul-
ture of the bacterium E. cofi. For each aliquot, the number
of bacteria resistant Lo a certain virus was delermined.
The resulls were as follows:=>*

4 15 13 21 15
4 26 16 W0 13
(a) Construct a frequency distribution of these data and
display it as a histogram.

(b) Determine the mean and the median of the data and
mark their locations on the histogram.

Number of piglets Frequency (Number of sows)
5 1
b 0 [ I | | | | |
7 2 1] 0 40 50 &l 70 80 a0
8 3 (a) Estimate the median of the distribution.
9 3 (b) Estimate the mean of the distribution.
1o ! 2.3.14 Here is a histogram.
11 B
12 5
13 3
14 2
Total 36
2.3.12 Consider the data from Exercise 2.3.11. Delermine f f 1 1 i 1 1
the mean of the 36 observations. { Hint: Note that there is 0 n 0 W 40 50 &0

one 5 bul there are two T's, three 8's, etc. Thus,

SH=5+T+T+8+8+8+ -
+ e

)

=5+ 2(7) + 3(8)  (a) Eslimale the median of the distribution.
(b) Estimate the mean of the distribution.

2.4 Boxplots

One of the most efficient graphics, both for examining a single distribution and for
making comparisons between distributions, is known as a boxplot, which is the topic
of this section. Before discussing boxplots, however, we need to discuss quartiles.

QUARTILES AND THE INTERQUARTILE RANGE

The median of a distribution splits the distribution into two parts, a lower part and
an upper part. The quartiles of a distribution divide each of these parts in half,
thereby dividing the distribution into four quarters. The first gquartile, denoted by @,
is the median of the data values in the lower half of the data set. The third quartile,
denoted by 05, is the median of the data values in the upper half of the data set.* The
following example illustrates these definitions

¥5ome authors use other definitions of guartiles, as does some computer software. A commaon alternative defini-
Liom is o say that the first quartile has rank position (0.23)(n + 1) and that the third quartile has rank position
(0.75)r + 1) Thus if a = 10, the first quantile would have rank position (0.25){11) = 2.75— that is, 1o find the
first quartile we would have 1o interpolate between the seoond and third larpest observations. IT n is large, then
thene is litte practical difference between the definitions that various authors wse.
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Example
2.4.1

Example
2.4.2

Blood Pressure  The systolic blood pressures (mm Hg) of seven middle-aged men
were as follows:™

151 124 132 170 146 124 113
Putting these values in rank order, the sample is

113 124 124 132 146 151 170
The median is the fourth largest observation, which is 132. There are three data
points in the lower part of the distribution: 113, 124, and 124. The median of these
three values is 124. Thus, the first quartile, 0, is 124,

Likewise, there are three data points in the upper part of the distribution: 144,151
and 17(. The median of these three values is 151 Thus, the third quartile, Os. is 151

113 124 124 132 146 151 170
t i 1
first quartile median third quartile
& 05 =

Note that the median is not included in either the lower part or the upper part
of the distribution. If the sample size, n, is even, then exactly one-half of the observa-
tions are in the lower part of the distribution and one-half are in the upper part.

The interquartile range is the difference between the first and third quartiles
and is abbreviated as IQR: IQR = @, — @,. For the blood pressure data in
Example 2.4.1, the IQR is 151 — 124 = 27. Note that the IQR is a number, not an
interval; the IR measures the spread of the middle 50% of the distribution.

Pulse The pulses of 12 college students were measured.” Here are the data,
arranged in order, with the position of the median indicated by a dashed line:

62 64 68 70 70 T4: 74 76 Te T8 TR 8O

74+ 74
2
distribution: 62, 64, 68, 70, 70, 74. Thus, the first quartile is the average of the third and
fourth largest data values:

The median is = T4. There are six observations in the lower part of the

0, - 68 + T0 — &
2
There are six observations in the upper part of the distribution: 74, 76, 76, 78, 78, 80.
Thus, the third quartile is the average of the ninth and tenth largest data values (the
third and fourth values in the upper part of the distribution):

76478

0 -

77
Thus, the interquartile range is

IOR =TT -6 =8

Example

243
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We have
62 64 68 70 TH T4:T4 Th TH TR TR RO
t median 1
first quartile third quartile
O Oy
The minimum pulse value is 62 and the maximum is 8(. -

The minimum, the maximum, the median, and the quartiles, taken together, are
referred to as the five-number summary of the data.

OUTLIERS

Sometimes a data point differs so much from the rest of the data that it doesn’t seem
to belong with the other data. Such a point is called an outlier. An outlier might
occur becavse of a recording error or typographical error when the data are recorded,
because of an equipment failure during an experiment, or for many other reasons.
Outliers are the most interesting points in a data set. Sometimes outliers tell us about
a problem with the experimental protocol (e.g., an equipment failure, a failure of a
patient to take his or her medication consistently during a medical trial). At other
times an outlier might alert us to the fact that a special circumstance has happened
(e.g.. an abnormally high or low value on a medical test could indicate the presence
of a disease in a patient).

People often use the term “outlier” informally. There is, however, a common
definition of “outlier” in statistical practice. To give a definition of outlier, we first
discuss what are known as fences. The lower fence of a distribution is

lower fence = Q) — 1.3 = 10R
The upper fence of a distribution is
upper fence = @, + 1.5 = I0QR

Note that the fences need not be data values; indeed, there might be no data
near the fences. The fences just locate limits within the sample distribution. These
limits give us a way to define outliers. An outlier is a data point that falls outside of
the fences. That is, if

data point < & — 1.5 x IOR
or
data point = O + 1.5 = IQR

then we call the point an outlier.

Pulse In Example 2.4.2 we saw that @; = 69,05 = 77, and IQR = & Thus, the
lower fence is 69 — 1.5 ® 8 = 69 — 12 = 57. Any point less than 57 would be an
outlier. The upper fence is 77 + 1.5 < 8 = 77 + 12 = 89. Any point greater than
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Example
2.4.4

89 would be an outlier. Since there are no points less than 57 or greater than 89, there
are no outliers in this data set. -

Radish Growth in Light A common biology experiment involves growing radish
seedlings under various conditions. In one experiment students grew 14 radish seed-
lings in constant light. The observations, in order, are

33 5 7T 7T 8 9310 10 10 1014 20 2

median
first quartile third quartile

0 Uz

Thus, the median is ¢ +2 10 = 95,0, is 7 and 5 is 10. The interquartile range is
IOR = 10 — 7 = 3. The lower fenceis7 — 1.5 % 3 = 7 — 45 = 2.5, so any point
less than 2.5 would be an outlier. The upper fence is 10 + 1.5 2 3 = 10 + 435 = 145,
so any point greater than 14.5 is an outlier. Thus, the two largest observations in
this data set are outliers: 20 and 21 ]

BOXPLOTS FOR DATA WITH NO OUTLIERS

A boxplot is a visual representation of the five-number summary. To make a boxplot
for a data set with no outliers, we first make a number line: then we mark the posi-
tions minimum, 2y, the median, {5, and the maximum:

E
s - E .~ 5
= s = O =
T T T T T 1
i) 65 70 75 a0 £5

Next, we make a box connecting the quartiles:

Min

¢,

Midian
1

Example

245
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Note that the interquartile range is equal to the length of the box. Finally, pro-
vided there are no outliers® we extend “whiskers” from ¢y down to the minimum
and from (5 up to the maximum:

A boxplot gives a quick visual summary of the distribution. We can immediately see
where the center of the data is from the line within the box that locates the median.
We sce the spread of the total distribution, from the minimum up to the maximum,
as well as the spread of the middle half of the distribution —the interquartile range —
from the length of the box. The boxplot also gives an indication of the shape of the
distribution; the preceding boxplot has a long lower whisker, indicating that the dis-
tribution is skewed to the left. Example 2.4.5 shows a boxplot for data from a radish
growth experiment that had no outliers.

Radish Growth [In another version of the experiment in Example 2.4.4, a moist
paper towel is put into a plastic bag. About one third of the way from the bottom of
the bag a seam of staples was created; the radish seeds were placed along the seam.
One group of students kept their radish seed bags in total darkness for 3 days and
then measured the length, in mm. of each radish shoot at the end of the 3 days. They
collected 14 observations; the data are shown in Table 2.4.1.77

Table 2.4.1 Radish growth, in mm, after

three days in total darkness
15 20 1 30 33
20 29 35 8 10
22 37 15 25

Here are the data in order from smallest to largest:

8 10 11 15 15 20 20:22 25 29 30 33 35 37
t median t
first quartile third quartile
o) Oy

The quartiles are (¢, = 15 and @3 = 30. The median, ¥ = 21, is the average of the
two middle values of 20 and 22. Figure 2.4.1 shows a boxplot of the same data.  m

#We will consider situations with outliers after the next example.

‘T‘hjs and subsequent boxplols in our text are slightly stylimed. Different compater packages present the plot
somewhal differently, but all boxplots have the same basic five-number summary.
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Figure 2.4.1 Boxplot of
data on radish growth in
darkness

Figure 2.4.2 Dotplot and
boxplot of data on radish
growlh in constant light.
The points in the blue
region are outliers.

Figure 2.4.3 Boxplot of
data on radish growth in
constant light

L] 1o 0 30 40
Growth: darkness

BOXPLOTS FOR DATA WITH OUTLIERS

If there are outliers in the upper part of the distribution, then we can identify
them with dots (or other plotting symbeols) on the boxplot. We then extend a whis-
ker from 5 up to the largest data point that is nor an outlier. Likewise, if there
are outliers in the lower part of the distribution, we identify them with dots and
extend a whisker from @) down to the smallest observation that is not an outlier.
Figure 2.4.2 shows the distribution of radish seedlings grown under constant light.
The area between the lower and upper fences is white, while the outlying region
is blue.

15=IQR 15 = IQR
| | I |
I 1 I 1

Figure 2.4.3 shows a boxplot of the data on radish seedlings grown in constant
light.®

The method we have defined for identifying outliers allows the bulk of the data
to determine how extreme an observation must be before we consider it to be an

*Muost computer software has options that can alter how outliers ane determined and displayed.
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outlier, since the quartiles and the IQR are determined from the data themselves.
Thus, a point that is an outlier in one data set might not be an outlier in another data
set. We label a point as an outlier if it is unusual relative to the inherent variability in
the entire data set.

After an outlier has been identified, people are often tempted to remove the
outlier from the data set. In general this is not a good idea. If we can identify that an
outlier occurred due to an equipment error, for example, then we have good reason
to remove the outlier before analyzing the rest of the data. However, quite often
outliers appear in data sets without any identifiable, external reason for them. In
such cases, we simply proceed with our analysis, aware that there is an outlier pres-
ent. In some cases, we might want to calculate the mean, for example, with and with-
out the outlier and then report both calculations to show the effect of the outlier in
the overall analysis. This is preferable to removing the outlier, which obscures the

fact that there was an unusual data point present.

Exercises 2.4.1-2.4.8

2.4.1 Here are the data from Exercise 2.3.10 on the num-
ber of virus-resistant bacteria in each of 10 aliquots:

14 15 13 21 15

14 26 16 20 13

(a) Determine the median and the quartiles
() Determine the interquartile range.
{c) How large would an observation in this data set have
Lo be in order to be an outlier?
2.4.2 Here are the 18 measurements of MAO aclivily
reporied in Exercise 2.2.2:
68 B4 BT 119 142 188
99 41 97 127 52 I8
T8 T4 73 10s 145 107

(a) Determine the median and the quartiles.
(b) Determine the interquartile range.
{c) How large would an observation in this data set have
Lo be in order Lo be an outlier?

(d) Construct a boxplot of the data.
2.4.3 In a study of milk production in sheep (for use in
making cheese), a researcher measured the 3-month milk
yield for each of 11 ewes. The yields (liters) were as fol-
Tows:F

565 BB 1100 656 637  BLA

751 915 129 444 1081

(a) Determine the median and the quartiles.

(b) Determine the interquartile range.

(c) Construct a boxplot of the data.

2.4.4 For each of the following histograms, use the histo-

gram Lo estimate the median and the quartiles; then con-
struct a boxplot for the distribution.

(a) —]
I I I 1
0 1] 40 A 40 100
(b} 11—
f 1 I 1
0 0 40 =] &0 100
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2.4.5 The following histogram shows the same dala that
are shown in one of the four boxplots. Which boxplot goes

wilh the histogram? Explain your answer.

[ I I I I 1
0 40 &l

I3 —

2.4.6 The following boxplol shows the five-number sum- descriptive slatistics summary for a variable stored in col-
mary for a data sel. For these data the minimum is 35,  umn 1 {C1) of MINITAB' worksheet.

(4 is 42, the median is 49, 05

63, Is it possible that no observation in the data set equals

427 Explain your answer.

is 36, and Lhe imum s Wariable N Mean Median TrMean StDev SEMean

Cl 75 119.94 116.40 119.98 9.9 1.15
Variable Min Max a1 Q3

l—

1 95.16 145.11 113.59 127.42

—

(a) Use the MINITAB oulput to calculate the

interquartile range.

[ I I T
35 40 45 50

2.4.7 Statistics software can be used to find the five-number

55 &0 & (b} Are there any outliers in this set of data?

2.4.8 Consider the data from Exercise 2.4.7 Use the five-
number summary that is given Lo create a boxplot of the

summary of a data sel. Here is an example of MINITABs 5.,

2.5 Relationships between Variables

In the previous sections we have studied univariate summaries of both numeric and
categorical variables. A univariate summary is a graphical or numeric summary of a
single variable.

The histogram, boxplot, sample mean, and median are all examples of univariate
summaries for numeric data. The bar chart, frequency, and relative frequency tables
are examples of univariate summaries for categorical data. In this section we present
some common bivariate graphical summaries vsed to examine the relationship
between pairs of variables.

CATEGORICAL-CATEGORICAL RELATIONSHIPS

To understand the relationship between two categorical variables, we first summa-
rize the data in a bivariate frequency tabhle. Unlike the frequency table presented in
Section 2.2 (a univariate table), the bivariate frequency table has both rows and
columns —one dimension for each variable. The choice of which variable to list with
the rows and which to list with the columns is arbitrary. The following example con-
siders the relationship between two categorical variables: E. Coli Source and Sam-
pling Location.

Example

2.5.1

Example

2.5.2
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E. Coli Watershed Contamination In an effort to determine if there are differences
in the primary sources of fecal contamination at different locations in the Morro Bay
watershed, n = 623 water specimens were collected at three primary locations that
feed into Morro Bay: Chorro Creek (n; = 241), Los Osos Creek (nz; = 256), and
Baywood Seeps (n; = 12&;|.2"L DNA fingerprinting techniques were used to deter-
mine the intestinal origin of the dominant E. coli strain in each water specimen.
E. codi origing were classified into the following five categories: bird, domestic pet
(e.g.,cat or dog), farm animal (e.g., horse, cow, pig), human, or other terrestrial mam-
mal (e.g.. fox, mouse, coyote . . .). Thus, each water specimen had tweo categorical
variables measured: location (Chorro, Los Osos, or Baywood) and E. colf source
(bird. .. .. terrestrial mammal). Table 2.5.1 presents a frequency table of the data. m

Table 2.5.1 Frequency table of E. coli source by location

E. Coli Source
Domestic  Farm Terrestrial
Location Bird pet animal Human  mammal Total
Chorro Creek 46 20 106 8 2 41
Los Osos Creek 79 56 3z 63 26 256
Baywood Seeps 35 23 0 6l 8 126
Total 160 108 138 161 56 623

While Table 2.5.1 provides a concise summary of the data, it is difficult to discover
any patterns in the data. Examining relative frequencies (row or column proportions)
often helps us make meaningful comparisons as seen in the following example.

E. Coli Watershed Contamination Are domestic pets more of an E. coli problem
{i.e..source) at Chorro Creek or Baywood Seeps? Table 2.5.1 shows that the domes-
tic pet E. coli source count at Chorro (29) is higher than Baywood (23), so at first
glance it seems that pets are more problematic at Chorro. However, as more water
specimens were collected at Chorro (n; = 241) than Baywood (n; = 126), the rela-
tive frequency of domestic pet source E. celi is actually lower at Chorro
(29,241 = 0,120y than Baywood (23/126 = (.183). Table 2.5.2 displays row per-
centages and thus facilitates comparisons of E. coli sources among the locations.
{Note that column percentages would not be meaningful in this context since the
water was sampled by location and not by E. coli source.) -

Table 2.5.2 Bivariate relative frequency table (row percentages)

of E. coli source by location

E. Coli Source
Domestic  Farm Terrestrial
Location Bird pet animal Human mammal Total
Chorro Creek 19.1 12.0 A0 158 o1 100
Los Osos Creek  30.9 2.9 12.5 246 10.2 100
Baywood Seeps 278 183 0.0 416 6.3 100
All locations 25.7 17.3 2.2 258 9.0 100
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Figure 2.5.1 Stacked
frequency chart of E. coli
source by location

Figure 2.5.2 Stacked
relative frequency
(percentage) chart of

E. coli source by location

To visualize the data in Tables 2.5.1 and 2.5.2, we can examine stacked bar charts.
With a stacked frequency bar chart, the overall height of each bar reflects the sample
size for a level of the X categorical variable (e.g., location), while the height or thick-
ness of a slice that makes up a bar represents the count of the ¥ categorical variable
{e.g.. E. coli source) for that level of X. Figure 2.5.1 displays a stacked bar chart for
the E. coli watershed count data in Table 2.5.1.

150 — O Terrestrial mammal
O Human
O Farm animal
200 — B Domestic pet
B Bird
= 150
g
8
=
= o0+
50
u -

Chorro Los Osos Baywood Seeps

Like the frequency table, the stacked frequency bar chart is not conducive to
making comparisons across the three locations as the sample sizes differ for these
locations. (This graph does help highlight the difference in sample sizes: for example,
it is very clear that many fewer water specimens were collected at Baywood Seeps.)
A chart that better displays the distribution of one categorical variable across levels
of another is a stacked relative frequency (or percentage) bar chart, which graphs
the summaries from a bivariate relative frequency table such as Table 2.5.2. Figure
25.2 provides an example using the E. coli watershed contamination data. This plot
normalizes the bars of Figure 2.5.1 to have the same height (100%) to facilitate com-
parisons across the three locations.

100 —
O Terrestrial mammal
O Human
a0 - O Farm animal
B Domestic pet
B Bird
% 80
ki
g
2
a
== m —
20—
U -

Los Osos Baywood Seeps
n, =241 n, =256 =126

Example
2.5.3

Figure 2.5.3 Side-by-side
boxplots of radish growth
under three conditions:
constant darkness, half
light-hall darkness, and
constant light
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Figure 2.5.2 makes it very easy to see that farm animals are the largest contribu-
tors of E. coli to Chorro Creek while humans are primarily responsible for the pol-
lution at Baywood Seeps. The distribution of the slices in the three bars appears
quite different. suggesting that the distribution of E. coli sources is not the same at
the three locations. In Chapter 10 we will learn how to determine if these apparent
differences are large enough to be compelling evidence for real differences in the
distribution of E. coli source by location, or whether they are likely due to chance
variation.

NUMERIC-CATEGORICAL RELATIONSHIPS

In Section 2.4 we learned that boxplots are graphs based on only five numbers: the
minimurm, first quartile, median, third quartile, and maximum. They are appealing
plots because they are very simple and uncluttered, yet contain easy to read informa-
tion about center. spread, skewness, and even outliers of a data set. By displaying
side-hy-side boxplots on the same graph, we are able to compare numeric data
among several groups. We now consider an extension of the radish shoot growth
problem in Example 2.4.3.

