Math 316 Summary of Ideas

Section 1.1 gives us an idea of what statistics is all about: making an inference (estimate)
about a population—a group of people, a certain type of plant, etc. We make that
inference based on information we gather—often the measurement of a certain
variable—from a sample from that population. One important issue is what sort of
information and evidence we want to gather and how to gather it. This is discussed in
Section 1.2. Section 1.3 discusses a very important (and often very difficult) aspect of
gathering the information: how to get a truly random sample which accurately represents
the population from which the sample is taken.

There is always uncertainty in statistics. The only way to know with 100% certainty some
information about an entire population is to gather that information from the entire
population. Thus no matter what inferences or conclusions we do or do not make about
a population, there is always the possibility that we are making a mistake. Connected to
uncertainty is probability, the study of how likely something is to happen. Section 2.1
gives a nice summary of and introduction to what probability is. In Section 2.2 we are
introduced to distributions. A frequency distribution consists of the possible outcomes
and the frequency with which each outcome occurred. Generally, more useful than
frequency is relative frequency: the fraction of the time each outcome does occur. (In
Chapter 3 we see the related idea of probability distribution: the possible outcomes and
what fraction of the time each outcome—or a particular range of outcomes—should
occur. In Section 2.3 we read about some of the possible distributions—some examples
are shown in Figure 2.2.14 on page 36—and we are introduced to the idea that area under
the curve = probability (or relative frequency). In Section 2.3 median and mean are
discussed. In Section 2.4 we learn about boxplots. Section 2.5 covers some miscellaneous
ideas, including scatterplots, and numerical vs. categorical data. In Section 2.6 we learn
of measures of dispersion (how spread out a collection of data is, i.e. how much variation
thereisin the data), in particular, variance and standard deviation. Some useful intuition:
standard (typical, average) deviation (how different something is) is essentially the
average distance from each of the values in the data to the mean of the data. Regardless
of the distribution, the majority of all data is within 1 standard deviation of the mean,
most of all data is within 2 standard deviations, and nearly all data is within 3 standard
deviations of the mean. In Figure 4.3.5 on page 127 we see more precise percentages for
normally distributed data. In Section 2.7 we see that if we have a collection of Y values
where Y = aX + b, we will have py = auy + b and oy = aogy. Other transformations
are discussed in Section 2.7. These aren’t too important to what we do in this class, but
they can occasionally be important in some real life situations. Finally, in Sections 2.8 and
2.9 we get back to what statistics is all about: making inferences about one or more




populations based on information we get from samples. Notation is helpful to do
mathematical analysis as well as to keep track of what we are talking about. Forinstance,
see Table 2.9.1 on page 78.

In Chapter 3 we learn about probability. In Chapter 3.2 is the simple idea that the
probability of an event occurring is simply how many times should that event occur out
of the total number of possible outcomes. If there is no theoretical prediction of the
probability, the next best thing to predict what should happen is simply what has
happened in the past; that is, the probability of an event happening in the future is what
fraction of the time it has occurred in the past. An important notion of probability is that
the more you repeat an experiment, the closer the actual relative frequency will be to the
probability (the expected relative frequency) of that event. We see this in Figure 3.2.1 on
page 87. Probability trees are quite handy for visualizing and organizing the possible
outcomes and determining probabilities. Example 3.2.11 on page 91 is simple, yet quite
interesting and important. In Section 3.3, some basic rules of probability are given and
conditional probability is introduced:

#of ways both E1 and E» can occur
# Of ways both Eq and E, can occur total # of possible outcomes _ Pr{Eland Ez}

PriEy|E } = =
{ 2| 1} #of ways E; can occur #of ways Eq1 canoccur Pr{E;}
total # of possible outcomes

This is the formula the book gives on page 96. In Section 3.4 we learn of density curves,
a function that shows what the possible outcomes are and the relative frequencies of
those outcomes. See Example 3.4.2 on page 100. Section 3.5: arandom variable is simply
a value that varies (variable) and that is random (it varies from measurement to
measurement). Notation: typically the book uses a capital letter when talking about the
random variable and a lower case letter when talking about a specific value that variable

might have. For example, Pr{Y = y,} = % means that there is a probability of 1/3 that

the value of variable Y will be y, . Related to this: often a Greek letter is used for the
population and an English letter is used for the sample. For example, the population
standard deviation is o (the Greek letter for ‘s’) and the sample standard deviation is s.
We end the chapter in Section 3.6 with the binomial distribution in which there are two
possible outcomes (a few examples: a free throw is either made or not; a child is either
iron deficient or not; an animal is either male or not). The formula corresponding to the
probability of a particular outcome is on page 110, where p is the probability of “success”
for an individual trial:
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ways of having j successes and n —j failures. In 3.7 they discuss estimating the
probability p of success from the given data.