Radish Growth Does light exposure alter initial radish shoot growth? The complete
radish growth experiment of Examples 2.4.4 and 2.4.5 actually involved a total of
42 radish seeds randomly divided to receive one of three lighting conditions for ger-
mination (14 seeds in each lighting condition): 24-hour light, diurnal light (12 howrs of
light and 12 hours of darkness each day). and 24 hours of darkness. At the end of
3 days, shoot length was measured (mm). Thus, each shoot has two variables that are
measured in this study: the categorical variable lighting condition (light, diurnal,
dark) and the numeric variable sprout length (mm). Figure 2.5.3 displays side-by-side
boxplots of the data. The boxplots make it very easy to compare the growth under the
three conditions: It appears that light inhibits shoot growth. Are the observed differ-
ences in growth among the lighting conditions just due to chance variation, or is light
really altering growth? We will learn how to numerically measure the strength of this
evidence and answer this question in Chapters 7 and 11 [ ]

Girowth (mim)
2
1

T T |
Darkness Diiurnal Light

Light treatment
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Figure 2.5.4 Side-by-side
jittered dotplots of radish
growlh under three
conditions: constant
darkness, half light-half
darkness, and constant light

Example
2.5.4

-
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Light treatment

For smaller data sets, we also may consider side-by-side dotplots of the data.
Figure 2.5.4 displays a jittered side-by-side dotplot of the radish growth data of
Example 2.53.3. The “jitter” is a common software option that adds horizontal scatter
to the plot, helping to reduce the overlap of the dots. Choosing between side-by-side
boxplots and dotplots is matter of personal preference. A good rule of thumb is to
choose the plot that accurately reflects patterns in the data in the cleanest (least ink
on the paper) way possible. For the radish growth example, the boxplot enables a
very clean comparison of the growth under the three light treatments without hiding
any information revealed by the dotplot.

NUMERIC-NUMERIC RELATIONSHIPS

Each of the previous examples considered comparing the distribution of one vari-
able (either categorical or numeric) among several groups (i.e., across levels of a
categorical variable). In the next example we illustrate the scatterplot as a tool to
examine the relationship between two numeric variables, X and Y. A scatterplot
plots each observed (x,y) pair as a dot on the x-y plane.

Whale Selenium Can metal concentration in marine mammal teeth be used as a
bioindicator for body burden? Selenium (Se) is an essential element that has been
shown to play an important role in protecting marine mammals against the toxic
effects of mercury (Hg) and other metals. Twenty beluga whales ( Delphinapierus
leucas) were harvested from the Mackenzie Delta, Northwest Territories, as part of
an annual traditional Inuit hunt*" Each whale yielded two numeric measurements:
Tooth Se (pgfg) and Liver Se (ngfg). Selenium concentrations for the whales are
listed in Table 2.5.3. Liver Se concentration (Y) is graphed against Tooth Se concen-
tration (X) in the scatterplot of Figure 2.5.5. -

Figure 2.5.5 Scatterplot of
liver selenium
concentration against tooth
selenium concentration for
20 belugas

Section 2.5

Relationships between Varisbles

Table 2.5.3 Liver and tooth selenium concentrations of 20 belugas

67

Liver Se Tooth Se Liver Se Tooth Se
Whale  (ng/e)  (ngle)  Whale  (ugle)  (ngle)
1 6.23 14016 11 15.28 112.63
2 6.79 133.32 12 18.68 245.07
3 792 135.34 13 22.08 140.48
4 802 127.82 14 27.55 177.93
5 034 108.67 15 32.83 160.73
6 10.00 14622 16 36.04 227.60
7 10.57 13118 17 3774 177.69
8 11.04 14551 18 40,00 17423
9 12.36 16324 19 4123 206.30
10 14.53 136.55 20 45.47 141.31
4n— - *
= .
Z a0
_‘; .
ES
= .
= 20
= .
= . .
-
- .
-, .
* -
.
T T T T T T T
120 140 160 180 200 220 240

Tooth Se (ng/g dry wi)

Scatterplots are helpful in revealing relationships between numeric variables. In
Figure 2.5.6 two lines have been added to the whale selenium scatterplot of Figure
25.5 to highlight the increasing trend in the data: Tooth Se concentration tends to
increase with liver Se concentration. The dashed line is called a lowess smooth,
whereas the straight solid line is called a regression line. Many software packages
allow one to easily add these lines to a scatterplot. The lowess smooth is particularly
helpful in visualizing curved or nonlinear relationships in data, while the regression
line is used to highlight a linear trend. Generally speaking, we would choose only
one of these to display on our graph. In this case, since the pattern is fairly linear (the
lowess smooth is fairly straight), we would choose the solid regression line. In Chapter
12 we will learn how to identify the equation of the regression line that best sum-
marizes the data and determine if the apparent trend in the data is likely to be just
due to chance or if there is evidence for a real relationship between X and Y.
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Figure 2.5.6 Scatterplot of
liver selenium
concentration against tooth
selenium concentration for
20 belugas with regression
(solid) and lowess (dashed)
summary lines and outlier
marked in blue

Liser e (pg e dey wi)

I T I T I T
140 160 180 200 220 240

Tooth Se (ng/z dry wi)

In addition to revealing relationships between two numeric variables, scatter-

(a) Creale side-by-side dotplots of the data. Consider the
geography of these four locations when making your
plot. Is alphabetic order of the locations the most
appropriate, or is there a better way to order the
location categories?

(b) Create side-by-side boxplots of the data. Again,
consider the geography of these four locations when
making your plot.

{c) Of the two plots created in paris (a) and (b), which do
you prefer and why?

2.5.3 The rowan (Sorhus aucuparia) is a tree that grows
in a wide range of altitudes. To study how the tree adapls
Lo ils varying habilals, researchers collected twigs with
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aflached buds from 12 trees growing at various altitudes
in North Angus, Scotland. The buds were brought back to
the laboratory and measurements were made of the dark
respiration rate. The accompanying table shows the alti-
tude of origin (in meters) of each batch of buds and the
dark respiration rate {expressed as pl of oxygen per hour
per mg dry weight of tissue).™

(a) Creale a scatterplot of the data.

(b) I your software allows, add a regression line Lo

summarize the trend.

(c) If your software allows, create a scatterplot with a
lowess smooth Lo summarize the trend.

2.5.4 A group of college students were asked how many
hours per week they exercise.

plots also help reveal outliers that might otherwise be unnoticed in univariate plots
(e.g., histograms, single boxplots). The colored point on Figure 2.5.6 falls far from the
scatter of the other points. The X value of this point is not unusual in any way, and
even the Y value, although large, doesn’t appear extreme. The scatterplot, however,

shows that the particular (x,y) pair for this whale is unusual.

Exercises 2.5.1-2.5.4

2.5.1 The two claws of the lobster (Homarus america-

aus) are identical in the juvenile stages. By adulthood,

however, the two claws normally have differentiated into
a stoul claw called a “crusher” and a slender claw called a
“cutter” In a study of the differentiation process, 26 juve-
nile animals were reared in smooth plastic trays and 18
were reared in trays containing oyster chips (which they
could use Lo exercise their claws). Another 23 animals
were reared in trays containing only one oyster chip. The
claw configurations of all the animals as adults are sum-
marized in the table !

Claw Configuration
Right Right Right and
crusher, cutter, lefl cutter
Treatment left cutter left crusher (no crusher)
Orwyster chips & 9 1
Smooth plastic 2 4 20
Omne oyster chip 7 9 7

(a) Create a stacked frequency bar chart Lo display these
data.

(b) Create a stacked relative frequency bar char to
display these data.

(c) Of the two charls you created in parts (a) and (b),

which is more useful for comparing the claw
configurations across the three treatments? Why?

2.5.2 Does the length (mm) of the golden mantied ground
squirrel (Spermophilus lateralis) differ by latitude in
California? A graduate student captured squirrels at four
locations across California. Listed from south Lo north the
locations are Hemet, Big Bear, Susanville, and Loop Hill

Hemet  Big Bear Susanville Loop Hill
263 74 245 273
256 156 272 291
251 249 263 278
242 264 260 281
248 7

281

Altitude of origin -~ Respirati te
Tree ch’ (rnn:lungm Y ("Jr?h:c!nmr;) The answers given by 12 men were as follows:
1 20 011 6 0 2 1 2 458 3 17 454 5
2 230 020 The answers given by 13 women were as follows:
3 240 0.13 S 133 2 6 143 1 15 15 3 8 4
4 260 015
(a) Construct parallel boxplots of the male and female
5 330 0.18 distributions,
6 400 0.16 (b) Describe the two boxplots, including how they
7 410 0.23 compare Lo each other.
8 550 018
9 50 023
10 610 026
11 TO0 032
12 TH) 0.37
2.6 Measures of Dispersion
We have considered the shapes and centers of distributions, but a good description
of a distribution should also characterize how spread out the distribution is—are
the observations in the sample all nearly equal, or do they differ substantially? In
Section 2.4 we defined the interquartile range, which is one measure of dispersion.
We will now consider other measures of dispersion: the range and the standard
deviation.
THE RANGE
The sample range is the difference between the largest and smallest observations in
asample. Here is an example.
Example Blood Pressure  The systolic blood pressures (mm Hg) of seven middle-aged men
2.6.1 were given in Example 2.4.1 as follows:

113 124 124 132 146 151 170

For these data, the sample range is

170 — 113 = 57 mm Hg -
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Example
1.6.2

The range is easy to calculate, but it is very sensitive to extreme values; that is, it
is not robust. If the maximum in the blood pressure sample had been 190 rather than
170, the range would have been changed from 57 to 77

We defined the interquartile range (IQR) in Section 2.4 as the difference
between the quartiles. Unlike the range, the IQR is robust. The IQR of the blood
pressure data is 151 — 124 = 17. If the maximum in the blood pressure sample had
been 190 rather than 170, the IQR would not have changed; it would still be 17

THE STANDARD DEVIATION

The standard deviation is the classical and most widely vsed measure of dispersion.
Recall that a deviation is the difference between an observation and the sample mean:

deviation = observation — §

The standard deviation of the sample. or sample standard deviation, is determined
by combining the deviations in a special way. as described in the following box.

THE SAMPLE STANDARD DEVIATION The sample standard deviation is
denoted by 5 and is defined by the following formula:

.'_Jr i ¥
= \'I Iﬂn— 1

In this formula, the expression S (y; — ﬂQ denotes the sum of the squared
deviations.

So. to find the standard deviation of a sample, first find the deviations. Then
1. square
2 add
1 dividebyn — 1
4. take the square root

To illustrate the use of the formula, we have chosen a data set that is especially
simple to handle because the mean happens to be an integer.

Chrysanthemum Growth In an experiment on chrysanthemums, a botanist mea-
sured the stem elongation {mm in 7 dags}} of five plants grown on the same green-
house bench. The results were as follows:

T6 T2 65 T0 82
The data are tabulated in the first column of Table 2.6.1. The sample mean is

¥= El) = Timm
The deviations (y; — ¥) are tabulated in the second column of Table 2.6.1; the first
observation is 3 mm above the mean, the second is 1 mm below the mean. and so on.

The third column of Table 2.6.1 shows that the sum of the squared deviations is

= 20n -y =164

Example
2.6.3

Figure 2.6.1 Plot of
chrysanthemum growth
data with deviations
indicated as distances
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Table 2.6.1 Ilustration of the formula for the sample
standard deviation

Ohbservation Dieviation Squared deviation
(¥ -7 (n — 7
76 3 o
72 -1 1
65 -8 64
0 -3 o
82 9 81
L n
Sum 365 = gi_v: 164 = ;‘[m \in

Since n = 3, the standard deviation is

¥

]
ENE

6.4 mm
Note that the units of s (mm) are the same as the units of ¥.This is because we have
squared the deviations and then later taken the square root. -

The sample variance, denoted by 57, is simply the standard deviation squared:
variance = 5% Thus,s = Vvariance.

Chrysanthemum Growth The variance of the chrysanthemum growth data is
¥ = 41 mm’
Note that the units of the variance {mmz) are not the same as the units of ¥, -

An abbreviation We will frequently abbreviate “standard deviation™ as “SD™; the
symbol “s” will be used in formulas.

INTERPRETATION OF THE DEFINITION OF s

The magnitude (disregarding sign) of each deviation (y; — ¥) can be interpreted as
the distance of the corresponding observation from the sample mean ¥. Figure 2.6.1
shows a plot of the chrysanthemum growth data (Example 2.6.2) with each distance
marked.

| |

| ! |

i ! 1 i i

: L ' :

. : Lol i i

| T I T 1

65 T | 5 B0 a5
¥
Growth (mm)
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Example
1.6.4

Figure 2.6.2 Two samples
of chrysanthemum growth
data with the same mean
but different standard

deviations: (a) s = 2.1 mm;

(b) 5 = 63mm

Example
1.6.5

From the formula for s, you can see that each deviation contributes to the SD.
Thus, a sample of the same size but with less dispersion will have a smaller SD, as
illustrated in the following example.

Chrysanthemum Growth If the chrysanthemum growth data of Example 2.6.2 are
changed to

75 72 73 73070

then the mean is the same (¥ = 73 mm), but the 8D is smaller (s = 2.1 mm), because
the observations lie closer to the mean. The relative dispersion of the two samples

can easily be seen from Figure 2.6.2. -
|
(a) * . 1- H
|
(b} = . . ! - -
T T T T T 1
&5 0 ! 15 B0 a5
¥
Growth {mm)

Let us look more closely at the way in which the deviations are combined to form
the SD. The formula calls for dividing by (n — 1). If the divisor were n instead of
(n — 1), then the quantity inside the square root sign would be the average (the mean)
of the squared deviations. Unless n is very small, the inflation due to dividingby (n — 1)
instead of i is not very great, so that the SD can be interpreted approximately as

5 = Vsample average value of (y, — 7

Thus. it is roughly appropriate to think of the SD as a “typical” distance of the obser-
vations from their mean.

Why n — 17 Since dividing by n seems more natural, you may wonder why the
formula for the D specifies dividing by (n — 1). Note that the sum of the deviations
¥; — ¥is always zero. Thus, once the first n — 1 deviations have been calculated, the
last deviation is constrained. This means that in a sample with i observations, there
are only n — 1 units of information concerning deviation from the average. The
quantity # — 1 is called the degrees of freedom of the standard deviation or vari-
ance. We can also give an intuitive justification of why n — 1 is used by considering
the extreme case when n = 1, as in the following example.

Chrysanthemum Growth Suppose the chrysanthemum growth experiment of Exam-
ple 2.6.2 had included only one plant, so that the sample consisted of the single observation

73

For this sample,n = 1 and ¥ = 73. However, the SD formula breaks down (giving J),
5o the SD cannot be computed. This is reasonable, because the sample gives no infor-
mation about variability in chrysanthemum growth under the experimental condi-
tions. If the formula for the SD said to divide by s, we would obtain an SD of zero,
suggesting that there is little or no variability; such a conclusion hardly seems justi-
fied by observation of only one plant. -
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VISUALIZING MEASURES OF DISPERSION

The range and the interquartile range are easy to interpret. The range is the spread of
all the observations, and the interquartile range is the spread of (roughly) the middle
50% of the observations. In terms of the histogram of a data set, the range can be visu-
alized as (roughly) the width of the histogram. The quartiles are (roughly) the values
that divide the area into four equal parts, and the interquartile range is the distance
between the first and third quartiles. The following example illustrates these ideas.

Example Daily Gain of Cattle The performance of beef cattle was evaluated by measuring
2.6.6 their weight gain during a 140-day testing period on a standard diet. Table 2.6.2 gives
the average daily gains (kg/day) for 39 bulls of the same breed (Charolais); the
observations are listed in increasing order: “The values range from 118 kg/day to

1.92 kg/day. The quartiles are 1.29, 141, and 1.58 kg/day. Figure 2.6.3 shows a histo-

gram of the data, the range, the quartiles, and the interquartile range (IOR). The

shaded area represents the middle 50% (approximately) of the observations. -

Table 2.6.2 Average daily gain (kg/day) of 39 Charolais bulls
118 1.24 129 137 141 151 158 172
1.20 1.26 133 137 141 133 159 176
1.23 127 134 138 144 L35 164 L83
1.23 129 136 1.40 148 157 164 Lz
123 129 136 1.41 150 138 163

Figure 2.6.3 Smoothed
histogram and boxplot of
30 daily gain measurements, ,\
showing the quartiles and

the interquartile range =
(1OR). The shaded arca
represents about S0%, of the [~ IOR—=
observations.
T T T T T I T T
08 L 12 14 L& 18 0 22
th s

VISUALIZING THE STANDARD DEVIATION

We have seen that the SD is a combined measure of the distances of the observa-
tions from their mean. It is natural to ask how many of the observations are within
+1 8D of the mean, within + 2 SDs of the mean, and so on. The following example
explores this question.

Example Daily Gain of Cattle For the daily-gain data of Example 2.6.6, the mean is

2.6.T = 1.445kg/day and the 8D is s = (L183 kg/day. In Figure 2.6.4 the intervals
* 5 ¥ £ 25,and ¥ * 35 have been marked on a histogram of the data. The inter-
val ¥ *+ yis

1.445 £ (183 or 1.262 to 1.628
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Figure 2.6.4 Histogram of
daily-gain data showing
intervals 1,2, and 3
standard deviations from
the mean. The shaded area
represents aboul 64% of
the observations

You can verify from Table 2.6.2 that this interval contains 25 of the 39 observa-
lions.Thus.l—]g or 64% of the observations are within =1 8D of the mean; the corre-
sponding area is shaded in Figure 2.6.4. The intervals ¥ = 2vis

1.445 £ 0366 0r 1079 to 1.811

This interval contains f—gor 95% of the observations. You may verify that the interval

¥ * 3s contains all the observations. -
~ 6%
| | | | | | | |
0.8 Lo 12 14 16 18 20 22
T T T T T T ] Gain (kg/day)
0.895 1078 1.261 1445 1.628 LElL Lo
-3 - F-5 b F+5 F+ix F+3r

It turns out that the percentages found in Example 2.6.7 are fairly typical of
distributions that are observed in the life sciences.

Typical Percentages: The Empirical Rule
For “nicely shaped™ distributions—that is, unimodal distributions that are not too
skewed and whose tails are not overly long or short—we usually expect to find

about 68% of the observations within =1 5D of the mean.

about 95% of the observations within £ 2 SDs of the mean.

=99% of the observations within +3 5Ds of the mean.

The typical percentages enable us to construct a rough mental image of a fre-
quency distribution if we know just the mean and SD. (The value 68% may seem to
come from nowhere. Its origin will become clear in Chapter 4.)

ESTIMATING THE 5D FROM A HISTOGRAM

The empirical rule gives us a way to construct a rough mental image of a frequency
distribution if we know just the mean and SD: We can envision a histogram centered
at the mean and extending out a bit more than 2 SDs in either direction. Of course,
the actual distribution might not be symmetric, but our rough mental image will
often be fairly accurate.

Thinking about this the other way around, we can look at a histogram and esti-
mate the SD. To do this, we need to estimate the endpoints of an interval that is
centered at the mean and that contains about 95% of the data. The empirical rule
implies that this interval is roughly the same as (¥ — 25, ¥ + 2s). 50 the length of the
interval should be about 4 times the SD:

(F — 25, ¥ + 25) has length of 25 + 25 = 45

Example
1.6.8

Figure 2.6.5 Pulse after
moderate exercise fora
group of adults
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This means

length of interval = 45

length of interval
4

Of course, our visual estimate of the interval that covers the middle 95% of the data
could be off. Moreover, the empirical rule works best for distributions that are sym-
metric. Thus, this method of estimating the SD will give only a general estimate. The
method works best when the distribution is fairly symmetric, but it works reasonably
well even if the distribution is somewhat skewed.

estimate of s =

Pulse after Exercise A group of 28 adults did some moderate exercise for 5 minutes
and then measured their pulses. Figure 2.6.5 shows the distribution of the data*" We can
s2e that about 95% of the observations are between about 75 and 125.# Thus, an inter-
val of length 504125 — 75) covers the middle 95% of the data. From this, we can esti-
mate the SD tobe ! = 12.5.The actual SDis 134, which is not far off from our estimate.

10—

@
|

Frequency

-
|

(=]

0
T By on 100 1o 120 130

Pulse (beats /min)

The typical percentages given by the empirical rule may be grossly wrong if the
sample is small or if the shape of the frequency distribution is not “nice.” For instance,
the cricket singing time data (Table 2.3.1 and Figure 2.3.4) has s = 44 mm, and the
interval ¥ = scontains 9% of the observations. This is much higher than the “typical”
£8% because the 3D has been inflated by the long, straggly tail of the distribution.

COMPARISON OF MEASURES OF DISPERSION

The dispersion. or spread. of the data in a sample can be described by the standard
deviation, the range, or the interquartile range.} The range is simple to understand,
but it can be a poor descriptive measure because it depends only on the extreme tails
of the distribution. The interquartile range, by contrast, describes the spread in the

¥t is difficult w visually assess exactly where the middle 95% of the data lay using o histogram, bt as this i only
1 visual estimate, we need not concern oursehves with producing an exact value. Our visual estimates of the S0
might differ from one another, but they should all be relatively close.

tAnother measure of dispersion is the coeflicient of variation, which is the standard deviation expressed as a
percentape of the mean: coefficient of variation — §* 100%. Because it 5 not affected by a change in scale (e,
from inches 1o cm), the coeficient of variation is 2 useful measune for comparing the dispersions of (e or more
variables that are measured on different scales. See Exercises 26,13 and 2.6.14 for more information.
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central “body™ of the distribution. The standard deviation takes account of all the
observations and can roughly be interpreted in terms of the spread of the observa-
tions around their mean. However, the SD can be inflated by observations in the

extreme tails The interquartile range is a robust measure, while the 8D is not robust.
Of course, the range is very highly nonrobust.

The descriptive interpretation of the SD is less straightforward than that of the
range and the interquartile range. Nevertheless, the SD) is the basis for most standard
classical statistical methods. The 8D enjoys this classic status for various technical
reasons, including efficiency in certain situations.

The developments in later chapters will emphasize classical statistical methods,
in which the mean and SD play a central role. Consequently, in this book we will rely
primarily on the mean and SI) rather than other descriptive measures.

Exercises 2.6.1-2.6.17

2.6.1 Calculate the SI of each of the following fictitious
samples:

{a) 16,13,18,13

() 38, 30,34, 38,35

() 1,-1,5,-1

(dy4.6,—1,4.2

2.6.2 Calculate the 5D of each of the following fictitious

samples:

(a) 86,94 8

(b} 4.7 5.4

(c) 9.2,6,7.6

2.6.3

(a) Invent a sample of size 5 for which the deviations
(¥ — Vyare =3, -1.0,2,2

() Compute the SD of your sample.

(c) Should everyone gel the same answer for part (b)? Why
or why not?

2.6.4 Four plots of land, each 346 square [eel, were

planted with the same variety (“Beau™) of wheat. The
plot yields (Ib) were as follows:

351 306 3609 208
Calculate the mean and the SI.

2.6.5 A plant physiologist grew birch seedlings in the green-
house and measured the ATP conlent of their rools. (See
Example 1.1.3.) The results (nmol ATP/mg tissue) were as
follows for four seedlings thal had been handled identically™

145 119 108 107
Caleulate the mean and the 8D

2.6.6 Ten patients with high blood pressure participated
in a study to evaluate the effectiveness of the drug Timolol
in reducing their blood pressure. The accompanying Lable

shows systolic blood pressure measurements laken before
and after 2 weeks of treatment with Timolol® Calculate
the mean and SD of the change in blood pressure (note
that some values are negative).

Blood pressure (mm HG)

Patient Before After Change
1 172 159 -13
2 186 157 —29
3 170 163 -7
4 205 207 2
3 174 1nd —10
f 184 141 —43
7 178 182 4
8 156 17 15
a 190 177 -13
10 168 138 —30

2.6.7 Dopamine is a chemical that plays a role in the trans-
mission of signals in the brain. A pharmacologist measured
the amount of dopamine in the brain of each of seven rats,
The dopamine levels (nmolesig) were as follows:*!

6.8 5.3 6.0 5.9 6.8 74 62

(a) Calculate the mean and SD.
(b) Determine the median and the interquartile range.

(c) Replace the observation 74 by 10.4 and repeat parts
(a) and (b). Which of the descriplive measures display
robustness and which do not?

2.6.8 In a study of the lizard Sceloporus occidentalis,

biologists measured the distance (m) run in 2 minutes for
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each of 15 animals. The results (listed in increasing order)
were as [ollows:™

184 222 245 264 275 287 306 329
3209 340 348 375 421 455 455

(a) Determing the quartiles and the interquartile range.
() Determine the range.

2.6.9 Refer to the running-distance data of Exercise
2.6.8. The sample mean is 32.23 m and the 5D is 807 m.
What percentage of the observations are within

(a) 1 5D of the mean?

() 2 5D of the mean?

2.6.10 Compare the results of Exercise 2.6.9 with the
predictions of the empirical rule.

2.6.11 Listed in increasing order are the serum crealing
phosphokinase (CK) levels (L) of 36 healthy men (Lhese
are the data of Example 2.2.6):

25 62 &2 95 110 139
42 i 83 95 113 145
48 67 1 118 151
57 ] 92 101 119 163
58 0 93 14 121 2!
6l 78 94 110 123 203

The sample mean CK level is 98.3 Ufl and the 5D is
40.4 /. What percentage of the observations are
within

(a) 1 5D of the mean?

(b) 2 5D of the mean?

(c) 3 8Ds of the mean?

2.6.12 Compare the results of Exercise 2.6.11 with the
predictions of the empirical rule.

2.6.13 As part of the Berkeley Guidance Study® the
heights (in cm) and weights (in kg) of 13 girls were
measured at age 2 and again at age 9. Of course, the
average height and weight were much greater at age 9
than at age 2. Likewise, the SDs of height and of weight
were much greater al age 9 than they were at age 2.
But what about the coefficient of variation, which
gives the 5D as a percentage of the mean? It turns oot
Lhat the coelficient of variation [or one of the vari-
ables (height or weight) went up only a moderate

amount from age 2 to age 9, but for the other variable,
the increase in the coefficient of variation was [airly
large. For which variable, height or weight, would you
expect the coefficient of variation Lo change more
between age 2 and age 97 Why? |Hini: Think about
how genetic and environmental factors each influence
height and weight. |

2.6.14 Consider the 13 girls mentioned in Exercise 2.6.13.
Al age 18 their average height was 166.3 cm and the 5D of
Lheir heights was 6.8 cm. Calculate the coeflicient of vari-
ation.

2.6.15 Here is a histogram. Estimate the mean and the
5D of the distribution.

T Tr 11T T
0 20 30 40 50 &0 T B0

2.6.16 Here is a histogram. Estimate the mean and the
5D of the distribution.

2.6.17 For which sample (i or ii) would you expect the

5D of heights to be larger? Or, would they be about the

same?

(a) (1) A sample of 10 women ages 18-24, or (ii) a sample
of 100 women ages 18-24.

(b} (1) A sample of 20 male college basketball players, or
(1i) a sample of 20 college-age men.

() (i) A sample of 15 professional male jockeys, or (i) a
sample of 15 professional male biologists.

2.7 Effect of Transformation of Variables (Optional)

Sometimes when we are working with a data set, we find it convenient to trans-
form a variable. For example, we might convert from inches to centimeters or from
°F to “C. Transformation, or reexpression, of a variable ¥ means replacing ¥ by a
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Example
2.T.1

Example
2.T.2

new variable, say ¥°. To be more comfortable working with data, it is helpful to
know how the features of a distribution are affected if the observed variable is
transformed.

The simplest transformations are linear transformations, so called because a
graph of ¥ against ¥ would be a straight line. A familiar reason for linear transfor-
mation is a change in the scale of measurement, as illustrated in the following two
examples

Weight Suppose ¥ represents the weight of an animal in kg, and we decide to reex-
press the weight in 1b. Then

Y = Weightinkg
¥ = Weightin Ib

0
¥ =122Y

This is a multiplicative transformation, because ¥" is calculated from ¥ by multiply-

ing by the constant value 2.2. [ ]

Body Temperature Measurements of basal body temperature (temperature on
waking) were made on 47 women.
Typical observations ¥, in “C, were

Yo 3623, 3641, 3677, 3615,
Suppose we convert these data from “C to °F, and call the new variable ¥":
Yoo 9721, 9754, 9819, 97.07,
The relation between ¥ and ¥ is
¥ =18Y + 32

The combination of additive (+32) and multiplicative (% 1.8) changes indicates a
linear relationship. -

As the foregoing examples illustrate, a linear transformation consists of (1) mul-
tiplying all the observations by a constant, or (2) adding a constant to all the obser-
vations, or (3) both.

HOW LINEAR TRANSFORMATIONS AFFECT
THE FREQUENCY DISTRIBUTION

A linear transformation of the data does not change the essential shape of its
frequency distribution: by suitably scaling the horizontal axis, you can make the
transformed histogram identical to the original histogram. Example 2.73 illus-
trates this idea.

Example
2.1.3

Figure 2.7.1 Distribution
of 47 lemperature
measurements showing
original and linearly
transformed scales

Example
.74
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Body Temperature Figure 2.71 shows the distribution of 47 temperature measure-
ments that have been transformed by first subtracting 36 from each observation
and then multiplying by 100 (as in Example 2.72). That is, ¥' = (¥ — 3&) = 100.
The figure shows that the two distributions can be represented by the same histo-

gram with different horizontal scales. [ ]
15
w10+
g
=
g
= 5 -
0 1 T
360 362 364 366 368 370 ¥
[ | I | |
0 40 &0 an 00 ¥

HOW LINEAR TRANSFORMATIONS AFFECT y AND s

The effect of a linear transformation on ¥ is “natural™; that s, under a linear trans-
formation, ¥ changes like V. For instance, if temperatures are converted from °C to
“F. then the mean is similarly converted:

Y =18Y+32 so ¥ =18 +32

The effect of multiplying ¥ by a positive constant on s is “natural™; if
Y' = ¢ = Y, with ¢ = 1), then 5" = ¢ x 5. For instance, if weights are converted
from kg to 1b, the SD is similarly converted: 5" = 225 f ¥ = ¢ = Yand c < 1),
thens' = —¢ * 5 In general,if ¥’ = ¢ = ¥thens' = |¢c| % 5.

However, an additive transformation does not affect s. If we add or subtract a
constant, we do not change how spread out the distribution is, so ¥ does not change.
Thus, for example, we would not convert the SD of temperature data from “C to °F
in the same way as we convert each observation; we would multiply the SD by 1.8,
but we would not add 32. The fact that the SD is unchanged by additive transforma-
tion will appear less surprising if you recall (from the definition) that s depends only
on the deviations (y; — ¥),and these are not changed by an additive transformation.
The following example illustrates this idea.

Additive Transformation Consider the simple set of fictitious data shown in Table
2.71. The data were then transformed by subtracting 20 from each observation.
The SD for the original observations is

[(C17 + (O0F + @ + (=17
| 3

=14
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Table 2.7.1 Effect of additive transformation

Original Deviations Transformed Deviations
observations (y) w—7 observations (v') r:—7
25 -1 5 -1
26 ] f ]
28 2 8 2
25 —1 3 -1
Mean 26 L]

Because the deviations are unaffected by the transformation, the SD for the trans-

formed observations is the same:

An additive transformation effectively picks up the histogram of a distribution
and moves it to the left or to the right on the number line. The shape of the histogram
does not change and the deviations do not change, so the SD does not change. A
multiplicative transformation, on the other hand, stretches or shrinks the distribu-
tion, so the S gets larger or smaller accordingly.

Other Statistics Under linear transformations, other measures of center (e.g., the

median) change like ¥. and other measures of dispersion (e.g.. the interquartile
range) change like 5. The quartiles themselves change like V.

NONLINEAR TRANSFORMATIONS

Data are sometimes reexpressed in a nonlinear way. Examples of nonlinear transfor-
mations are

Y = VY
¥ =log(Y)
1
Y=v
vy -y

These transformations are termed “nonlinear™ because a graph of ¥' against ¥
would be a curve rather than a straight line. Computers make it easy to use nonlinear
transformations. The logarithmic transformation is especially common in biology
because many important relationships can be simply expressed in terms of logs. For
instance, there is a phase in the growth of a bacterial colony when log(colony size)
increases at a constant rate with time. [Note that logarithms are used in some famil-
iar scales of measurement. such as pH measurement or earthquake magnitude
(Richter scale).]

Nonlingar transformations can affect data in complex ways. For example, the
mean does not change “naturally” under a log transformation; the log of the mean is
not the same as the mean of the logs. Furthermore, nonlinear transformations (unlike
linear ones) do change the essential shape of a frequency distribution.

In future chapters we will see that if a distribution is skewed to the right, such as
the cricket singing-time distribution shown in Figure 2.72, then we may wish to apply
a transformation that makes the distribution more symmetric, by pulling in the

Frequency
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Figure 2.7.2 Distribution of ¥, of V¥, and of log(¥))
for 51 observations of ¥ = cricket singing time 10—

Example
2.7.5

Exercises 2.7.1-2.7.6

T T T 0 | |
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()

right-hand tail. Using ¥' = V¥ will pull in the right-hand tail of a distribution and
push out the lefi-hand tail. The transformation ¥* = log(Y) is more severe than V¥
in this regard. The following example shows the effect of these transformations.

Cricket Singing Times Figure 2.72(a) shows the distribution of the cricket singing-
time data of Table 2.3.1. If we transform these data by taking square roots, the trans-
formed data have the distribution shown in Figure 2.72(b). Taking logs {base 10)
yields the distribution shown in Figure 2.72(c). Notice that the transformations have
the effect of “pulling in” the straggly upper tail and “stretching out” the clumped
values on the lower end of the original distribution.

2.7.1 A biologist made a certain JJH measurement in data by subtracting 7 from each observation and then

each of 24 frogs; typical values were

5

multiplying by 100. For example, 743 was transformed to
43. The transformed data are

743, 716, 751, ...

She caleulated a mean of 7373 and a SD ol 0.129 [or these
original pH measurements. Next, she transformed the  What are the mean and SD of the transformed data?

43, 16, 51,...
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2.7.2 The mean and 5D of a set of 47 body temperature
measurements were as follows:

¥ =3647°C 5=0172°C
If the 47 measurements were converted to °F,

(a) What would be the new mean and SD7
(b) What would be the new coefficient of variation?

2.7.3 A researcher measured the average daily pains (in
kg/day) of 20 beel cattle; typical values were?”

1.39, 157, 144,
The mean of the data was 1.461 and the SD was 0.178.
(a) Express the mean and 5D in Ibiday. (Hini 1 kg = 2201h.)

() Calculate the coefficient of variation when the data
are expressed (i) in kg/day; (i) in Ib/day.

2.7.4 Consider the data from Exercise 2.73. The mean
and 5D were 1461 and 0.178. Suppose we transformed
the data from

139, 1.57, 144,

30, 57, 44,

What would be the mean and 5D of the transformed
data?

2.7.5 The following histogram shows the distribution for
a sample of data:

One of the following histograms is the result of applying
a sguare root ransformation, and the other is the resull of
applying a log transformation. Which is which? How do
you know?

(a)

(b}

2.7.6 (Computer problem) The [ile “Exercise 2.76.csv7 is
included on the data disk packaged with this text. This file
conlains 36 observations on the number of dendritic
branch segments emanating from nerve cells taken from
the brains of newborn guinea pigs. (These data were used
in Exercise 2.2.4.) Open the file and enter the data into a
statistics package. Make a histogram of the data, which
are skewed to the right. Now consider the following pos-
sible transformations: sqri(Y), log{Y), and 1/sqri(Y).
Which of these transformations does the best job of meet-
ing the goal of making the resulting distribution reason-
ably symmetric?

Table 2.8.1 Blood
types of 3,696 persons
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Blood Types In an early study of the ABO blood-typing system, researchers deter-
mined blood types of 3,69 persons in England. The results are given in Table 2.8.1.%

These data were not collected for the purpose of learning about the blood types
of those particular 3,696 people. Rather, they were collected for their scientific value
as a source of information about the distribution of blood types in a larger popula-
tion. For instance, one might presume that the blood type distribution of all English
people should resemble the distribution for these 369 people. In particular, the
observed relative frequency of type A blood was

1634

3506 T 44% type A
One might conclude from this that approximately 44% of the people in England
have type A blood. [ ]

The process of drawing conclusions about a population, based on observations
in a sample from that population, is called statistical inference. For instance, in
Example 2.8.1 the conclusion that approximately 44% of the people in England
have type A blood would be a statistical inference. The inference is shown schemati-
cally in Figure 2.8.1. Of course, such an inference might be entirely wrong— perhaps
the 3.696 people are not at all representative of English people in general. We might
be worried about two possible sources of difficulty: (1) the 3,696 people might have
been selected in a way that was systematically biased for (or against) type A people,
and (2) the number of people examined might have been too small to permit gener-
alization to a population of many millions In general, it turns out that the population
size being in the millions is st a problem, but bias in the way people are selected is
a big concern.

L. POPULATION: Blood types of 2. Select a representative sample
all English people from the population

3. Tabulate data in
the SAMPLE:
Blood types of
1,69 English people

4. Perform analyses for statistical
inference about the population

2.8 Statistical Inference

The description of a data set is sometimes of interest for its own sake. Usually, how-
ever, the researcher hopes to generalize, to extend the findings beyond the limited
scope of the particular group of animals, plants, or other units that were actually
observed. Statistical theory provides a rational basis for this process of generaliza-
tion, building on the random sampling model from Section 1.3 and taking into
account the variability of the data. The key idea of the statistical approach is to view
the particular data in a study as a sample from a larger population; the population is
the real focus of scientific andfor practical interest. The following example illustrates
this idea.

Figure 2.8.1 Schematic representation of inference from sample to population regarding
prevalence of blood type A

In making a statistical inference, we hope that the sample resembles the popula-
tion closely —that the sample is representative of the population. In Section 1.3 we
saw how sampling bias can lead to nonrepresentative samples. However, even in the
absence of bias, we must ask how likely it is that a particular sample will provide a
good representation of the population. The important question is: How representa-
tive (af the population ) is a sample likely to be? We will see in Chapter 5 how statisti-

cal theory can help to answer this question.
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Example
1.8.2

Example
1.83

SPECIFYING THE POPULATION

In Section 1.3 we emphasized that the collection of individuals that comprise a sam-
ple should be representative of the population. In fact, this requirement is a bit
stronger than what is actually necessary. Ultimately, what matters is that the mea-
surements that we obtain on the variable of interest are representative of the values
present in the population. The following provides an example of a case where the
sample members might not be representative of the population, but one could argue
that the measurements taken from this sample could be viewed as representative of
the larger population.

Blood Types How were the 3,696 English people of Example 2.8.1 actually chosen?
It appears from the original paper that this was a “sample of convenience,” that is,
friends of the investigators, employees, and sundry unspecified sources. There is little
basis for believing that the people themselves would be representative of the entire
English population. Nevertheless, one might argue that their blood types might be
(more or less) representative of the population. The argument would be that the
biases that entered into the selection of those particular people were probably not
related to blood type. [Nonetheless, an objection to this argument might be made on
the basis of race. For example, the racial distribution of the sample could differ sub-
stantially from the racial distribution of England (the population), and there are
known differences in blood type distributions among races.] The argument for rep-
resentativeness would be much less plausible if the observed variable were blood
pressure rather than blood type: we know that blood pressure tends to increase with
age, and the selection procedure was undoubtedly biased against certain age groups

(e.g., elderly people). ]

As Example 2.8.2 shows, whether the measurements obtained from a sample are
likely to be representative of the measurements from a population depends not only
on how the observational units (in this case people) were chosen, but also on the
variable that was observed. Ideally we would always work with random samples, but
we have noted that in some instances random samples are not possible or conve-
nient. However, by turning our attention to the measurements themselves rather
than the individuals from which they came, we can often make an argument for the
generalizabiltity (or lack of generalizability) of our results to a larger population. We
do this by thinking of the population as consisting of observations or a collection of
values from a measurement process, rather than of people or other observational
units. The following is another example.