In Chapter 4 we learn about the normal distribution. Normal is another word for typical
or common. Section 4.1 introduces the main idea of normal distribution. Many real life
collections of data are approximately normal. There are two parameters that define a
particular normal distribution; that is, there are two parameters that make one normal
distribution different from another: the mean (where the data are centered) and the
standard deviation (how spread out the data are). See Figure 4.2.2 on page 125 for a
comparison of three normal distributions. Quite important is the idea of a standard (or
Z) value or score, introduced in Section 4.3. This type of value comes up over and over
throughout statistics: how different is our measurement from what we expected to get,

relative to how much variation there is in the data. For example, with
Y—u

/ =
o

we compute how different a value Y is from what (on average) is expected u, relative
to how spread out the rest of the data is, as measured by standard variation o. Another
way to look at this comes from solving for Y, whichleadsto Y = u+ Z - 0. Thatis, Z is
how many standard deviations the given value Y is from the mean u. For normally
distributed data, Table 3 tells us what fraction of the data a particular value is greater
than. For example, a value with a Z score of 1.57 is larger than .9418 (94.18%) of the
other data. (Again, this is assuming that the data are perfectly normally distributed.)
We can also pretty easily compute what fraction of the data is between two Z values.
See, for instance, Figure 4.3.9 on page 129. In Section 4.4 we learn how to determine
whether data are normally distributed (or more accurately, how normally distributed the
data are). We basically are looking at whether the data are spread out in the way that
normally distributed data should be.

Chapter 5 is all about samples. First, Section 5.1 points out something obvious, but
important to realize: every sample from a particular population will be different from
(even if similar to) every other sample. The sampling distribution for a given population
consists of the possible sample means and what fraction of the time those sample means
would occur. In other words, if we could take lots and lots (infinitely many) samples from
the same population (that is, if we carried out a meta study), the sampling distribution
would be the collection (distribution) of all of the sample means. As discussed in Section
5.2, we would expect that most of those samples would have a mean approximately equal
to the population mean, but there would still be some with mean somewhat different




from the population mean. In Figure 5.2.1 we see an example of a sampling distribution
of the sample mean Y. Theorem 5.2.1 describes how the statistics (the mean and
standard deviation) of the sample means relate to the statistics of the original population.
Figure 5.2.6 gives a nice example of how given a certain population (shown in (a)) what a
particular sample of size n = 25 might look like—the values are in Table 5.2.3. In Figure
5.2.7 are several other possible n = 25 samples from the same population, each with its
own mean. Notice each sample is like a miniature version of the original population:
same basic shape (in this case, normally distributed), and approximately the same mean
and standard deviation. If we were to take lots and lots (infinitely many) of n = 25
samples then the distribution of those samples means would be as given in Figure 5.2.6(c).
Notice the mean in (c) is the same as the mean in (a) and the standard deviation in (c) is

the standard deviation in (a) divided by V25, where 25 is the sample size. These values
are summarized in Table 5.2.2 on page 156. Let me remind you that most samples would
have a mean near the population mean of (500 for this example), but occasionally there
can be an unusual sample, like that in Figure 5.2.7(c). One of the big questions is: given
a single sample (we usually take only a single sample from a population), how likely is it
that the population is what we thought it would be? (For example, often we are
interested in the population mean.) For instance, consider any one the eight samples in
Figure 5.2.7. How likely are we to believe that the population mean is 500 given that one
particular sample? The Central Limit Theorem in Section 5.3 says that no matter what the
distribution of the original population, the sampling distribution will become more and
more normal the larger the sample is. This is actually the main reason that the normal
distribution is so important: it is not because many populations themselves are normally
distributed; it’s because their sample distributions would be approximately normal. The
population whose distribution is given in Figure 5.3.3 is not normal. Suppose we took lots
and lots (infinity many) samples of size n = 4. The resulting distribution of the sample
means is the first plot in Figure 5.3.4. Suppose that we did this again, but with larger
sample sizes. The distributions of the sample means for the different sample sizes are
shown in the other plots. We see that the larger the sample size, the more normally
distributed the sample means would be. Shifting gears a bit, Section 5.4 shows us that a
binomial distribution is approximately normal—the larger the sample size, the more
normally distributed it is. Since a normal distribution includes a mean and a standard
deviation, we are told what the mean and standard deviation are for binomially
distributed data. These are summarized in Theorem 5.4.1 on page 164. The continuity
correction is a minor adjustment that makes our use of the normal distribution to
approximate a binomial distribution more accurate.