Alcohol and MOPEG  The biochemical MOPEG plays a role in brain function.
Seven healthy male volunteers participated in a study to determine whether drink-
ing alcohol might elevate the concentration of MOPEG in the cerebrospinal fluid.
The MOPEG concentration was measured twice for each man —once at the start of
the experiment, and again after he drank 80 gm of ethanol. The results (in pmol/ml)
are given in Table 2,824

Let us focus on the rightmost column, which shows the change in MOPEG con-
centration (i.e.. the difference between the “after” and the “before”™ measurements).
In thinking of these values as a sample from a population, we need to specify all the
details of the experimental conditions—how the cerebrospinal specimens were
obtained. the exact timing of the measurements and the alcohol consumption, and so
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Table 2.8.2 Effect of alcohol on MOPEG

MOPEG concentration
Voluntee: Before Alfter Change
1 46 56 10
2 47 52 3
3 41 47 [
4 45 48 3
5 37 37 0
3 48 51 3
7 S8 2 4

on—as well as relevant characteristics of the volunteers themselves. Thus, the defini-
tion of the population might be something like this:

Population Change in cerebrospinal MOPEG concentration in healthy young
men when measured hefore and after drinking 80 gm of ethanol, both measure-
menis being made at 800 ., . . . (other relevanl experimental conditions are
specified here).

There is no single “correct” definition of a population for an experiment like
this. A scientist reading a report of the experiment might find this definition too nar-
row (e.g., perhaps it does not matter that the volunteers were measured at #:00 am.)
or too broad. She might use her knowledge of alcohol and brain chemistry to formu-
late her own definition, and she would then use that definition as a basis for inter-
preting these seven observations. -

DESCRIBING A POPULATION

Because observations are made only on a sample, characteristics of biological popu-
lations are almost never known exactly. Typically, our knowledge of a population
characteristic comes from a sample. In statistical language, we say that the sample
characteristic is an estimate of the corresponding population characteristic. Thus,
estimation is a type of statistical inference.

Just as each sample has a distribution, a mean, and an 8D, so also we can envi-
sion a population distribution, a population mean, and a population SD. In order to
discuss inference from a sample to a population, we will need a language for describ-
ing the population. This language parallels the language that describes the sample. A
sample characteristic is called a statistic; a population characteristic is called a
parameter.

PROPORTIONS

For a categorical variable, we can describe a population by simply stating the pro-
portion, or relative frequency, of the population in each category. The following is a
simple example.

Oat Plants  In a certain population of oat plants, resistance to crown rust disease is
distributed as shown in Table 2.8.3.5 -
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Table 2.8.3 Disease resistance in oats

Resistance Proportion of plants
Resistant 0.47
Intermediate 0.43
Susceplible 0.10
Total 1.00

Remark The population described in Example 2.8.4 is realistic, but it is not a spe-
cific real population: the exact proportions for any real population are not known.
For similar reasons, we will use fictitious but realistic populations in several other
examples, here and in Chapters 3,4, and 5

For categorical data, the sample proportion of a category is an estimate of the
corresponding population proportion. Because these two proportions are not neces-
sarily the same, it is essential to have a notation that distinguishes between them. We
denote the population proportion of a category by p and the sample proportion by
f (read “p-hat™):

p = Population proportion
f = Sample proportion

| o=

The symbo can be interpreted as “estimate of.” Thus,

fis an estimate of p

We illustrate this notation with an example.

Lung Cancer Eleven patients suffering from adenocarcinoma (a type of lung can-
cer) were treated with the chemotherapeutic agent Mitomycin. Three of the patients
showed a positive response (defined as shrinkage of the tumor by at least 5[1%).5'
Suppose we define the population for this study as “responses of all adenocarcinoma
patients.” Then we can represent the sample and population proportions of the cat-
egory “positive response” as follows:

p = Proportion of positive responders among all adenocarcinoma patients

f = Proportion of positive responders among the 11 patients in the study

.3
P=1= 027
Note that p is unknown, and f, which is known, is an estimate of p. -

We should emphasize that an “estimate,” as we are using the term, may or may
not be a good estimate. For instance, the estimate p in Example 2.8.5 is based on
very few patients; estimates based on a small number of observations are subject to
considerable uncertainty. Of course, the question of whether an estimation proce-
dure is good or poor is an important one, and we will show in later chapters how this
question can be answered.

OTHER DESCRIPTIVE MEASURES

If the observed variable is quantitative, one can consider descriptive measures other
than proportions—the mean, the quartiles, the SD, and so0 on. Each of these quanti-
ties can be computed for a sample of data, and each is an estimate of its corresponding
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population analog. For instance, the sample median is an estimate of the population
median. In later chapters, we will focus especially on the mean and the SD, and so we
will need a special notation for the population mean and SD. The population mean
is denoted by g (mu), and the population SI} is denoted by o (sigma). We may
define these as follows for a quantitative variable ¥

p = Population average value of ¥

= = VPopulation average value of (¥ — )

The following example illustrates this notation.

Tobacco Leaves An agronomist counted the number of leaves on each of 1§D
tobacco plants of the same strain (Havana). The results are shown in Table 2.8477
The sample mean is

¥ = 19.78 = Mean number of leaves on the 150 plants

Table 2.8.4 Number of leaves on tobacco plants

Number of leaves Frequency (number of planis)

17 3
18 22
19 44
0 42
21 22
2z 10
3 6
24 1

Total 150

The population mean is

= Mean number of leaves on Havana tobacco plants grown
under these conditions

We do not know u, but we can regard ¥ = 19.78 as an estimate of u. The sample 5D
is

5 = 138 = SD of number of leaves on the 150 plants
The population SD) is

e = 5D of number of leaves on Havana tobacco plants grown
under these conditions

We do not know o, but we can regard as an estimate of o ¥ -

*¥ou may wonder why we use ¥ and s instead of & and &. One answer is tradition. Another answer is that since
07 means estimate, you might have other estimates in mind.
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2.9 Perspective

In this chapter we have considered various ways of describing a set of data. We have
also introduced the notion of regarding features of a sample as estimates of corre-
sponding features of a svitably defined population.

PARAMETERS AND STATISTICS

Some features of a distribution—for instance, the mean—can be represented by a
single number, while some —for instance, the shape —cannot. We have noted that a
numerical measure that describes a sample is called a statistic. Correspondingly, a
numerical measure that describes a population is called a parameter. For the most
important numerical measures, we have defined notations to distinguish between
the statistic and the parameter. These notations are summarized in Table 2.9.1 for
convenient reference.

Table 2.9.1 Notation for some important statistics and parameters

Sample value Population valug
Measure (statistic) (parameler)
Proportion P r
Mean ¥ n
Standard deviation ¥ o

A LOOK AHEAD

It is natural to view a sample characteristic {e.g., ¥) as an estimate of the correspond-
ing population characteristic (e.g., p). But in taking such a view, one must guard
against unjustified optimism. Of course, if the sample were perfectly representative
of the population, then the estimate would be perfectly accurate. But this raises the
central question: How representative (of the population) is a sample likely to be?
Intuition suggests that. if the observational units are appropriately selected, then the
sample should be more or less representative of the population. Intuition also sug-
gests that larger samples should tend to be more representative than smaller sam-
ples These intuitions are basically correct, but they are too vague to provide practical
guidance for research in the life sciences. Practical questions that need to be answered
are

1. How can an investigator judge whether a sample can be viewed as “more or
less” representative of a population?

2. How can an investigator quantify “more or less” in a specific case?

In Section 1.3 we described a theoretical probability model based on random
sampling that provides a framework for the judgment in question (1), and in Chapter
6 we will see how this model can provide a concrete answer to question (2). Specifi-
cally, in Chapter 6 we will see how to analyze a set of data so as to quantify how
closely the sample mean (¥) estimates the population mean (). But before return-
ing to data analysis in Chapter 6, we will need to lay some groundwork in Chapters
1.4, and 5; the developments in these chapters are an essential prelude to under-
standing the techniques of statistical inference.

Supplementary Exercises 2.5.1-2.5.24
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2.5.1 112,710, and 1 are the number of students who
weigh (in kg) 35, 30, 42, and 40, respectively, what is the
mean weight of these 20 students?

2.5.2 A bolanist grew 15 pepper planis on the same
greenhouse bench. After 21 days, she measured the tolal
stem length (cm) of each plant, and obtained the follow-
ing values:™

124 122 134
109 122 121
11.8 135 12.0
14.1 127 132
12.6 119 131

(a) Calculate all three quartiles.

() Compute the lower fence and the upper fence of the
distribution.

(c) How large would an observation in this data sel have
to be in order to be an outlier?

2.5.3 In a behavioral study of the fruitfly Drosophila
melanopasier, a biologist measured, for individual Mies,
the total time spent preening during a 6-minute observa-
lion period. The following are the preening limes (sec) for
20 flies:*

34 24 10 16 52
76 33 31 46 24
18 26 57 32 25
48 22 48 29 19

(a) Determine the mode (5).
(b) Calculate the range.
(c) Construct a dotplot of the data.

2.5.4 To calibrale a standard curve [or assaying protein
concentrations, a plant pathologist used a spectropho-
tometer to measure the absorbance of light (wavelength
500 nm) by a protein solution. The results of 27 replicate
assays of a standard solution containing 60 pg protein per
ml waler were as follows:™

0.111 0115 0115 0110 0.099
0.121 0,107 0107 (L1040 0110
0.106 0116 (.098 0116 0.108
0098 0120 m123 0.124 0122
0116 0130 114 01080 0.123
0119 0.107

Construct a frequency distribution and display it as a
table and as a histogram.

2.5.5 Refer to the absorbance data of Exercise 2.54.

(a) Determine the median, the guartiles, and the
inlerquartile range.
(b) How large must an observation be to be an outlier?

2.5.6 The median splits data into two equal halves. Is the
median a robust statistic? Why or why not?

2.5.7 Twenly palients with severe epilepsy were observed
for 8 weeks The following are the numbers of major sei-
rures suffered by each patient during the observation
period:®

509 600535061
5000070047

(a) Is the distribution of seizures bimodal? Justify your
ANSWET.

(b} Calculate the 5D of seizures.

(c) What percentage of the seizures is within 1 SD of the
mean?

(d) What percentage of the seizures is within 2 5Ds of the
mean?

2.5.8 Consider the histogram from Exercise 2.3.13. By
“reading” the histogram, estimate the percentage of
observalions thal are less than 43. Is this percentage clos-
est to 0%, 300, 50%, T0%., W%, T (Note: The frequency
scale is not given for this histogram, because there is no
need to calculate the number of observations in cach
class. Rather, the percentage of observations that are less
than 45 can be estimated by looking at area.)

2.5.9 Consider the histogram [rom Exercise 2.3.15. By
“reading” the histogram, estimate the percentage of
observations that are greater than 25. Is this percentage
closest Lo 10%, 30%, 50%, TO%, 90% 7T (Neie: The [re-
quency scale is not given for this histogram, because
there is no need Lo calculate the number of observa-
tions in each class. Rather, the percentage of observa-
tions that are greater than 25 can be estimated by
looking at area.)

2.5.10 Calculate the variance of each of the following fic-
litious samples:

(a)12,6,73

(b)9,13,8,10

(c) 21,15, -10,6

2.5.11 To study the spatial distribution of Japanese bee-
tle larvae in the soil, researchers divided a 12- x 12-foot
section of a cornfield into 144 one-fool squares. They
counted the number of larvae ¥ in each square, with the
resulls shown in the following table. 5
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Frequency (Number
Number of larvae ol squares)
0 13
1 M
2 30
3 18
4 16
5 10
6 2
7 1
Tolal 144

(a) The mean and 5D of ¥ are ¥ = 2.23 and v = 1.47.
What percentage of the observations are within
(I} 15D of the mean?
(1i) 25Ds ol the mean?

(b) Determine the total number of larvae in all 144
squares. How is this number related to y7?

(c) Determine the median value of the distribution.

2.5.12 One measure of physical fitness is maximal oxygen
uplake, which is the maximum rale al which a person can
consume oxygen. A treadmill test was used to determine
the maximal oxygen uplake of ning college women before
and after participation in a 10-week program of vigorous
exercise. The accompanying table shows the before and
after measurements and the change (after—before); all
values are in ml O per mm per kg body weight.*

Maximal oxygen uptake I
Participant Belore Alter Change
1 486 BB 9.8
2 380 40.7 27
3 312 320 0.8
4 435 454 —0.1
5 417 432 L5
3 418 453 i3
7 379 389 Lo
8 392 4335 43
9 472 45.0 -2.2

The following computations are (o be done on the change

in maximal oxygen uptake (the right-hand column).

(a) Calculate the mean and the 5D

(b) Determine the median,

(c) Eliminate participant 1 from the data and repeat parts
(a) and (b). Which of the descriptive measures display
robustness and which do not?

2.5.13 A velerinary anatomist investigated the spatial
arrangement of the nerve cells in the intestine of a pony.
He removed a block of lissue from the intestinal wall, cut
the block into many equal sections, and counted the num-
ber of nerve cells in each of 23 randomly selected sections.
The counts were as follows.™

35 19 33 34 17 26 16 40
I8 30 23 12 27 33 22 31
28 2B 35 23 23 19 W

(a) Determine the median, the gquartiles, and the
interquartile range.
(b} Construct a boxplot of the data.

2.5.14 Exercise 2.5.13 asks [or a boxplot of the nerve-cell
data. Does this graphic support the claim that the data
came from a reasonably symmetric distribution?

2.5.15 A geneticist counted the number of bristles on a
certain region of the abdomen of the fruitlly Drosophila
melanogaster. The results for 119 individuals were as
shown in the table.

Number Numberof Numberof Number
of bristles Mies hristles of fies
9 1 38 18
30 0 39 13
31 1 40 10
32 2 41 15
i3 2 42 10
34 & 43 2
i3 9 4 2
36 11 45 3
37 12 46 2

(a) Find the mean number of bristles.
(b} Find the SD of the sample.

(c) What percentage of the observations fall within 3 5Ds
of the mean?

(d) What is the coeflicient of variation?

2.5.16 The carbon monoxide in cigarettes is thought 1o
e harardous to the fetus of a pregnanl woman who
smokes. In a study of this hypothesis, blood was drawn
from pregnant women before and afler smoking a ciga-
relte. Measuremenis were made of the percent of blood
hemoglobin bound Lo carbon monoxide as carboxyhemo-
globin (COHb). The results for 10 women are shown in
the table.™!

Blood COHb (%)
Subject Belore Aller Increase
1 12 76 6.4
2 14 4.0 26
3 13 5.0 i3
4 24 6.3 39
5 i6 5.8 22
6 0.3 6.0 33
7 20 6.4 44
8 15 50 15
9 1.0 42 iz
10 17 5.2 i3

(a) Calculate the mean and 5D of the increase in COHb.

() Calculate the mean COHb before and the mean after.
Is the mean increase equal Lo the increase in means?

(c) Determine the median increase in COHb.

(d) Repeat part (c) for the before measurements and for
the after measurements. Is the median increase equal
to the increase in medians?

2.5.17 (Computer problem) A medical researcher in
India oblained blood specimens from 31 young children,
all of whom were infected with malaria. The following
data, listed in increasing order, are the numbers of malar-
ial parasites found in 1 ml of blood from each child ®

100 140 140 271 4K 435 455 T

B2 1400 1540 1640 1920 2280 2340 3472
4914 6160 6560 674 THM B34T 9560 10516
14,960 16855 18600 22995 29800 83200 134,232

(a) Transform the data by taking the square rool of each
observation.

(b) Construct the frequency distribution of the data using
a class width of 50

(c) Determine the IQR of the original data and the 1QR
of the log-transformed data. Is the I0OR of the logs
equal to the log of the IQR?

(d) Determine the SD of the original data and the 5D of
the log-transformed data. Is the 5D of the logs equal
to the log of the SD7?

2.5.18 Rainfall, measured in inches, for the month of June
in Cleveland, Ohio, was recorded for each of 41 years™
The values had a minimum of 1.2, an average of 3.6, and
an 50 of 1.6. Which of the following is a rough histogram
for the data? How do you know?
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2.5.19 The following histograms (a), (b). and (c) show
three distributions.

| | I
20 Al 60
by
I
n Aib &0

i)

The accompanying computer output shows the mean,
median, and 5I) of the three distributions, plus the
mean, median, and SD for a fourth distribution. Match
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the histograms with the statistics. Explain your reason-
ing. (One set of statistics will not be used.)

1. Count 100 2. Count 100
Mean 41.3522 Mean 39.6761
Madian 39.5585 Median  39.5377
StdDawv 13.0136 StdDev  10.0476

3. Count 100 4. Count 100
Mean 37.7522 Mean 39.6493
Madian 39,5585 Madian  39.5448
StdDev 13.0136 StdDev  17.5126

2.5.20 The following boxplots show mortality rates
(deaths within one year per 100 patients) for heart
transplant patients at various hospitals. The low-volume
hospitals are those that perform between 5 and 9 trans-
plants per year. The high-volume hospitals perform 10
or more transplants per year.” Describe the distribu-
lions, paying special atiention to how they compare (o
ong another. Be sure to note the shape, center, and
spread of each distribution.

40 -

Mortality
=
|

I T
Low High
Volume

2.5.21 (Computer problem) Physicians measured the
concentration of calcium (nM) in blood samples from 38
healthy persons. The data are listed as follows:
95 110 13 120 B8 125
12 100 130 107 B6 130
122 122 177 107 107 107
B8 126 125 112 7B 115
78 102 103 o3 B8 110
n4 122 112 BO121 126
90 96

Calculate appropriate measures of the center and spread
of the distribution. Describe the shape of the distribution
and any unusual features in the data,

2.5.22 The [ollowing boxplot shows the same data that

are shown in one of the three histograms. Which histo-
gram goes with the boxplot? Explain your answer.

40 &b 0 I 4D &0 o 20 40 &0
(a) (] (e}

2.5.23 Here is a histogram.

Explain why the mean is less than the median of the
distribution.

2.5.24 Consider the histogram from Exercise 2.523. By
“reading” the histogram, estimale the mode of the distri-
bution. Nefe: The frequency scale is not given for this his-
togram, because there is no need to calculate the number
of observations in each class.

Chapter

PROBABILITY AND THE
BinoMmiaL DISTRIBUTION

OBJECTIVES

In this chapter we will study
the basic ideas of probability,
including

+  the “limiting frequency™
definition of probability.

+  the use of probability
trees.

+  the concept of a mndom
variable.

* rules for finding means
and standard deviations
of random variables.

+  the use of the binomial
distribution.

3.1 Probability and the Life Sciences

Probability, or chance, plays an important role in scientific thinking about living sys-
tems. Some biological processes are affected directly by chance. A familiar example
is the segregation of chromosomes in the formation of gametes; another example is
the occurrence of mutations.

Even when the biological process itself does not involve chance, the results of an
experiment are always somewhat affected by chance: chance fluctuations in environ-
mental conditions, chance variation in the genetic makeup of experimental animals,
and so on. Often, chance also enters directly through the design of an experiment;
for instance, varieties of wheat may be randomly allocated to plots in a field. (Ran-
dom allocation will be discussed in Chapter 11.)

The conclusions of a statistical data analysis are often stated in terms of proba-
bility. Probability enters statistical analysis not only because chance influences the
results of an experiment, but also because probability models allow us to quantify
how likely, or unlikely, an experimental result is, given certain modeling assumptions.
In this chapter we will introduce the language of probability and develop some sim-
ple tools for calculating probabilities.

3.2 Introduction to Probability

In this section we introduce the language of probability and its interpretation.

BASIC CONCEPTS

A probability is a numerical quantity that expresses the likelihood of an event. The
probability of an event E is written as

Pr|E)

The probability Pr{E] is always a number between 0 and 1, inclusive.

We can speak meaningfully about a probability Pr{E} only in the context of a
chance operation—that is, an operation whose outcome is not deterministic. The
chance operation must be defined in such a way that each time the chance operation
ix performed, the event E either occurs or does not occur. The following two examples
illustrate these ideas.

93
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Example
3.2.1

Example
3.2.2

Example
3.2.3

Coin Tessing Consider the familiar chance operation of tossing a coin, and define
the event

E:Heads

Each time the coin is tossed, either it falls heads or it does not. If the coin is equally
likely to fall heads or tails, then

Mﬂ=%=&5

Such an ideal coin is called a “fair” coin. If the coin is not fair (perhaps because it is
slightly bent), then Pr{E} will be some value other than 0.5, for instance,

PriE] = 0.6 =

Coin Tossing Consider the event
E: 3 heads in a row

The chance operation “toss a coin” is nof adequate for this event, because we cannot
tell from one toss whether E has occurred. A chance operation that would be ade-
quate is

Chance aperation: Toss a coin 3 times. -

The language of probability can be used to describe the results of random
sampling from a population. The simplest application of this idea is a sample of size
n = 1:that is, choosing one member at random from a population. The following is
an illustration.