Chapter 6 is finally a more detailed discussion of how to use a sample to make inferences
(estimates) about the population—this is the main purpose of this course. Section 6.1
tells us the obvious: our best estimate for the population mean p and standard deviation
o are the sample mean y and standard deviation s. Of course, there is always some
uncertainly, since we don’t have the entire population, just a small part of it in the sample.
The standard error is a measure of how uncertain we are about the sample statistics (such
as the sample mean y) as estimates for population statistics (such as the population mean
). The two main things that affect uncertainty are (1) variation within the sample data
(which is measured by the sample standard deviation s) and (2) the sample size n.
In general, the standard error will be smaller if (1) there is less variation in the data and/or
(2) the sample size is larger. Both (1) and (2) make us happy. In Section 6.3, this
uncertainty shows up in the confidence interval we find in estimating u using y:

=7t ta),SE.

The formula for the standard error SE varies depending on what we are estimating: a
population mean, the difference between two population means, a population
proportion, etc. See the Summary of Formulas and Tests for the formulas (that | created)
for various ways SE is computed. The t value comes from Student’s t distribution, from
Table 4. We're familiar with this confidence interval formula u =y + t, ,SE , but where
does it come from? Formula 6.3.1 on page 183 and the subsequent lines show how we
go from

The probability that a sample mean would be within 1.96 standard deviations is 0.95
to
The probability that the mean would be within 1.96 standard errors of the sample mean is 0.95

We would use z = 1.96 from Table 4 for a 95% confidence interval if we knew that the
sample means were perfectly normally distributed. Since we can’t count on that, Student
developed his t distribution (Student is the name of the fellow who came up with the
idea), which is reflected in Table 4. Let’s make an important distinction: Table 3 is used
when we have perfectly normal distributed population data and we are making
predictions about a sample. Table 4 is used when (1) we have a sample from an
approximately normally distributed population or else a large enough sample (say n =
20 or 30) so that we can assume approximately normal distribution in the sample
distribution and (2) we are taking a sample and making inferences/estimates about the
population. As the Central Limit Theorem states, for infinitely large samples, the sample
distribution would be perfectly normal (of course this can’t happen in real life, but we
often have large enough samples for which it essentially happens), thus the bottom row
of Table 4 with df = oo corresponds to the values in Table 3. In Table 3 we use a z
value to find an area, and in Table 4 for a given desired area we find the corresponding t
value. Now back to the confidence interval =7y £ ¢t,/, - SE. Things that will make a
more precise (narrower, i.e. the margin of error t,, - SE smaller) estimate include:
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(1) a smaller SE, already mentioned half-a-page above, and (2) a smaller t,,, value,
which occurs if the sample size n is larger and/or the confidence level is lower. It's a
trade-off: lower confidence < smaller t,,,, or equivalently, higher confidence &
larger t,,,. Also notice in Table 4 that for a given confidence level, larger sample =
smaller t,,,. Consider the interval given at the bottom of page 187. It doesn’t make
sense to say that there is a 95% chance the population mean u is in that interval, since
itis either in the interval or it is not. A more appropriate interpretation: if the population
mean were whatever the sample mean ¥y is, then there is a 95% probability the sample
mean would be a value within the given interval. So for the example just mentioned,
there is a 95% probability that the sample mean would be between 31.4 and 34.2. It's a
subtle distinction. To conclude 6.3, one-sided confidence intervals are discussed. In
Section 6.4 we learn how to estimate what sample size would be needed to ensure the
margin of error t,,, - SE is smaller than a given tolerance (i.e. how much error or
uncertainty we can live with). This is a big issue: how large does our sample size need to
be in order to achieve a particular result, for example, a particular confidence interval
width? Section 6.5 discusses when the formulas given can be used: (1) a sufficiently large
sample and (2) sample data that are independent. The first is easy to determine (but not
necessarily easy to make happen in real life), the second is a little tougher to be sure of.
In Sections 6.6 and 6.7 we first learn about determining whether two populations have
different means. We take a sample from each population and determining how different
the two samples are from each other. The more different the two samples are, the more
certain we are that the populations are different. There are three ways to do this, all of
which are essentially equivalent. Two involve test statistics, the third involves a
confidence interval, which is what is covered at this stage, in Section 6.7. Remember that
the standard error is a measure of how much uncertainty there is about how reliably the
sample can be used to estimate or make an inference about the population. There are
two ways to compute the standard error for the difference in two sample means:
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Equivalently, Sgooled is really just the mean square (denoted MS in later chapters) of the