Sampling Fruitflies A large population of the fruitfly Drosophila melanogaster is
maintained in a lab. In the population, 30% of the individuals are black because of a
mutation, while 70% of the individuals have the normal gray body color. Suppose
one fly is chosen at random from the population. Then the probability that a black
fly is chosen is (.2, More formally, define

E:Sampled fly is black
Then
PriE] =03 '~
The preceding example illustrates the basic relationship between probability and

random sampling: The probability that a randomly chosen individual has a certain
characteristic is equal to the proportion of population members with the characteristic.

FREQUENCY INTERPRETATION OF PROBABILITY

The frequency interpretation of probability provides a link between probability and
the real world by relating the probability of an event to a measurable quantity,
namely, the long-run relative frequency of occurrence of the event.®

¥Some statisticians prefer o different view, namely that the probability of an event is o subjective quantity
expressing a person’s “degree of beliel™ that the event will happen. Statstical methods based on this “subjectiv-
ist” interpretation ane rather different from those presented in this book.

Example
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3.2.5

Example

3.2.6
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According to the frequency interpretation, the probability of an event E is
meaningful only in relation to a chance operation that can in principle be repeated
indefinitely often. Each time the chance operation is repeated, the event E either
occurs or does not occur. The probability PriE} is interpreted as the relative frequency
of occurrence of E in an indefinitely long series of repetitions of the chance aperation.

Specifically, suppose that the chance operation is repeated a large number of
times, and that for each repetition the occurrence or nonoccurrence of F is noted.
Then we may write

#of times I occurs
#of times chance operation is repeated

Pr{E] <

The arrow in the preceding expression indicates “equality in the long run™; that is, if
the chance operation is repeated an unlimited number of times, the two sides of the
expression will be approximately equal. Here is a simple example.

Coin Tossing Consider again the chance operation of tossing a coin, and the event
E: Heads
If the coin is fair, then

#of heads

Pr{E] = (L5 + ———
riE) # of tosses

The arrow in the preceding expression indicates that, in an infinitely long series of
tosses of a fair coin, we expect to get heads about 50% of the time. -

The following two examples illustrate the relative frequency interpretation for
more complex events.

Coin Tossing Suppose that a fair coin is tossed twice. For reasons that will be
explained later in this section, the probability of getting heads both times is (0.25. This
probability has the following relative frequency interpretation.

Chance operation: Toss a coin twice
E: Both tosses are heads

# of times both tosses are heads

PriE} = 025 «»
1) # of pairs of tosses

Sampling Fruitflies [In the Drosophila population of Example 3.2.3,30% of the flies
are black and 70% are gray. Suppose that two flies are randomly chosen from the
population. We will see later in this section that the probability that both flies are the
same color is (.38, This probability can be interpreted as follows:

Chance operation; Choose a random sample of size n = 2
E: Both flies in the sample are the same color

# of times both flies are same color

Prif] =058 #of times a sample of n = 2 is chosen

We can relate this interpretation to a concrete sampling experiment. Suppose
that the Drosophila population is in a very large container, and that we have some
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mechanism for choosing a fly at random from the container. We choose one fly at 10—
random, and then another; these two constitute the first sample of n = 2. After
recording their colors, we put the two flies back into the container, and we are ready
to repeat the sampling operation once again. Such a sampling experiment would be
tedious to carry out physically, but it can readily be simulated vsing a computer.
Table 3.2.1 shows a partial record of the results of choosing 10,000 random samples
of size n = 2 from a simulated Drosophila population. After each repetition of the
chance operation (i.e., after each sample of n = 2), the cumulative relative fre-
quency of occurrence of the event £ was updated, as shown in the rightmost column
of the table.

Figure 3.2.1 shows the cumulative relative frequency plotted against the number
of samples. Notice that, as the number of samples becomes large, the relative fre-
quency of occurrence of E approaches (.58 (which is Pr{E]). In other words, the 0
percentage of color-homogeneous samples among all the samples approaches 58% 0 zln .tIIJ EL SIU 1||:l:]-
as the number of samples increases. It should be emphasized, however, that the

0.8 —

prjiE==

04—

Relative frequency of

0.2

Sample number
{a) First 100 samples

Table 3.2.1 Partial results of simulated sampling from a Drosophila population D62 —

Sample Color Relative frequency
number Isl fly 2Ind My Did E occur? of £ {cumulative)

G B No 0.000
Yes 0.500
No 0.333
Mo 0.250
Yes 0.400
No 0.333
Yes 0.429 T T T T 1
Yes 0.500 o 2000 4000 000 A0 10maa
Sample number

(b} 100th to 10,000th samples
Figure 3.2.1 Results of sampling from fruitfly population. Note that the axes are
scaled differently in (a) and (b).

PriE}— 058 —

054 —

Relative frequency of E

D= R - R I e

No 444
Yes 0.500

moo=mO000R =
o O0EwO0=m0®

o

2‘]- G B N'U 0 4-5” absolute number of color-homogeneous samples generally does not tend to get closer
i to 58% of the total number. For instance, if we compare the results shown in Table
3.2.1 for the first 100 samples and the first 1,000 samples, we find the following:

- - - : - Deviation from
100 G B No 0.540 Color-Homogeneous 58% of Total

First 100 samples: 4 or  540% —4  or 40%
First 1,000 samples: 39  or 59.6% 16 or  +l6%

. . Note that the deviation from 58% is larger in absolute terms, but smaller in relative
1.boa G G Yes 0.5% terms (i.e., in percentage terms). for 1,000 samples than for 100 samples. Likewise,
for 10,000 samples the deviation from 58% is rather larger (a deviation of —30), but
the percentage deviation is guite small (30,/10,000 is 0.3%). The deficit of 4 color-
homogeneous samples among the first 100 samples is not canceled by a correspond-

. . . ) i ing excess in later samples but rather is swamped, or overwhelmed, by a larger
10,000 B B Yes 0577 denominator. -
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PROBABILITY TREES

Often it is helpful to use a probability tree to analyze a probability problem. A
probability tree provides a convenient way to break a problem into parts and to
organize the information available. The following examples show some applications
of this idea.

Coin Tossing If a fair coin is tossed twice, then the probability of heads is (L3 on
each toss. The first part of a probability tree for this scenario shows that there are
two possible outcomes for the first toss and that they have probability 0.5 each.

Heads

Taiks

Then the tree shows that, for either outcome of the first toss, the second toss can
be either heads or tails, again with probabilities 0.5 each.

Heads
ns
Heads
05 05
Tails
Heads
05 ns
Tails
05
Tails

To find the probability of getting heads on both tosses, we consider the path
through the tree that produces this event. We multiply together the probabilities
that we encounter along the path. Figure 3.2.2 summarizes this example and
shows that

Pr [heads on both tosses) = 0.5 = 0.5 = (.25 -

Figure 3.2.2 Probability
tree for lwo coin losses

Example
3.2.8

Figure 3.2.3 Probability
tree fior sampling two fies
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Event Probability
Heads Heads, heads 025
ns
Heads
05 05
Tails Heads, tails 025
Heads Tails, heads. 025
ns ns
Tails
05
Tails Tails, tails 0325

COMBINATION OF PROBABILITIES

If an event can happen in more than one way, the relative frequency interpretation
of probability can be a guide to appropriate combinations of the probabilities of
subevents. The following example illustrates this idea.

Sampling Fruitflies In the Drosophila population of Examples 3.2.3 and 3.2.6,30%
of the flies are black and 70% are gray. Suppose that two flies are randomly chosen
from the population. Suppose we wish to find the probability that both flies are the
same color. The probability tree displayed in Figure 3.2.3 shows the four possible
outcomes from sampling two flies. From the tree, we can see that the probability of
getting two black flies is 0.3 x 0.3 = (.09 Likewise, the probability of getting two
gray flies is 0.7 = 0.7 = 0.49.

Event Probability
Black Black, black LX)
03
Black
03 o7
Gray Black, gray 021
Black Gray. black 021
o7 03
Gray
oT

Gray iray, gray 049
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Figure 3.2.4 Probability
Lree for nitric oxide
example

To find the probability of the event
E: Both flies in the sample are the same color

we add the probability of black, black to the probability of gray, gray to get 0.09 +
049 = (.58 =

In the coin tossing setting of Example 3.2.7 the second part of the probability
tree had the same structure as the first part—namely, a 0.5 chance of heads and a
0.5 chance of tails—because the outcome of the first toss does not affect the prob-
ability of heads on the second toss. Likewise, in Example 3.2.8 the probability of the
second fly being black was (1.3, regardless of the color of the first fly, because the
population was assumed to be very large, so that removing one fly from the popula-
tion would not affect the proportion of flies that are black. However, in some situ-
ations we need to treat the second part of the probability tree differently than the
first part.

Mitric Oxide Hypoxic respiratory failure is a serious condition that affects some
newborns. If a newborn has this condition, it is often necessary to use extracorporeal
membrane oxygenation (ECMO) to save the life of the child. However, ECMO is an
invasive procedure that involves inserting a tube into a vein or artery near the heart,
so physicians hope to avoid the need for it. One treatment for hypoxic respiratory
failure is to have the newhorn inhale nitric oxide. To test the effectiveness of this
treatment. newborns suffering hypoxic respi ramr?r failure were assigned at random
to either be given nitric oxide or a control group.’ In the treatment group 45.6% of
the newborns had a negative outcome, meaning that either they needed ECMO or
that they died. In the control group, 63.6% of the newborns had a negative outcome.
Figure 3.2.4 shows a probability tree for this experiment.

Otcome Probability

Positive oz
0544
Treatment
s
0456
Megative 0228
Positive 0182
05 0364
Control
0634
Megative 0318

If we choose a newborn at random from this group, there is a 0.5 probability that
the newborn will be in the treatment group and, if so, a probability of 1436 of getting
a negative outcome. Likewise, there is a (.5 probability that the newborn will be in

Example

3.2.10

Example

3.2.11
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the control group and, if so, a probability of 0.636 of getting a negative outcome.
Thus, the probability of a negative outcome is

035 = 0456 + 0.5 = 0.636 = 0228 + 0.318 = 0.546. -

HYPOTHETICAL 1,000

It is often helpful to think about a probability question in terms of what we would
expect to see in 1,000 repetitions of the situation. The following example illustrates
this mode of thinking.

Mitric Oxide Suppose that 1.000 infants experiencing hypoxic respiratory failure
were enrolled in a study like the one described in Example 3.2.9. We would expect
500 of them to be given the treatment (nitric oxide) and 500 of them to be in the
control group. Based on Figure 3.2.4, of those given the treatment we expect
54.4% to have a positive outcome. Thus, we expect 500 x 0.544 = 272 positive
outcomes in the treatment group; likewise, we expect 500 = 0.456 = 228 nega-
tive outcomes in the treatment group. For the control group, the corresponding
numbers are 500 = 0.364 = 182 positive outcomes and 500 = 0.636 = 318 nega-
tive outcomes.

We can put these numbers together to get Table 3.2.2. From the table we can see
that there are 546 negative outcomes out of the 1,000 total cases. This agrees with the

probability of 0.546 found in Example 32.9. -
Outcome
Positive  Negative  Tolal
Treatment iy 128 500
Control 182 318 500
Total 454 346 1,000

Medical Testing Suppose a medical test is conducted on someone to try to deter-
mine whether or not the person has a particular disease. If the test indicates that the
disease is present, we say the person has “tested positive.” If the test indicates that
the disease is not present, we say the person has “tested negative.” However, there
are two types of mistakes that can be made. It is possible that the test indicates that
the disease is present, but the person does not really have the disease; this is known
as a false positive. It is also possible that the person has the disease, but the test does
not detect it; this is known as a false negative.

Suppose that a particular test has a 95% chance of detecting the disease if the
person has it (this is called the sensitivity of the test) and a 90% chance of cor-
rectly indicating that the disease is absent if the person really does not have the
disease (this is called the specificity of the test). Suppose 8% of the population
has the disease. What is the probability that a randomly chosen person will test
positive?

Figure 3.2.5 shows a probability tree for this situation. The first split in the tree
shows the division between those who have the disease and those who don't. If
someone has the disease, then we use (.95 as the chance of the person testing posi-
tive. If the person doesn’t have the disease, then we use (.10 as the chance of the
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Figure 3.2.5 Probability
tree for medical testing

example

Example

3.2.12

Event Probability
Test True positive 0,076
itive
0.95 s
Have
disaase
008
0 Test
nigal.i-ve Fake negative 0004
Test False positive .02
positive
0.2 0.1
Dron’t
have
dizease
0ne
Test True negative 0.E28
negative

person testing positive. Thus, the probability of a randomly chosen person testing
positive is
0.08 > 0.95 + 0.92 x 0.10 = 0.076 + 0.092 = 0.168. -

We can apply the Hypothetical 1,000 idea to Example 3.2.11. Table 3.2.3 shows
that we expect 80 out of 1,000 people to have the disease (0.08 = 1.000) and 76 of
them to test positive (095 = B0). We expect Y20 people to not have the disease and
92 of them (0.1 = 920) to test positive. From the table we see that 168 out of 1,000
people test positive: this agrees with the probability of 0.168 found in Example 3.2.11

Table 3.2.3 Medical testing outcomes

Test result
Positive  Megalive  Total
Disease 76 4 B0
No disease 92 28 920
Total 168 832 1.000

False Positives Consider the medical testing scenario of Example 3.2.11. If some-
one tests positive, what is the chance the person really has the disease? Table 3.2.3
shows that we would expect 168 out of 1,000 to test positive. The probability of a true
positive is (L076, 5o we would expect 76 “true positives™ out of 1,000 persons tested.
Thus, we expect 76 true positives out of 168 total positives, which is to say that the
probability that someone really has the disease, given that the person tests positive,
i 6 _ 0076

168 0.168
expect it to be, given that the sensitivity and specificity of the test are (.95 and 0.90.
We also see that out of the 168 positive test results only 76 are true positives, giving
a rate of 76/168 = 0,452, -

== ().452. This probability is quite a bit smaller than most people

Exercises 3.2.1-3.2.8
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3.2.1 In a certain population of the freshwater sculpin,
Cottus rothews, the distribution of the number of tail ver-
tebrae is as shown in the table?

Mooof vertebrag  Percent of fish
20 3
21 51
2 40
23 [
Tolal 100

Find the probability that the number of tail vertebrae in a
fish randomly chosen from the population

(a) equals 21.

() is less than or equal to 22
(c) is greater than 21,

(d) is no more than 21

3.2.2 The following table shows the distribution of ages
of Americans?

Age distribution in reference population

Agpe Propartion
0-19 027
20-29 0.14
30-39 013
4049 014
S0-64 0.19
63+ 0.13

Find the probability that the age of a randomly chosen
American

(a) is less than 20,

() is between 20 and 49,

(c) is greater than 49,

(d) is greater than 29

3.2.3 Inacertain college, 55% of the students are women.

Suppose we lake a sample of two students. Use a proba-
bility tree to find the probability

(a) that both chosen students are women.
(b) that at least one of the two students is a woman.

3.2.4 Suppose that a disease is inherited via a sex-
linked mode of inheritance so that a male offspring has
a 50% chance of inheriting the disease, but a female off-
spring has no chance of inheriting the disease. Further
suppose that 51.3% of births are male. What is the prob-
ability that a randomly chosen child will be affected by
the disease?

3.2.5 Suppose thal a student who is aboul Lo take a mul-
tiple choice test has only learned 40°% of the material cov-
ered by the exam. Thus, there is a 40% chance that she
will know the answer (o a question. However, even if she
does not know the answer o a question, she still has a
20%. chance of getling the right answer by guessing, If we
choose a question at random from the exam, what is the
probability that she will get it right?

3.2.6 If a woman takes an early pregnancy test, she will
either test positive, meaning that the test says she is preg-
nant, or lest negative, meaning that the test says she is not
pregnant. Suppose that if a woman really is pregnant,
there is a 98% chance that she will test positive. Also, sup-
pose that if a woman really is aot pregnant, there is a 999%
chance that she will test negative.

(a) Suppose that 1.000 women take early pregnancy tests
and that 100 of them really are pregnant. What is the
probability that a randomly chosen woman from this
eroup will test positive?

(b} Suppose that 1,000 women Lake early pregnancy Lests
and that 50 of them really are pregnant. What is the
prohability that a randomly chosen woman from this
group will lest positive?

3T

(a) Consider the selling of Exercise 3.2.6, parl (a).
Suppose that a woman tests positive. What is the
probability thal she really is pregnant?

(b) Consider the selling of Exercise 3.2.6, parl (b).
Suppose that a woman tests positive. What is the
probability thal she really is pregnant?

3.2.8 Suppose thal a medical Lest has a 92% chance of

detecting a disease if the person has it (i.e., 92% sensitiv-

ity) and a 94%, chance of correctly indicating that the dis-

ease is absent il the person really does not have the

disease (i.e., 94% specificity). Suppose 10% of the popu-

lation has the disease.

(a) Whal is the probability that a randomly chosen person
will test positive?

(b) Suppose that a randomly chosen person does test
positive. What is the probability that this person really
has the disease?
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3.3 Probability Rules (Optional)

We have defined the probability of an event, Pr[E], as the long-run relative fre-
quency with which the event occurs. In this section we will briefly consider a few
rules that help determine probabilities. We begin with three basic rules.

BASIC RULES

Rule (1) The probability of an event E is always between 0 and 1. That is,
0=Pr{E} =1

Rule (2) The sum of the probabilities of all possible events equals 1. That is, if the
set of all possible events is Ey, Fs. ..., F, then E}t::Pr[E,-] =1.

Rule (3) The probability that an event E does not happen, denoted by EC,is one
minus the probability that the event happens. That is, Pr[ES) =1 — Pr[E).
(We refer to E¥ as the complement of E.)

We illustrate these rules with an example.

Blood Type In the United States, 44% of the population has type O blood, 42% has
type A, 10% has type B, and 4% has type AB.* Consider choosing someone at ran-
dom and determining the person’s blood type. The probability of a given blood type
will correspond to the population percentage.

(a) The probability that the person will have type O blood = Pr{O} = (.44,

{by PriO} + Pr{A} + Pr[B] + Pr{AB] = 0.44 + 042 + 010 + .M = 1.

{c) The probability that the person will not have type O blood = Pri0f) = 1-044 =
(.36, This could also be found by adding the probabilities of the other blood
types: Pri0%] = Pr|A] + Pr[B] + Pr{AR] = 042 + 0.10 + 0.4 = 0.56. m

We often want to discuss two or more events at once: to do this we will find some
terminology to be helpful. We say that two events are disjoint® if they cannot occur
simultaneously. Figure 3.3.1 is a Venn diagram that depicts a sample space § of all
possible outcomes as a rectangle with two disjoint events depicted as nonoverlap-
ping regions.

The union of two events is the event that one or the other oocurs or both occur.
The intersection of two events is the event that they both occur. Figure 3.3.2 is a Venn
diagram that shows the union of two events as the total shaded area. with the inter-
section of the events being the overlapping region in the middle.

If two events are disjoint, then the probability of their union is the sum of their
individual probabilities. If the events are not disjoint, then to find the probability of
their union we take the sum of their individual probabilities and subtract the prob-
ability of their intersection (the part that was “counted twice™).

ADDITION RULES

Rule (4) If two events E, and F; are disjoint, then.
Pr|E, or 3} = PrE,] + Pr{£;).

*Another tlerm for disjoint events is “mutually exchsive” evenls.
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5 5 Eyand £,

Figure 3.3.1 Venn diagram showing two disjoint Figure 3.3.2 Venn diagram showing union (lotal
events shaded area) and intersection (middle area) of two
evenls

Rule (3) For any two events Ey and Es,
Pr{Ey or Bz} = Pr[E)] + Pr{Ez} — Pr{Ej and E).

We illustrate these rules with an example.