difference between each value and its sample mean: for each sample, the variance is
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(in later chapters denoted as the sum of squares SS), thus
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The first version of the standard error SEy _y, = JSEf + SEZ = /Z—l + :1—2 is what we
1 2

use most of the time. The pooled version shows up again in Chapter 11 when doing
ANOVA testing. Of course for the confidence interval we need a t,/, value in
U=y *ty2SEy v, and forthe t,,, value from Table 4, we need df. Formula 6.7.1
on page 211 is a little complicated, and the value is usually just given to us. Note that
min(n; —1,n,—1) <df<(n;,+1)+(n,—1).

In Chapter 7 we learn about doing hypothesis testing (which in a way, we’ve already
learned a bit about, since we could actually do hypothesis testing using a confidence
interval, which we learned about in Chapter 6). The first version of hypothesis testing is
regarding whether two populations have different means. The more different the
samples are from each other, the more likely we are to conclude that the populations are
different. Reminder: the only way to know with 100% certainty something about an
entire population is to get that information from the entire population, not just a sample.
Thus no matter what inferences or conclusions we do or do not make about a population
(such as comparing two populations means), there is always the possibility that we are
making a mistake. If we decide to reject the null hypothesis (for example, that the
population means are the same), then there is the possibility that we are making a Type
I Error. If we decide that there is not enough difference in the sample means to be
sufficiently certain that the populations are different (that is, if the test statistic is not
sufficiently large), then there is a possibility that we are making a Type II Error. These
error types are discussed in Section 7.3. In Section 7.2 we learn about the first type of
test statistic, t;, which we would use if the two populations are approximately normal
and/or the sample sizes are large (say 20 or 30 or more). The intuition that we see for the
first time in this section is true in every test through the rest of the book: the more
different the two samples are, the larger the test statistic will be, or conversely the larger
the test statistic, the more different the two samples are. There are three things that
make us more certain that two populations do actually have different means, that is,
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three things that result in a larger test statistic: (1) larger difference between the sample
means, (2) smaller variation (standard deviation) within each sample, and (3) larger
sample sizes. Another idea that we first learn in Section 7.2 but that carries into each of
the tests that we learn about is that each test statistic has a corresponding P value. How
we find the P value depends on what sort of test we are doing (different tables in the
back of the book relate to different tests), and these different tests depend on what we
are testing (Different population means? Are the proportions of some characteristicin a
single population as expected? etc.) and the assumptions we are making (Normally
distributed data? Paired data? etc.). The P value is the likelihood that we would get
samples this different (i.e. as different as these two samples) are even more different if
the null hypothesis were really true. More precisely, P is the likelihood of getting a
sample with the given test statistic or larger if the null hypothesis were actually true. Thus
is also described as the likelihood we are making a Type I Error: that the null hypothesis
is actually true but we are deciding it is false based on the samples. The level of
significance a is the maximum amount of Type I Error we can stand to live with—it is the
level of risk we are willing to take. The confidence level is 1 — a, e.g. if a = 0.05 then
the confidence level is 95%. In Section 7.2 we are reminded that in real life we use
technology to do a lot of the work, including to find a P value for a given test statistic. In
7.3 we see the connection between the t test and a confidence interval. The four
possible results, including Type I and Type Il Errors are summarized in Table 7.3.2. Again,
no matter what our conclusion is (whether we reject H, or not), there is always the
possibility that we are making a mistake, since are using just a sample, rather than the
entire population(s). In 7.4, association (two things happen to occur at the same time)
and causation (one thing actually causes another) are discussed, as are observational
studies (the researcher doesn’t do anything—he/she merely observes) and experimental
studies (the researcher intervenes or manipulates the study to see what happens).
An experimental unit is one (hence the word “unit”) of the objects in the sample, e.g. a
person or a plant or an animal. We can do one tailed tests, first mentioned in 7.5, if we
have legitimate reason to believe that there is a certain direction in which the alternative
hypothesis might be true (for example, Hy: iy > pu, or Hy:py < p,, rather than the non-
directional H,:pu, # u,), based on prior information. We can also have one-sided
confidence intervals. When a direction is possible for an alternative hypothesis, then we
can do a one tailed test. The P value for a one tailed test is half of the P value for a two-
tailed (also known as non-directional) test. As described in 7.6, significant evidence
means that there is enough evidence (for example, two sample means are different
enough) to conclude that the null hypothesis is false and the alternative is true (for
example, that the two population means are different). Importance means that that the
difference actually matters. Table 7.6.3 on page 273 is a nice summary of some possible
scenarios. Effect size corresponds to how different the two samples are: how much effect
does the thing we’re interested in have. For example, how much effect does a weight




loss drug actually have, i.e. how different is the one sample which received the drug from
the control group sample which did not? Larger effect means the two samples are more
different (less overlap between the samples), which in general means we are more likely
to conclude the populations are different. However, even with small effect size (small
difference between sample, i.e. large overlap between the two samples), larger sample
sizes can still allow us to conclude that the two populations are different. We see this fact
in Table 5. In 7.7 power is introduced. Level of confidence is the probability that we
would correctly not reject the null hypothesis when the null hypothesis is true. Similarly,
power is the probability that we would correctly reject the null hypothesis when the null
hypothesis is false. For example, a confidence level of 95% and power of 90% means that
thereisuptoa a = 0.05 (5%) chance we will make a Type I Erroranduptoa 8 = 0.10
(10%) chance of making a Type Il Error. We see in Table 5 that larger power and/or higher
significance level and/or smaller effect all lead to the need for a larger sample size. In 7.9
the meaning of P is further discussed. Some ways of thinking of P are on page 287.
In 7.10 is our first introduction to the fact that the t test is not always the appropriate
test. We learn of the Wilcoxon-Mann-Whitney Test, which is used if (1) we don’t know
anything about the population (that is, we don’t know that it is normally distributed) and
(2) the sample is small. Remember that if the sample is large, regardless of the
distribution of the population, we can use the t test.

In Chapter 8 we begin learning about several other types of tests, as summarized in the
Summary of Formulas and Tests. In pretty much every situation, we compute a test
statistic which measures how different the samples are from what the null hypothesis H,,
describes. There are many ways that the test statistic is computed, depending on what
test is being used. But in every case, there are a few recurring themes: larger samples
make us more confident about whatever it is we will conclude, more variation within each
population’s sample makes us less certain about making a conclusion, and in general, the
more different the two (or more) samples are, the larger the test statistic and the smaller
the P value, that is, the less likely this sample could have come from the population(s) if
the null hypothesis were actually true. Chapter 8 deals with whether two population
means are different, using paired data. There are a few different tests we use for paired
data, depending on whether we assuming normal distribution. If we can assume
approximately normal distribution and/or we have sufficiently larger sample sizes, then
we can use the paired-sample t Test. If not, we can use the Sign Test or (by doing a bit
more work) the Wilcoxon Signed-Rank Test. At the beginning of 8.3, the idea of pairing is
discussed. Pairing makes our test more powerful. That is, if the two populations are
actually different, it is more likely that we would actually end up concluding they are
different (rejecting H, and accepting H,). However, if there is pairing and we ignore
that pairing, our test is less powerful. Even worse than ignoring paring is treating



unpaired data as if it were paired. The moral of the story: if data is paired, treat it as
paired. If not, then do not treat it as paired.

Chapter 9 deals first with categorical (rather than numerical) data for the case of one
population, two categories (in Section 9.1). This is also known as dichotomous
observations. (A dichotomy is the splitting of a whole into two non-overlapping parts.
Some “splittings” are more obvious or clear than others. Examples: male or female,
diseased or not, old or young, etc.) We are interested in the proportion of the
sample/population that is in one of the two categories (e.g. male). We sometimes refer
to this as “success.” (This is related to binomial distributions.) Notation for proportion:
p is population proportion, p is sample proportion, and p is the Wilson-Adjusted Sample
Proportion (a slight modification of p). P is used in computing a test statistic or a
confidence interval, both of which also involve standard error. As always, the standard
error decreases as sample sizes increases. In 9.2 we work with confidence intervals at
95% confidence, and in 9.3 we generalize the same idea to other confidence levels. So
what is covered in 9.2 is simply a special case of what is covered in 9.3. One thing a little
different than what we’ve been used to is that for proportions we use z values rather
than t values. This is because the binomial distribution is essentially normal. In Section
9.4 we work with one population with multiple categories (red or blond or dark hair; etc.).
This is our first experience with the Chi-Square Goodness-of-Fit Test: we are testing how
well the given proportions in each category match what we had expected. As usual, the
more different what you observe is from what is expected, the larger the test statistic y2,
the smaller P (from Table 9), and the more likely we are to conclude that the population
is different from what we expected it to be.