Example Hair Color and Eye Color Table 3.3.1 shows the relationship between hair color and
332 eye color for a group of 1,770 German men.
Hair color

Brown  Black Red Total

Eye color  Brown 400 300 0 720
Blue 800 200 30 1050

Total 1,200 500 70 1.770

(a) Because events “black hair” and “red hair” are disjoint. if we choose someone
at random from this group then Pr{black hair or red hair] = Pr{black hair) +
Prired hair} = 500/1,770 + 70/1.770 = 570,1.770.

(b) If we choose someone at random from this group, then Priblack hair] =
500,/1.770.

(c) If we choose someone at random from this group, then Priblue eyes} =
1.050/1.770.

{d) The events “black hair” and “blue eyes™ are not disjoint, since there are 200
men with both black hair and blue eyes. Thus, Pr{black hair or blue eves] =
Priblack hair} + Pr{blue eves] — Pr{black hair and blue eyes} = 500/1,770 +
1050/1.770 — 20041770 = 1,350/1,770. -

Two events are said to be independent if knowing that one of them occurred
does not change the probability of the other one occurring. For example, if a coin is
tossed twice, the outcome of the second toss is independent of the outcome of the
first toss, since knowing whether the first toss resulted in heads or in tails does not
change the probability of getting heads on the second toss.
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Events that are not independent are said to be dependent. When events are
dependent, we need to consider the conditional probability of one event, given that
the other event has happened. We use the notation

Pr{E:| Ey}
to represent the probability of £z happening, given that F; happened.

Hair Color and Eye Color Consider choosing a man at random from the group
shown in Table 3.3.1. Overall, the probability of blue eyes is 1.050/1,770, or about
59.3%. However, if the man has black hair, then the conditional probability of blue
eyes is only 200/500, or 40%: that is, Pr{blue eyes|black hair] = 0.40. Because the
probability of blue eves depends on hair color, the events “black hair” and “blue
eyes” are dependent. -

Refer again to Figure 3.3.2, which shows the intersection of two regions (for £,
and E3). If we know that the event E| has happened, then we can restrict our atten-
tion to the E; region in the Venn diagram. If we now want to find the chance that E5
will happen, we need to consider the intersection of £y and E; relative to the entire
Ey region. In the case of Example 3.3.3, this corresponds to knowing that a randomly
chosen man has black hair, so that we restrict our attention to the 500 men (out of
1,770 total in the group) with black hair. Of these men, 200 have blue eyes The 200
are in the intersection of “black hair” and “blue eyes.” The fraction 200,500 is the
conditional probability of having blue eyes, given that the man has black hair.

This leads to the following formal definition of the conditional probability of 3
given Fy:

DEFINITION The conditional probability of £z, given Ej,is
~ Pr|E and B3]
PrE; | Ey) = T E]

provided that Pr{E;] = 0.

Hair Coler and Eye Color Consider choosing a man at random from the group
shown in Table 3.2.1. The probability of the man having blue eyes given that he has
black hair is

Pr{blue eyes| black hair} = Pr{black hair and blue eyes] /Pr{black hair}

200/1,770 200

~So0/17T0 s 0.40- =

In Section 3.2 we used probability trees to study compound events. In doing so,
we implicitly used multiplication rules that we now make explicit.

MULTIPLICATION RULES

Rule (6) If two events Ey and E; are independent. then
Pr{E| and E;} = Pr{E] = Pr{E;).
Rule (7) For any two events Ey and Ez, Pr{E) and E;} = Pr{E;] = Pr{Ea|E).

Example

3.3.5

Example

3.3.6

Example

3.3.7

Example

3.3.8

Section 3.3 Probability Rules (Optional) 107

Coin Tossing  If a fair coin is tossed twice, the two tosses are independent of each
other. Thus, the probability of getting heads on both tosses is

Priheads twice] = Pr{heads on first toss} = Pr[heads on second toss]
=05x05=025 -

Blood Type In Example 33.1 we stated that 44% of the U.S. population has type O
blood. It is also true that 13% of the population is Rh negative and that this is inde-
pendent of blood group. Thus, if someone is chosen at random, the probability that
the person has type O, Rh negative blood is

Prigroup O and Rh negative] = Pr{group O} % Pr{Rh negative)
= 044 3 0.15 = 0.066. =

Hair Color and Eye Color Consider choosing a2 man at random from the group
shown in Table 3.3.1. What is the probability that the man will have red hair and
brown eyes? Hair color and eye color are dependent, so finding this probability
involves using a conditional probability. The probability that the man will have red
hair is 70/1,770. Given that the man has red hair, the conditional probability of
brown eyes is 20/70. Thus,

Prred hair and brown eyes} = Pr{red hair} = Pr{brown eyes |red hair}
= /1,770 > 2070 = 20/1,770. =

Sometimes a probability problem can be broken into two conditional “parts”™ that
are solved separately and the answers combined.

Rule of Total Probability
Bule (8) For any two events Ej and F3,
Pri£y] = PriEs] x PriE,| B3] + Pr{ES) x PriE | Ef).

Hand Size Consider choosing someone at random from a population that is 60%
female and 40% male. Suppose that for 2 woman the probability of having a hand
size smaller than 100 cm? is 0.31.° Suppose that for a man the probability of having a
hand size smaller than 100 cm” is 0.08. What is the probability that the randomly
chosen person will have a hand size smaller than 100 cm®?

We are given that if the person is a woman, then the probability of a “small”
hand size is (.31 and that if the person is a man, then the probability of a “small”
hand size is 0.08.

Thus,

Pr{handsize < 100

Priwoman} = Pr{handsize < 10{)| woman]

+ Priman] < Pr{hand size < 100|man}

06 = 031 + 0.4 > 0.08

= (.18 + 0.032

= (0.218. -

We can apply the Hypothetical 1000 idea here. Table 3.3.2 shows 600 women,
of whom 31% have small hands (.31 = 600 = 186) and 69% don't. We also see
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Table 3.3.2 Hand size

Hand size
=100em® =100cm®  Total
Woman 186 414 600
Man 32 368 400
Total 218 782 1,000

400 men, of whom 8% have small hands (0.08 > 400 = 32) and 92% don’t. The
column “< 100 em*" sums to 218; this agrees with the probability of 0.218.

Exercises 3.3.1-3.3.5

3.3.1 In a study of the relationship between health risk
and income, alarge group of people living in Massachusells
were asked a series of questions.” Some of the resulls are
shown in the following table.

Income
Low  Medium High Total
Smoke 634 332 247 1213
Dot smoke  |1.846 1,622 1,868 5,336
Total 2480 1,954 2115 6,540

(a) What is the probability that someone in this study
smokes?

() What is the conditional probability that someone in
this study smokes, given that the person has high
income?

{c) Is being a smoker independent of having a high
income? Why or why not?

3.3.2 Consider the data table reported in Exercise 3.3.1.

(a) What is the probability thal someone in this study is
from the low income group and smokes?

() What is the probability that someone in this study is
not from the low income group?

(c) What is the probability thal someone in this study is
from the medium income group?

(d) What is the probability thal someone in this study is
from the low income group or from the medium
income group?

3.3.3 The following data table is taken from the study

reporied in Exercise 3.5.1, Here “stressed”™ means that the
person reported that most days are extremely stressful or

quite stressful; “not stressed” means that the person
reported that most days are a bil stressful, nol very stress-
ful, or not at all stressful.

Income
Low  Mediom High Total
Stressed 526 74 216 1,08
Mot stressed  [1.954 1.680 1.8 | 53533
Total 2480 1954 2115 6540

(a) What is the probability thal someone in this study is
stressed?

(b) Given that someone in this study is from the high
income group, what is the probability thal the person
is stressed?

() Compare your answers Lo parls (a) and (b). Is being
stressed independent of having high income? Why or
why not?

3.3.4 Consider the data table reported in Exercise 3.3.3.

(a) Whalt is the probability that someone in this study has
low income?

(b) What is the probability that someone in this study
either is stressed or has low income (or both)?

(c) What is the probabilily thal someone in this study is
stressed and has low income?

3.3.5 Suppose that in a certain population of married
couples, 3% of the hushands smoke, 20% of the wives
smoke, and in 8% of the couples both the husband and
the wife smoke. Is the smoking status (smoker or non-
smoker) of the husband independent of that of the wife?
Why or why not?

Example
3.4.1

Section 34 Density Curves 109

3.4 Density Curves

The examples presented in Section 3.2 dealt with probabilities for discrete variables.
In this section we will consider probability when the variable is continuous.

RELATIVE FREQUENCY HISTOGRAMS AND DENSITY CURVES

In Chapter 2 we discussed the use of a histogram to represent a frequency distribu-
tion for a variable. A relative frequency histogram is a histogram in which we indicate
the proportion (i.c.. the relative frequency) of observations in each category, rather
than the count of observations in the category. We can think of the relative frequency
histogram as an approximation of the underlying true population distribution from
which the data came.

It is often desirable. especially when the observed variable is continuous, to
describe a population frequency distribution by a smooth curve. We may visualize
the curve as an idealization of a relative frequency histogram with very narrow
classes The following example illustrates this idea.

Blood Glucose A glucose tolerance test can be useful in diagnosing diabetes.
The blood level of glucose is measured one hour after the subject has drunk
50 mg of glucose dissolved in water. Figure 2.4.1 shows the distribution of
responses to this test for a certain population of women.® The distribution is
represented by histograms with class widths equal to (a) 10 and (b) 5, and by
(c) a smooth curve. -

I I | !
50 10 150 200

Blood glucose (mg/dl)

(a)

1
250 Sy 100 150 200 250
Blood glucose (mg/dl)
(b)
| I I | I
50 100 150 200 250

Blood glucose {mg/dl)
(€}

Figure 3.4.1 Different representations of the distribution of blood glucose levels in a
population of women
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A smooth curve representing a frequency distribution is called a density curve.
The vertical coordinates of a density curve are plotted on a scale called a density
scale. When the density scale is used, relative frequencies are represented as areas
under the curve. Formally, the relation is as follows:

Interpretation of Density
For any two numbers a and b,

Area under density curve _ Proportion of ¥ values
between a and b ~ betweenaand b

This relation is indicated in Figure 3.4.2 for an arbitrary distribution

Because of the way the density curve is interpreted, the density curve is entirely
above (or equal to) the x-axis and the area under the entire curve must be equal to
1,as shown in Figure 3.4.3.

The interpretation of density curves in terms of areas is illustrated concretely in
the following example.

Avrea = Proportion of ¥ vahies
between a and b

Arca=1

| |
a b

Figure 3.4.2 Interpretation of area under a density Figure 3.4.3 The arca under an entire density curve
curve must be 1

Example Blood Glucose  Figure 3.4.4 shows the density curve for the blood glucose distribu-
342 tion of Example 3.4.1, with the vertical scale explicitly shown. The shaded area is
equal to (.42, which indicates that about 42% of the glucose levels are between

100 mgfd] and 150 mg/dl. The area under the density curve to the left of 100 mg/dl is

equal to 0.50; this indicates that the population median glucose level is 100 mg/dl.

The area under the entire curve is L. -
Figure 3.4.4
Interpretation of an area
under the blood glucose Area= 042
densily curve o o
000 1 | ] T I
50 100 150 200 250

Blood glucose {mgfdl)

The Continuum Paradox The area interpretation of a density curve has a para-
doxical element. If we ask for the relative frequency of asingle specific ¥ value, the
answer is zero, For example, suppose we want to determine from Figure 3.4.4 the

Example
3.4.3

Example
3.4.4

Figure 3.4.5 Diameters of
3l-year-old Douglas fir
Lrees
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relative frequency of blood glucose levels equal to 150, The area interpretation
gives an answer of zero. This seems to be nonsense —how can every value of ¥V
have a relative frequency of zero? Let us look more closely at the question. If
blood glucose is measured to the nearest mg/dl, then we are really asking for the
relative frequency of glucose levels between 149.5 and 150.5 mg/dl, and the corre-
sponding area is not zero. On the other hand, if we are thinking of blood glucose
as an idealized continuous variable, then the relative frequency of any particular
value (e.g., 150) is zero. This is admittedly a paradoxical situation. It is similar to
the paradoxical fact that an idealized straight line can be 1 centimeter long, and yet
each of the idealized points of which the line is composed has length equal to zero.
In practice, the continuum paradox does not cause any trouble: we simply do not
discuss the relative frequency of a single ¥ value (just as we do not discuss the
length of a single point).

PROBABILITIES AND DENSITY CURVES

If a variable has a continuous distribution, then we find probabilities by using the
density curve for the variable. A probability for a continuous variable equals the
area under the density curve for the variable between two points,

Blood Glucose Consider the blood glucose level, in mg/dl, of a randomly chosen
subject from the population described in Example 3.4.2. We saw in Example 3.4.2
that 42% of the population glucose levels are between 100 mg/dl and 150 mg/dl.
Thus, Pr{100 = glucose level = 150} = 0.42.

We are modeling blood glucose level as being a continuous variable, which
means that Priglucose level = 100] = 0 and Priglucose level = 150) = 0, as we
noted above. Thus,

Pr{1li} = glucose level = 150) = Pr{100 = glucose level < 150} =042, =

Tree Diameters The diameter of a tree trunk is an important variable in forestry.
The density curve shown in Figure 3.4.5 represents the distribution of diameters
(measured at breast height) in a population of 30-year-old Douglas fir trees; areas
under the curve are shown in the figure.® Consider the diameter, in inches, of a ran-
domly chosen tree. Then, for example, Pr{4 < diameter < 6} = 0.33. If we want
to find the probability that a randomly chosen tree has a diameter greater than
8 inches, we must add the last two areas under the curve in Figure 3.4.3:
Pr{diameter = 8] = (L12 + 0.07 = (.19, =

020 033 0.25 012
T T 1 I I I T I
0 2 4 & 8 10 12 14

Diameter {inches)
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Exercises 3.4.1-3.4.5

3.4.1 Consider the densily curve shown in Figure 3.4.5,

which represents the distribution of diameters (measured
4.5 feet above the ground) in a population of 30-year-old
Douglas fir trees. Areas under the curve are shown in the
figure. What percentage of the trees have diameters

(a) between 4 inches and 10 inches?

() less than 4 inches?

(c) more than 6 inches?

3.4.2 Consider the diameter of a Douglas fir tree drawn

at random from the population that is represented by the
densily curve shown in Figure 3.4.5. Find

(a) Pr{diameter = 10]
(b) Pr{diameter = 4}
(c) Pr|2 < diameter < &)

3.4.3 Inacerain population of the parasite Trypanosoma,

the lengths of individuals are distributed as indicated by
the density curve shown here. Areas under the curve are
shown in the figure.'”

0.01

Consider the length of an individual trypanosome chosen
al random [rom the population. Find

(a) Prj20 < length < 30}

(b) Prilength = 20}

(c) Prilength - 20}

3.4.4 Consider the distribution of Trypanosoma lengths
shown by the density curve in Exercise 3.4.3. Consider the

length of an individual trypanosome chosen at random
from the population. Find

(a) Prilength - 235}

(b) Prilength = 15}

(c) Prj15 < length < 30}

3.4.5 Consider the distribution of Trypanosoma lengths

shown by the densily curve in Exercise 3.4.3. Suppose we

take a sample of two trypanosomes. What is the probahil-

ity that

(a) both trypanosomes will be shorter than 20 pm?

(b} the first trypanosome will be shorter than 20 pm and
the second trypanosome will be longer than 25 pm?

(c) exactly one of the trypanosomes will be shorter than
20 pm and one trypanosome will be longer than
25 pm?

Length (um)

35

3.5 Random Variables

Example
3.5.1

A random variable is simply a variable that takes on numerical values that depend
on the outcome of a chance operation. The following examples illustrate this idea.

Dice Consider the chance operation of tossing a die. Let the random variable ¥
represent the number of spots showing, The possible values of Yare ¥ = 1,2,3,4.5,
or 6. We do not know the value of ¥ until we have tossed the die. If we know how the
die is weighted. then we can specify the probability that ¥ has a particular value, say
Pr{Y = 4).or a particular set of values. say Pr{2 = ¥ = 4]. For instance. if the die is
perfectly balanced so that each of the six faces is equally likely, then

PriY = 4] = é = (.17
and

PI{25Y5:4|=%=[J.5 -

Example

3.5.2

Example

3.5.3

Example

354

Example

3.5.5
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Family Size Suppose a family is chosen at random from a certain population, and
let the random variable ¥ denote the number of children in the chosen family. The
possible values of Yare 0,1,2,3, ... . The probability that ¥ has a particular value is
equal to the percentage of families with that many children. For instance, if 23% of
the families have 2 children, then

Pr{Y =2} = 0.23 =

Medications After someone has heart surgery. the person is usually given several
medications. Let the random variable ¥ denote the number of medications that a
patient is given following cardiac surgery. If we know the distribution of the number
of medications per patient for the entire population, then we can specify the proba-
bility that ¥ has a certain value or falls within a certain interval of values. For instance,
if 52% of all patients are given 2.3, 4, or 5 medications, then

Pri2 =Y =35} =032 -

Heights of Men Let the random variable ¥ denote the height of a man chosen at
random from a certain population. If we know the distribution of heights in the
population, then we can specify the probability that ¥ falls in a certain range. For
instance, if 46% of the men are between 65.2 and 70.4 inches tall, then

Pries2 = ¥ = 704] = 046 ]

Each of the variables in Examples 3.5.1-3.5.3 is a discrete random variable,
because in each case we can list the possible values that the variable can take on. In
contrast, the variable in Example 3.5.4, height, is a continuous random variable:
Height, at least in theory. can take on any of an infinite number of values in an
interval. Of course, when we measure and record a person’s height, we generally
measure to the nearest inch or half inch. Nonetheless, we can think of true height as
being a continuous variable. We use density curves to model the distributions of
continuous random variables, such as blood glucose level or tree diameter, as
discussed in Section 3.4.

MEAN AND VARIANCE OF A RANDOM VARIABLE

In Chapter 2 we briefly considered the concepts of population mean and population
standard deviation. For the case of a discrete random variable, we can calculate the
population mean and standard deviation if we know the probability distribution for
the random variable. We begin with the mean.

The mean of a discrete random variable Y is defined as
my = LyPr(Y = y)

where the y,'s are the values that the variable takes on and the sum is taken over
all possible values.

The mean of a random variable is also known as the expected value and is often writ-
ten as E(Y): that is, E(Y) = py.

Fish Vertebrae In acertain population of the freshwater sculpin Cottus rotheus, the
distribution of the number of tail vertebrae, Y, is as shown in Table 3.5.1.2
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Table 3.5.1 Distribution of vertebrae

Mo of vertebrae Percent of fish
20 3
21 3
2 40
23 6
Tolal 100

The mean of ¥is
py =20 PrlY = 20) + 21 x Pr{¥ = 21} + 22 = Pr{¥ = 22} + 23 = Pr[Y = 23}

=20 x 03 + 21 x 51 + 22 x 40 + 23 x 06
=06 + 1071 + B8 + 1.38
= 21.49. -

Example Dice Consider rolling a die that is perfectly balanced so that each of the six faces is

3.5.6 equally likely to come up and let the random variable ¥ represent the number of
spots showing. The expected value, or mean, of ¥ is
1 1 1 o1 1 2 -
E{}")—p,,—lxg+2xg+ng+4xg+3xg+6xg—?—33. -

To find the standard deviation of a random variable, we first find the variance,
o, of the random variable and then take the square root of the variance to get the
the standard deviation, o

The variance of a discrete random variable V' is defined as

o = X — pPr(Y = 3)
where the yy's are the values that the variable takes on and the sum is taken over
all possible values.

We often write VAR(Y) to denote the variance of ¥.

Example Fish Vertebrae Consider the distribution of vertebrae given in Table 3.5.1. In Exam-
357 ple 3.5.5 we found that the mean of ¥ is py = 21.49. The variance of ¥ is
VAR(Y) = o} = (20 — 21497 x Pr|Y = 20}
+ (21 — 21497 x Pr|¥ = 21)
+(22 — 21497 x PrY = 12)
+(23 — 21497 x Pr|¥ = 23)
= (=149 x 003 + (—49) x 0.51
+ (051) % 040 + (151 x 0.06
= 22201 x 0,03 + 2401 x 051 + 2601 = 0.40 + 2.2801 = 0.06
= 0066603 + 0.122451 + 0.10404 + 0136806
= (1.4299.