In Chapter 10 we generalize this idea with categorical data to two or more populations
with multiple categories. Table 10.5.4 is a nice example of this. We still perform a Chi-
Square test. If there is one population, then each expected value is the fraction of the
sample specified in the null hypothesis, like in HW 9.4.1 (the ratio of 12:3:1). If there are
multiple populations, then the expected values are computed based on the given data,
like in Table 10.5.3. Section 10.7 is included in Chapter 10 (rather than in Chapter 9, which
deals with proportions, like in 9.2) since it involves two populations rather than one. In
10.8 the special case of paired data from two populations with two categories is discussed.
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In Chapter 11 is our first encounter with working with more than two populations. While
the details are bit more complex than earlier, the main idea is the same: just as
V1Y

SEy,-v,
is “what is the difference between the samples” divided by “what is the variation within
the samples.” The same is true with ANOVA, in its three forms, in which

MS(Between) MS(Interaction)
ST MsSWithin) O T T MSWithin)

Ill not expect you to compute these values—they’ll be given. But you should have some
intuition about how things change when a certain value in the data is smaller or larger. In
One-Way ANOVA, we are interested in how different levels in one factor/treatment
affects whatever we are measuring. See the big box on page 454. Section 11.3 helps us

ts

understand how the total variation of data (the total sum of the squares Z(yij — )=/)2
for each observed value y;;) is partly from the variation between the groups and partly
within each group. Section 11.4 tells us what to do with these values: find F, then find
the corresponding P in Table 10, etc. In One-Way ANOVA with blocking, there are two
different factors, one of them being how we organized or blocked the experimental units,
which we want to remove or adjust for. In Two-Way ANOVA, there are two factors that
affect whatever we are measuring, and we are interested in how each factor affects
things, as well as how the interaction between those two factors might affect things. In
Two-Way ANOVA, we always check the interaction first, and if

_Ms (Interaction)
ST MS(Within)

is significant, then the test ends: we reject the null (that there is no difference due to the
factors”) and accept the alternative (that there is a difference due to the factors).
We wouldn’t check the individual factors, as the strong interaction between them makes
it unclear which of the two factors is having an effect on whatever is being measured. If
the interaction is not significant, then we do check both

MS(Factor)

* " MS(Within)
values to see if Factor 1 and/or Factor 2 has an effect. A rule of thumb is that more parallel
lines in the plots (as in Figure 11.7.3) means less effect of interaction of the two factors,

and less parallel lines means more interaction between the two factors is affecting things
(asin Figure 11.7.4).
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The main idea of Chapter 12 is fitting models (functions, such as straight lines) to data.
This is also known as regression. We mostly focus on straight lines (so we are doing linear
regression), but we see in Section 12.8 there are other types of functions we can fit to
data. We don’t do that in this course. There are two main types of data: lots of Y values
for each of a few given X values, as in Figure 12.1.1 (random subsampling), or simply lots
of pairs of values, as in Figure 12.1.2 (bivariate random sampling). In either case, we can
determine what line Y = b, + b; X would best fit the sample data and how well the line
would fit the data, as measured by the correlation coefficient r, where —1 <r < 1.
The closer r isto 1 or —1, the more linear the data are, that is, the more the data are
linearly correlated. As usual, the values found from the sample are our best estimates for
the same values for the population. Asis typical, there is some uncertainly in the estimate
of b; for f;, so we can find a confidence interval for (; using b, rather than simply
saying B; = b;. The formula for the population line uy|x = By + ;X reminds us that
this line doesn’t predict a specific Y value for a given X value: it predicts what the
average Y value would be for a given X value. This is illustrated in Figure 12.4.1.
Associated with this is the standard deviation of the error (how much difference there is
in the predicted values J; vs. the measured values y; for each given value of x;): s, for
the sample and o, for the population. About 2/3 of the measured data is within one
standard deviation of the regression line, as seen in Figure 12.3.8, and similiarly for two
and three standard deviations, as first discussed way back in Figure 4.3.5. Finally, one
thing that we see a few times in this chapter is how data points farther away from the
main cluster of data can affect things. This is one of the difficult-to-answer questions
when working with data: do we use outliers (probably) or do we simply ignore them
(probably a little dangerous)?

Chapter 13 gives a nice summary of the various tests we’ve covered. | would read it
through once as you study for the final.
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