The standard deviation of ¥ is ey = W0.4299 = (L6357, ™

Example

3.5.8

Example

3.5.9
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Dice In Example 3.5.6 we found that the mean number obtained from rolling a fair
die is 3.5 (ie., py = 3.5). The variance of the number obtained from rolling a fair
die is
op=(1-35P=xPr{¥ =1} + (2 - 335 x Pr[Y = 2)
+(3-35F = Pr{¥ =3} + (4 - 357 x Pr[Y = 4]
+(5 = 35F = Pr{¥ =5} + (6 — 350" % Pr[Y = §)

1 - 1 1 1
— —25P w = 4 (—15P = 4 (—05) % — 2 e =
—(2.5}x6+(1.3)><6+{D.5)><6+{D.5}x6
1 1
2w — -
+ (1.5¥ x6+{2_5}2x6

= (6.25) x % +(2325) x% + (0.25) = % + (0.25) % !

5
1 1
+(2.25) % 5t (6.25) = z
1
=175 x 5
= 2.9167.
The standard deviation of ¥ is ey = V29167 = 1708 -

The preceding definitions are appropriate for discrete random variables. There
are analogous definitions for continuous random variables, but they involve integral
calculus and won't be presented here.

ADDING AND SUBTRACTING RANDOM VARIABLES (OPTIONAL)

If we add two random variables, it makes sense that we add their means. Likewise, if
we create a new random variable by subtracting two random variables, then we sub-
tract the individual means to get the mean of the new random variable. If we multi-
plv a random variable by a constant (e.g.. if we are converting feet to inches so that
we are multiplying by 12), then we multiply the mean of the random variable by the
same constant. If we add a constant to a random variable, then we add that constant
to the mean.
The following rules summarize the situation:

Rules for Means of Random Variables
Bule (1) If X and ¥ are two random variables, then gy, v = py + oy
Hy-y = My — By
Rule (2) If ¥ is a random variable and @ and b constants, then gy 5y = a + buy.

Temperature The average summer temperature, py, in a city is 81°E To convert °F to °C,
we use the formula °C = (°F — 32) % (39) or °C = (5/9) = "F — (5/9) = 32. Thus
the mean in degrees Celsius s (5/%) = (81) — 3/ x 2 =45 - 171718 =2722. o

Dealing with standard deviations of functions of random variables is a bit more
complicated. We work with the variance first and then take the square root, at the
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Example
3.5.10

Example
3.5.11

end, to get the standard deviation we want. If we multiply a random variable by a
constant (e.g.. if we are converting inches to centimeters by multiplying by 2.54),
then we multiply the variance by the square of the constant. This has the effect of
multiplying the standard deviation by the absolute value of the constant. If we add a
constant to a random variable, then we are not changing the relative spread of the
distribution, so the variance does not change.

Feet to Inches Let ¥ denote the height, in feet, of a person in a given population;
suppose the standard deviation of ¥ is oy = 035 (feet). If we wish to convert from
feet to inches, we can define a new variable X as X = 12¥.The variance of ¥ is .35
(the square of the standard deviation). The variance of Xis 12% » 0.35%, which means
that the standard deviation of X is ey = 12 x (.35 = 4.2 (inches). [ ]

If we add two random variables that are independent of one another, then we add
their variances.* Moreover, if we subtract two random variables that are independent
of one another, then we add their variances. If we want to find the standard deviation
of the sum (or difference) of two independent random variables, we first find the
variance of the sum (or difference) and then take its square rool.

Mass  Consider finding the mass of a 10-ml gradvated cylinder. If several measure-
ments are made, using an analytical balance, then in theory we would expect the
measurements to all be the same. In reality, however, the readings will vary from one
measurement to the next. Suppose that a given balance produces readings that have
a standard deviation of 0.03g; let X denote the value of a reading made using this
balance. Suppose that a second balance produces readings that have a standard devi-
ation of 0.04g; let ¥ denote denote the value of a reading made using this second
balance.

If we use each balance to measure the mass of a graduated cylinder, we might be
interested in the difference, X' — Y, of the two measurements. The standard devia-
tion of X' — Y is positive. To find the standard deviation of X’ — ¥, we first find the
variance of the difference. The variance of X is 0,037 and the variance of ¥ is 0.04%,
The variance of the difference is 0.037 + 0.04% = 0.0025. The standard deviation of
X — ¥ is the square root of 0.0023, which is (L05. [ ]

The following rules summarize the situation for variances:

Rules for Variances of Random Variables
Rule (3) If ¥ is a random variable and @ and b constants, then o2 = B}
Rule (4) If X and Y are two independent random variables, then

7 2
Ty = o% + oy

2 2
oy + Ty

2
TxX-¥

#f we add two random variables that are not independent of one another, then the variance of the sum depends
on the degree of dependence between the variables To take an extreme case, suppose that one of the random
warizbles & the nepative of the other. Then the sum of the two random variables will always be zero, so the vari-
ance of the sum will be zero This is quile different from what we would get by adding the two variances together.
As another example, suppese ¥ is the number of questions correct on a J-guestion exam and X & the number
of questions wrong. Then ¥ + X B always equal to 20, so there is no wariability a1 all. Hence, the variance of
¥+ Xis semo, even though the variance of ¥ & posilive, as is the variance of X

Exercises 3.5.1-3.5.10
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3.5.1 In a certain population of the European starling,
there are 5000 nests with young. The distribution of
brood size (number of young in a nest) is given in the
accompanying lable.'?

Brood Size  Frequency (No. of Broods)
90
230
610
1.400
1,760
750
130
26
3
1
Tolal 5,000

L= AT B R

-

Suppose ong of the 5,000 broods is to be chosen at ran-
dom, and let ¥ be the size of the chosen brood. Find

(a) Pr|Y = 3}
(b) Pr{Y = 7}
(c) Pri4 = ¥ = 6

3.5.2 In the starling population of Exercise 3.5.1, there
are 22,435 young in all the broods taken together. (There
are 9 young from broods of size 1, there are 460 [rom
broods of size 2, etc.) Suppose one of the young is to be
chosen at random, and let ¥ be the size of the chosen
individual s brood.

(a) Find Pr{¥" = 3}.

(b) Find Pr{¥" = 7}

(c) Explain why choosing a young at random and then
abserving its brood is not equivalent to choosing a
brood at random. Your explanation should show why
the answer to part (b) is greater than the answer to
part (b) of Exercise 3.5.1.

3.5.3 Calculale the mean, py, of the random variable ¥
from Exercise 3.3.1.

3.5.4 Consider a population of the fruitlly Drosophila
melanogaster in which 30% of the individuals are black
because of a mulation, while 70% of the individuals
have the normal gray body color. Suppose three flies
are chosen at random from the population; let ¥ denote
the number of black flies out of the three. Then the
probability distribution for ¥ is given by the following
Lable:

¥ (No. Black) Probability
0 0343
1 0441
2 0189
3 0.027
Total 1000
(a) Find Pr(¥ = 2}
(b} Find Pr{¥ = 2}

3.5.5 Calculate the mean, py, of the random variable ¥
from Exercise 3.5.4.

3.5.6 Calculate the standard deviation, oy, of the ran-
dom variable ¥ from Exercise 3.5.4.

3.5.7 The prevalence of mild myopia (nearsightedness) in
adults over age 40 is 25%, in the ush Suppose four adulls
over age 40 are chosen al random from the population; let
¥ denote the number with myopia out of the four. Then the
probability distribution for ¥ is given by the following table:

¥ (No. Myopic)  Probability

] 0.316

1 0422

2 0211

3 0.047

4 0.004

Total 1000
(a) Find Pr[¥ = 3}
(b) Find Pr[¥ = 1}
(c) Find Pr{Y¥ = 1}

3.5.8 Calculate the mean, py, of the random variable ¥
from Exercise 3.5.7

3.5.9 A group of college students were surveyed Lo learn
how many times they had visited a dentist in the previous
year." The probability distribution for ¥, the number of
visits, is given by the following table:

¥ (No. Visits)  Probability
i 013

1 0.50
2 0.35
Total 100

Calculate the mean, gy, of the number of visits

3.5.10 Calculate the standard deviation, ey, of the ran-
dom variable ¥ from Exercise 3.3.9.
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Example
3.6.1

Example
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3.6 The Binomial Distribution

To add some depth to the notion of probability and random variables, we now con-
sider a special type of random variable, the binomial. The distribution of a binomial
random variable is a probability distribution associated with a special kind of chance
operation. The chance operation is defined in terms of a set of conditions called the
independent-trials model.

THE INDEPENDENT-TRIALS MODEL

The independent-trials model relates to a sequence of chance “trials™ Each trial is
assumed to have two possible outcomes, which are arbitrarily labeled “success™ and
“failure.” The probability of success on each individual trial is denoted by the letter
p and is assumed to be constant from one trial to the next. In addition, the trials are
required to be independent, which means that the chance of success or failure on
each trial does not depend on the outcome of any other trial. The total number of
trials is denoted by n. These conditions are summarized in the following definition of
the model.

Independent-Trials Model
A series of n independent trials is conducted. Each trial results in success or
failure. The probability of success is equal to the same guantity, p, for each trial,
regardless of the outcomes of the other trials.

The following examples illustrate situations that can be described by the inde-
pendent-trials model.

Albinism  If two carriers of the gene for albinism marry, each of their children has
probability 1,4 of being albino. The chance that the second child is albino is the same
(1/4y whether or not the first child is albino: similarly, the outcome for the third child
is independent of the first two, and so on. Using the labels “success™ for albino and
“failure” for nonalbino, the independent-trials model applies with p = 1/4 and
n = the number of children in the family. -

Mutant Cats A study of cats in Omaha, Nebraska, found that 37% of them have
a certain mutant trait.’” Suppose that 37% of all cats have this mutant trait and
that a random sample of cats is chosen from the population. As each cat is chosen
for the sample, the probability is 0.37 that it will be mutant. This probability is the
same as each cat is chosen, regardless of the results of the other cats, because the
percentage of mutants in the large population remains equal to 0.37 even when a
few individual cats have been removed. Using the labels “success™ for mutant and
“failure” for nonmutant, the independent-trials model applies with p = 0.37 and
n = the sample size. -

AN EXAMPLE OF THE BINOMIAL DISTRIBUTION

The binomial distribution specifies the probabilities of various numbers of successes
and failures when the basic chance operation consists of n independent trials Before
giving the general formula for the binomial distribution, we consider a simple example.

Example

3.6.3
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Albinism Suppose two carriers of the gene for albinism marry (see Example 3.6.1)
and have two children. Then the probability that both of their children are albino is
. . 141 1
Pr{both children are albino] = (4)(4) =T
The reason for this probability can be seen by considering the relative frequem:{
interpretation of probability. Of a great many such families with two children, 5
would have the first child albino; furthermore,§ of these would have the second child
albino; thus, £ of 1, or 1 of all the couples would have both albino children. A similar
kind of reasoning shows that the probability that both children are not albino is

4 16

A new twist enters if we consider the probability that one child is albino and the
other is not. There are two possible ways this can happen:

Pr{both children are not albino] = (%)(E) 2

Prifirst child is albino. second is not} = (%)(%) = %

- : ) 1 3
Prifirst child is not albino, second is) = (E)(E) =1
To see how to combine these possibilities, we again consider the relative frequency
interpretation of probability. Of a great many such families with two children, the
fraction of families with one albino and one nonalbino child would be the total of the

two possibilities, or
(i) 4 (i) _§
16 16) 14
Thus, the corresponding probability is

Prjone child is albino, the other is not] = %

Another way to see this is to consider a probability tree. The first split in the tree
represents the birth of the first child: the second split represents the birth of the sec-
ond child. The four possible outcomes and their associated probabilities are shown
in Figure 3.6.1. These probabilities are collected in Table 3.6.1. -

The probability distribution in Table 3.6.1 is called the binomial distribution
with p = ;l‘and n = 2.Note that the probabilities add to 1. This makes sense because
all possibilities have been accounted for: We expect L% of the families to have no
albino child.ren.L% to have one albino child, and - to have two albino children; there
are no other possible compositions for a two-child family. The number of albino
children, out of the two children, is an example of a binomial random variable. A
hinomial random variable is a random variable that satisfies the following four con-
ditions, abbreviated as BInS:

Binary outcomes: There are two possible outcomes for each trial (success and
failure).

Independent trials: The outcomes of the trials are independent of each other.

n is fixed: The number of trials, n, is fixed in advance.

Same value of p:The probability of a success on a single trial is the same for all
trials
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Second child 1 Table 3.6.1 Probability distribution for
" albino 16 number of albino children
! MNumber of
Albino Nonalbino  Probability
First
chilld 0 2 1
14 albinc . 16
M Second child not 3 1 1 5
albino 13 16
Second child 3 2 0 L
1 albino 3 16
N wnst Total 1
child
not
albino
34
Second child not 9
albino 14

Figure 3.6.1 Probability tree for albinism among
two children of carriers of the gene for albinism

THE BINOMIAL DISTRIBUTION FORMULA

A general formula is available that can be used to calculate probabilities associated
with a binomial random variable for any values of n and p. This formula can be
proved using logic similar to that in Example 3.6.3. (The formula is discussed further
in Appendix 3.1.) The formula is given in the accompanying box.

The Binomial Distribution Formula

For a binomial random variable ¥, the probability that the n trials result in j
successes (and n — jfailures) is given by the following formula:

Pr{j successes] = Pr[¥ = j] = .C;p(1 — p)" !

The quantity ,C; appearing in the formula is called a binomial coefficient. Each
binomial coefficient is an integer depending on # and on j. Values of binomial coef-
ficients are given in Table 2 at the end of this book and can be found by the formula

n!
Li=m—0
P =
where x! (“x-factorial™) is defined for any positive integer x as
Xl =x(x — Dix - 2)... 2)1)
and 0! = 1. For more details, see Appendix 3.1
For example, for n = 5 the binomial coefficients are as follows:
F 01 2 3 4 5
s 1 5 1010 5 1

Thus. for n = 5 the binomial probabilities are as indicated in Table 3.6.2. Notice the
pattern in Table 3.6.2: The powers of p ascend (0,1.2.3.4.5) and the powers of (1 —
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Table 3.6.2 Binomial probabilities for n=35

Number of

Successes | Failuresn—j  Probability
0 5 1p'(1 —py
1 4 spla-pyt
2 3 10p%(1 - p)?
3 2 10p*(1 - p)?
4 1 spia—p)
5 i 1p5(1 - p)°

p) descend (5.4, 3,2, 1, 0). (In using the binomial distribution formula, remember
that x" = 1 for any nonzero x.)

Motes on Table 2 The following features in Table 2 are worth noting:

(a) The first and last entries in each row are equal to 1. This will be true for any
row; that is, yCy = 1 and 4Cy = 1 for any value of n.
(b) Each row of the table is symmetric; that is ,Cy and 4Cy_j are equal.

(c) The bottom rows of the table are left incomplete to save space, but you can
easily complete them uvsing the symmetry of the ,Cy's; if you need to know G,
you can look up ;Cy ;in Table 2. For instance, consider n = 18;if you want to
know 15015, you just look up 15Cs: both 13C5 and 15Cy5 are equal to 816,

The following example shows a specific application of the binomial distribution
withn = 5.

Example Mutant Cats Suppose we draw a random sample of five individuals from a large

6.4 population in which 37% of the individuals are mutants (as in Example 3.6.2). The
probabilities of the various possible samples are then given by the binomial distri-
bution formula with n = 5 and p = 0.37; the results are displayed in Table 3.6.3.
For instance. the probability of a sample containing two mutants and three nonmu-
tants is

10(03TP(0.637 = 0.3

Table 3.6.3 Binomial distribution with n =5 and p =037

Number of
Mutants Nonmutants Probability

] 3 010
1 4 0.29
2 3 034
3 2 0.20
4 1 0.06
5 0 0.0

Total 100

Thus, Pr(Y = 2} = 0.34. This means that about 34% of random samples of size 5
will contain two mutants and three nonmutants.
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Figure 3.6.2 Binomial
distribution with n =5 and
p=037

Example
3.6.5

04—

Probalbility
b
|

g
|

Number of mutants

Notice that the probabilities in Table 3.6.3 add to 1. The probabilities in a prob-
ability distribution must always add to 1, because they account for 100% of the
possibilities. [ ]

The binomial distribution of Table 3.6.3 is pictured graphically in Figure 3.6.2.
The spikes in the graph emphasize that the probability distribution is discrete.

Remark In applying the independent-trials moedel and the binomial distribution,
we assign the labels “success™ and “failure™ arbitrarily. For instance, in Example 3.6.4,
we could say “success” = “mutant” and p = 0.37; or, alternatively, we could say
“success” = “nonmutant” and p = 0.63. Either assignment of labels is all right; it is
only necessary to be consistent.

Computational Mote Computer and calculator technology makes it fairly easy to
handle the binomial distribution formula for small or moderate values of n. For large
values of n. the use of the binomial formula gets to be tedious and even a computer
will balk at being asked to calculate a binomial probability. However, the binomial
formula can be approximated by other methods. One of these will be discussed in
the optional Section 3.4

Sometimes a binomial probability question involves combining two or more
possible outcomes. The following example illustrates this idea.

Sampling Fruitflies [In a large Drosophila population, 30% of the flies are black (B)
and 70% are gray (G). Suppose two flies are randomly chosen from the population
(as in Example 3.2.3). The binomial distribution withn = 2 and p = (.3 gives prob-
ahilities for the possible outcomes as shown in Table 3.6.4. (Using the binomial for-
mula agrees with the results given by the probability tree shown in Figure 3.2.3.)

Sample composition ¥ Probability
Both Gray 0 0.49
Omne Black, ong Gray 1 0.42
Both Black 2 0.00
Total 100

Let F be the event that both flies are the same color. Then £ can happen in two
ways: Both flies are gray or both are black. To find the probability of E, consider
what would happen if we repeated the sampling procedure many times: Forty-nine
percent of the samples would have both flies gray, and 9% would have both flies

Example

3.6.6

Example
3.6.T
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black. Consequently, the percentage of samples with both flies the same color would
be 49% + 9% = 58%.Thus, we have shown that the probability of Eis

Pr{E] = 0.5%

as we claimed in Example 3.2.3. -

Whenever an event E can happen in two or more mutually exclusive ways, a
rationale such as that of Example 3.6.5 can be used to find Pr{E].

Blood Type In the United States, 85% of the population has Rh positive blood.
Suppose we take a random sample of 6 persons and count the number with Rh
positive blood. The binomial model can be applied here, since the BInS conditions
are met: There is a binary outcome on each trial (Rh positive or Rh negative blood),
the trials are independent (due to the random sampling), n is fixed at 6, and the same
probability of Rh positive blood applies to each person (p = (.85).

Let ¥ denote the number of persons, out of 6, with Rh positive blood. The prob-
ahilities of the possible values of ¥ are given by the binomial distribution formula
with n = 6 and p = 0.85; the results are displayed in Table 3.6.5. For instance, the
probability that ¥ = 4is

CaD8S015) = 15(D.522)(0.0225) = 01762

If we want to find the probability that at least 4 persons (out of the 6 sampled)
will have Rh positive blood, we need to find Pr[Y = 4] = Pr{¥ = 4]+ Pr|¥ = 5] +
PrlY = &) = (L1762 + 03993 + 0.3771 = 0.9526.This means that the probability of
getting at least 4 persons with Rh positive blood in a sample of size 6is 09526, m

Table 3.6.5 Binomial distribution

with n =6 and p =0.85
Number of successes  Probability

0 =10.0001
1 (L0004
2 0.0055
3 (.0415
4 0.1762
5 (.3993
03771
Total 10000

(=]

In some problems, it is easier to find the probability that an event does not hap-
pen rather than finding the probability of the event happening. To solve such prob-
lems we use the fact that the probability of an event happening is 1 minus the
probability that the event does not happen: Pr{E] = 1 — Pr|{E does not happen).
The following is an example.

Blood Type  Asin Example 3.6.6, let ¥ denote the number of persons, out of 6, with
Rh positive blood. Suppose we want to find the probability that ¥ is less than 6 (Le.,
the probability that there is ar least I person in the sample who has Rh negative
blood). We could find this directly as Pr{¥ = 0] + Pr{Y =1} + --- + Pr{¥Y = 5}
However, it is easier to find Pr{Y = 6] and subtract this from 1:

PriY < 6 =1 — Pr[¥ = 6} = 1 — 03771 = 0.6229, -
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Example
3.6.8

Example
3.6.9

MEAN AND STANDARD DEVIATION OF A BINOMIAL

If we toss a fair coin 10 times, then we expect to get 3 heads, on average. This is an
example of a general rule: For a binomial random variable, the mean (Le., the average
number of successes) is equal to np. This is an intuitive fact: The probability of success
on each trial is p, so if we conduct a trials, then np is the expected number of suc-
cesses. In Appendix 3.2 we show that this result is consistent with the rule given in
Section 3.5 for finding the mean of the sum of random variables. The standard devia-
tion for a binomial random variable is given by vnp(1 — p). This formula is not
intuitively clear; a derivation of the result is given in Appendix 3.2. For the example
of tossing a coin 10 times, the standard deviation of the number of heads is

VIO % 0.5 % 05 = VI35 = 158

Blood Type As discussed in Example 3.6.6,if ¥ denotes the number of persons with
Bh positive blood in a sample of size 6, then a binomial model can be vsed to find
probabilities associated with ¥. The single most likely value of ¥ is 5 (which has
probability 0.3993). The average value of Yis 6 = (L85 = 5.1, which means that if we
take many samples, each of size 6, and count the number of Rh positive persons in
each sample, and then average those counts, we expect to get 5.1. The standard devi-
ation of those counts is V6 = (L85 = 015 == (L8T. ]

APPLICABILITY OF THE BINOMIAL DISTRIBUTION

A number of statistical procedures are based on the binomial distribution. We will
study some of these procedures in later chapters. Of course, the binomial distribu-
tion is applicable only in experiments where the BInS conditions are satisfied in the
real biological situation. We briefly discuss some aspects of these conditions.

Application to Sampling  The most important application of the independent-trials
model and the binomial distribution is to describe random sampling from a popula-
tion when the observed variable is dichotomous —that is a categorical variable with
two categories (e.g., black and gray in Example 2.6.5). This application is valid if the
sample size is a negligible fraction of the population size so that the population com-
position is not altered appreciably by the removal of the individuals in the sample
(s0 that the S part of BInS is satisfied: The probability of a success remains the same
from trial to trial). However, if the sample is not a negligibly small part of the popu-
lation, then the population compaosition may be altered by the sampling process so
that the “trials” involved in composing the sample are not independent and the
probability of a success changes as the sampling progresses. In this case, the proba-
bilities given by the binomial formula are not correct. In most biological studies, the
population is so large that this kind of difficulty does not arise.

Contagion In some applications the phenomenon of contagion can invalidate the
condition of independence between trials. The following is an example.

Chickenpox  Consider the occurrence of chickenpox in children. Each child in a fam-
ily can be categorized according to whether he had chickenpox during a certain year.
One can say that each child constitutes a “trial” and that “success” is having chicken-
pox during the year, but the trials are net independent because the chance of a par-
ticular child catching chickenpox depends on whether his sibling caught chickenpox.
As a specific example, consider a family with five children, and suppose that the chance

Section 3.6 The Binomial Distribution 125

of an individual child catching chickenpox during the year is equal to 0.10. The bino-
mial distribution gives the chance of all five children getting chickenpox as

Pr[5 children get chickenpox) = (0.10)° = 0.00001

However, this answer is not correct; because of contagion, the correct probability
would be much larger. There would be many families in which one child caught
chickenpox and then the other four children got chickenpox from the first child, so

all five children would get chickenpox. -

Exercises 3.6.1-3.6.12

3.6.1 The seeds of the garden pea (Piswm saiivam) are
either vellow or green. A cerlain cross between pea plants
produces progeny in the ratio 3 yellow : 1 green.'® If four
randomly chosen progeny of such a cross are examined,
what is the probability that

(a) three are yellow and one is green?

(b} all four are yellow?

(c) all four are the same color?

3.6.2 In Australia, 16%. of the adult population is near-

sighted."” If three Australians are chosen al random, what
is the probability that

{a) two are nearsighted and one is not?

() exactly one is nearsighted?

(c) al most one is nearsighted?

(d) none of them are nearsighted?

3.6.3 In the United Stales, 44%, of the population has
type A blood. Consider taking a sample of size 4. Let ¥

denole the number of persons in the sample with type A
blood. Find

(a) Prl¥ = 0.
(b) Prl¥ = 1}.
(c) PrlY = 2}.

(d)Prid = ¥ = 2}.

(e) Prjd < ¥ = 2}

3.6.4 A cerlain drug treatment cures 90% of cases of
hookworm in children.'® Suppose that 20 children suffer-
ing from hookworm are (o be treated, and that the chil-
dren can be regarded as a random sample from the
population. Find the probability that

(a) all 20 will be cured.

(b) all but 1 will be cured.

{c) exactly 18 will be cured.

(d) exactly %% will be cured.

3.6.5 The shell of the land snail Limocolaria martensiana
has two possible color forms; streaked and pallid. In a cer-

tain population of these snails, 60%, of the individuals
have streaked shells'® Suppose that a random sample of

10 snails is o be chosen from this population. Find the
probability that the percentage of streaked-shelled snails
in the sample will be

(a) 50%. (b) 60%. (c) T0%.

3.6.6 Consider taking a sample of size 10 from the snail
population in Exercise 3.6.3.
(a) What is the mean number of streaked-shelled snails?

(b) What is the standard deviation of the number of
streaked-shelled snails?

3.6.7 In Europe, 8% ol men are colorblind.™ Consider
taking repeated samples of 20 European men.

(a) What is the mean number of colorblind men?

(b) What is the standard deviation of the number of
colorblind men?

3.6.8 The sex ratio of newborn human infants is about
105 males : 100 females.” I four infants are chosen at
random, what is the probability that

() two are male and two are female?

(b) all four are male?

(c) all four are the same sex?

3.6.9 Conslruct a binomial selting (different from any
examples presented in this book ) and a problem for which
the following is the answer: ;C,{0.8)(0.2)%

3.6.10 Meuroblastoma is a rare, serious, but treatable dis-
ease. A urine test, the VMA test, has been developed that
gives a positive diagnosis in about 0% of cases of neuro-
blastoma.™ It has been proposed that this test be used for
large-scale screening of children. Assume that 300,000 chil-
dren are (o be tested, of whom & have the disease. We are
interested in whether or not the test delects the disease in
the 8 children who have the disease. Find the probability that

(a) all eight cases will be detected.

(b} only one case will be missed.

() two or more cases will be missed. | Hini: Use parts (a)
and (b) to answer part {c).|

3.6.11 Iftwo carriers of the gene for albinism marry, each
of their children has probability } of being albino (see
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Example 3.6.1). If such a couple has six children, what is

the probability that

(a) none will be albino?

(b) at least one will be albino? |Hine: Use part (a) o
answer part (b); note that “at least one™ means “one
or more.”|

3.6.12 Childhood lead poisoning is a public health con-
cern in the United States. In a certain population, 1 child

in & has a high blood lead level (defined as 30 pg/dl or
ranre).:13 In a randomly chosen group of 16 children from
the population, what is the probability that

(a) none has high blood lead?

(b) 1 has high blood lead?

() 2 have high blood lead?

(d) 3 or more have high blood lead? [Hint: Use parts
(a)(c) to answer part (d).|

Example
3.7l

3.7 Fitting a Binomial Distribution to Data (Optional)

Occasionally it is possible to obtain data that permit a direct check of the applicabil-
ity of the binomial distribution. One such case is described in the next example.

Sexes of Children In a classic study of the human sex ratio, families were catego-
rized according to the sexes of the children. The data were collected in Germany in
the nineteenth century, when large families were common. Table 3.71 shows the
results for 6,115 families with 12 children.

Table 3.7.1 Sex ratios in 6,115 families with

12 children

Number of Observed [requency
Boys Girls (number of families)

0 3

4

104

286

670

1,033

1343

1,112

829

478

181

45

7

Total 6,115
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It is interesting to consider whether the observed variation among families can
be explained by the independent-trials model. We will explore this question by fit-
ting a binomial distribution to the data.

The first step in fitting the binomial distribution is to determine a value for
P = Pr|boy}. One possibility would be to assume that p = 0.50. However, since it is
known that the human sex ratio at birth is not exactly 1 : 1 (in fact, it favors boys
slightly), we will not make this assumption. Rather, we will “fit” p to the data; that is,
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we will determine a value for p that fits the data best. We observe that the total num-
ber of children in all the families is

{12)(6,115) = 73,380 children
Among these children, the number of boys is
(30 + (241 + -+ + (T12) = 38,100 boys
Therefore, the value of p that fits the data best is

38,100
P= 750
The next step is to compute probabilities from the binomial distribution formula

with n = 12 and p = 0.519215. For instance, the probability of 3 boys and 9 girls is
computed as

= 0.519215

wCapy(l — p)f = 220(0.519215%(0.480785)*
= (042269

For comparison with the observed data, we convert each probability to a theo-
retical or “expected” frequency by multiplying by 6,115 (the total number of fami-
lies). For instance, the expected number of families with 3 boys and 9 girls is

(6.115)(0.042269) =~ 2585

The expected and observed frequencies are displayed together in Table 3.72.
Table 3.72 shows reasonable agreement between the observed frequencies and the
predictions of the binomial distribution. But a closer look reveals that the discrepan-
cies, although not large, follow a definite pattern. The data contain more unisexual,
or preponderantly unisexual, sibships than expected. In fact, the observed frequen-
cies are higher than the expected frequencies for nine types of families in which one
sex or the other predominates, while the observed frequencies are lower than the
expected frequencies for four types of more “balanced”™ families. This pattern is

Table 3.7.2 Sex-ratio data and binomial expected frequencies

bl Observed  Expected  Signof
Boys Girls frequency  frequency (Obs — Exp.)
0 12 3 09 +
1 11 24 12.1 +
2z 10 104 TLE +
3 9 286 2585 +
4 8 670 628.1 +
5 7 1,033 1,085.2 -
3 [ 1,343 1,3673 -
7 5 1,112 1.265.6 -
8 4 829 8342 -
9 3 478 4100 +
0 2 181 132.8 +
1 1 45 26.1 +
12 0 7 23 +
Tolal 6,115 6,115.0
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clearly revealed by the last column of Table 3.72, which shows the sign of the differ-
ence between the observed frequency and the expected frequency. Thus, the observed
distribution of sex ratios has heavier “tails” and a lighter “middle” than the best-
fitting binomial distribution.

The systematic pattern of deviations from the binomial distribution suggests
that the observed variation among families cannot be entirely explained by the
independent-trials model.* What factors might account for the discrepancy? This
intriguing gquestion has stimulated several researchers to undertake more detailed
analysis of these data. We briefly discuss some of the issues.

One explanation for the excess of predominantly unisexual families is that the
probability of producing a boy may vary among families. If p varies from one family
to another, then sex will appear to “run” in families in the sense that the number of
predominantly unisexual families will be inflated. In order to clearly visvalize this
effect, consider the fictitious data set shown in Table 3.73.

Table 3.7.3 Fictitious sex-ratio data and binomial expected frequencies

Rimpm i Observed  Expected Sign of

Girls frequency frequency (Obs. — Exp.)
12 2,940 0.9 +
121 -
TLE -
2585 -
628.1 -
1,085.2 -
1,3673 -
1,265.6 -
8343 -
4100 -
1328 -
26.1 -
3,175 23 +

Total 6,115 6.115.0
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In the fictitious data set, there are (3,175)(12) = 38,100 males among 73,380
children, just as there are in the real data set. Consequently, the best-fitting p is the
same (p = (L.519213) and the expected binomial frequencies are the same as in Table
3.72. The fictitious data set contains only unisexual sibships and so is an extreme
example of sex “running” in families. The real data set exhibits the same phenome-
non more weakly. One explanation of the fictitious data set would be that some
families can have only boys (p = 1) and other families can have only girls (p = 0).
In a parallel way, one explanation of the real data set would be that p varies slightly
among families. Variation in p is biologically plausible, even though a mechanism
causing the variation has not been discovered.

An alternative explanation for the inflated number of sexually homogeneous
families would be that the sexes of the children in a family are literally dependent on

*A chi-square poodness-of-fit test of the binomis] model shows that there is strong evidence that the differences
between the observed and expected frequencies did not happen due o chance error in the sampling process. We
will explore the topic of goodness-of-fl lests in Chapler 9.
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one another, in the sense that the determination of an individual child's sex is some-
how influenced by the sexes of the previous children. This explanation is implausible
on biological grounds because it is difficult to imagine how the biological system
could “remember” the sexes of previous offspring. [ ]

Example 3.71 shows that peorness of fit to the independent-trials model can be
biologically interesting. We should emphasize, however, that most statistical applica-
tions of the binomial distribution proceed from the assumption that the independent-
trials model is applicable®. In a typical application, the data are regarded as resulting
from a single set of n trials Data such as the family sex-ratio data, which refer to
manny sets of n = 12 trials, are not often encountered.

#In Example 3 4.1 we asserted that occurrences of albinism among siblings are independent. which is consistent
with current understandings of human genctics.

Exercises 3.7.1-3.7.3

3.7.1 The accompanying dala on families with 6 children
are taken from the same study as the families with 12 chil-
dren in Example 3.71. Fit a binomial distribution to the
data. (Round the expected [requencies o one decimal
place.) Compare with the resulls in Example 3.71. What
features do the two dala sels share?

MNumber of
Boys Girls  Number of families

0 6 L0946
1 3 6,233
2 4 15,700
3 3 22221
4 2 17332
5 1 TO08
6 0 1.579

Total 72068

3.7.2 Animportant method for studying mutation-causing
substances involves Killing female mice 17 days after mat-
ing and examining their uteri for living and dead embryos.
The classical method of analysis of such data assumes (hal
the survival or death of each embryo constitutes an inde-
pendent binomial trial. The accompanying table, which is
extracted from a larger study, gives data for 310 females,
all of whose uleri contained 9 embryos; all of the animals
were Lrealed alike (as controls).™

{a) Fit a hinomial distribution to the observed data.
(Round the expecled [requencies Lo one decimal
place.)

(b) Interpret the relationship between the observed and
expected frequencies. Do the data cast suspicion on
Lhe classical assumplion?

Number of embryos Number of

Dead  Living  female mice
0 136
1 & 103
2 T 50
3 6 13
4 5 b
5 4 !
6 3 1
7 2 o
8 1 o
9 ] 0
Total 310

3.7.3 Students in a large botany class conducted an experi-
ment on the germination of seeds of the Saguaro cactus. As
part of the experiment, each student planted five seeds in a
small cup, kept the cup near a window, and checked every
day for germination (sprouting). The class resulls on the
seventh day after planting were s displayed in the table ™

Mumber of seeds Number of
Germinated Nol germinated  students

] 5 17
1 4 33
2 3 o
3 2z i
4 1 33
5 0 4

Total 280
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(a) Fit a binomial distribution to the data. (Round the
expected frequencies 1o one decimal place.)

(b) Two students, Fran and Bob, were Lalking before class.
All of Fran's seeds had germinated by the seventh day,
whereas none of Bob’s had. Bob wondered whether
he had done something wrong. With the perspective
gained from seeing all 280 students’ results, what
would you say to Bob? { Hiat: Can the variation among
the students be explained by the hypothesis that some

Supplementary Exercises 3.5.1-3.5.12

of the seeds were good and some were poor, with each
student receiving a randomly chosen five seeds?)

{c) Invent a fictitious set of data for 280 students, with the
same overall percentage germination as the observed
data given in the table, bul with all the students gelling
either Fran's results (perfect) or Bob's results
(nothing). How would your answer (o Bob differ if the
actual data had looked like this fictitious data set?

3.5.1 In the United States, 10%: of adolescenl girls have
iron deficiency.” Suppose two adolescent girls are chosen
al random. Find the probability that

(a) all three girls have iron deficiency.

() one girl has iron deficiency and the other two do not.

3.5.2 In preparation for an ecological study of centipedes,
the floor of a beech woods is divided into a large number
of 1-fool squares™ Al a cerlain moment, the distribution
of centipedes in the squares is as shown in the table.

Number of  Percent frequency
centipedes (% of squares)
] 45
1 36
2 14
3 4
4 1
Total 100

Suppose that a square is chosen at random, and let ¥ be
the number of centipedes in the chosen square. Find

{a) Pr{¥ = 2}
(h) Pr{¥ = 3}

3.5.3 Refer to the distribution of centipedes given in
Exercise 3.52. Suppose four squares are chosen al ran-
dom. Find the probability that two of the squares conlain
centipedes and two do not.

3.5.4 Refer lo the distribution of centipedes given in
Exercise 3.52. Suppose four squares are chosen al ran-
dom. Find the expected value (i.e., the mean) of the num-
ber of squares that contain at least two centipedes.

3.5.5 Wavy hair in mice is a recessive genetic trait. If mice
wilh wavy hair are maled with straight-haired (heterogy-
gous) mice, each offspring has probability L of having
wavy hair.™ Consider a large number of such matings,
each producing a litter of five offspring. What percentage
of the litters will consist of

(a) three wavy-haired and three straight-haired offspring?

(b} four or more straight-haired offspring?

(c) all the same type (either all wavy- or all straight-
haired) offspring?

3.5.6 A certain drog causes liver damage in 3% of
patients. Suppose the drug is Lo be tesled on 60 patients
Find the probability that

(a) none of the patients will experience liver damage.

(byone or more of the patients will experience liver
damage. | Hinr: Use part (a) to answer part (b).|

3.5.7 Refer to Exercise 3.5.6. Suppose now that the drug
is to be Lested on A patients, and let E represent the event
that liver damage occurs in one or more of the patients.
The probability Pr|E] is useful in establishing criteria for
drug safety.

(a) Find Pr| E} forn = 100.

(b) How large must n be in order for Pr{E} to exceed
0.047

3.5.8 To study people’s ability to deceive lie detectors,
resgarchers sometimes use the “guilty knowledge™ tech-
nigue.®™ Certain subjecls memorize six common words,
other subjects memorize no words. Each subject is then
tested on a polygraph machine (lie detector), as follows,
The experimenter reads, in random order, 24 words: the
six “critical” words (the memorized list) and, for each
critical word. three “control™ words with similar or related
meanings. 1§ the subject has memorized the six words, he
or she tries to conceal that fact. The subject is scored a
“[ailure” on a critical word if his or her electrodermal
response is higher on the critical word than on any of the
three control words. Thus, on each of the six critical words,
even an innocent subject would have a 253% chance of
failing. Suppose a subject is labeled “guilty™ if the subject
[ails on five or more of the six critical words. Il an inno-
cent subject is tested, what is the probability that he or
she will be labeled “guilty™?

3.5.9 The densily curve shown here represents the distri-
bution of systolic blood pressures in a population of
middle-aged men ! Areas under the curve are shown in
the figure. Suppose a man is selected atl random from the
population, and let ¥ be his blood pressure. Find

(a) Pr{140 < ¥ = 180)].
(b) Pr{Y = 140).
(c) Pr{Y = 160}
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3.5.10 Reler to the blood pressure distribution of
Exercise 3.5.9. Suppose four men are selected at random
from the population. Find the probability that

(a) all four have blood pressures higher than 160 mm Hg.
() three have blood pressures higher than 160, and one

has blood pressure 160 or less

3.5.01 In the United States 9% of all people are left-
handed.*® If we take a random sample of six Americans
whal is the probability that

{a) none of them is lefi-handed?

{b) all six are left-handed?
(c) at least one is lefi-handed?
3.5.12 Refer to the information about left-handedness in

Exercise 3.5.11. Consider taking repeated samples of
100 Americans.

(a) What is the mean number of left-handed persons?

(b) Whalt is the standard deviation of the number of left-
handed persons?



