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Math 316 Summary of Ideas 
 
Section 1.1 gives us an idea of what statistics is all about:  making an inference (estimate) 
about a population—a group of people, a certain type of plant, etc.  We make that 
inference based on information we gather—often the measurement of a certain 
variable—from a sample from that population.  One important issue is what sort of 
information and evidence we want to gather and how to gather it.  This is discussed in 
Section 1.2.  Section 1.3 discusses a very important (and often very difficult) aspect of 
gathering the information:  how to get a truly random sample which accurately represents 
the population from which the sample is taken. 
 
 
There is always uncertainty in statistics.  The only way to know with 100% certainty some 
information about an entire population is to gather that information from the entire 
population.  Thus no matter what inferences or conclusions we do or do not make about 
a population, there is always the possibility that we are making a mistake.  Connected to 
uncertainty is probability, the study of how likely something is to happen.  Section 2.1 
gives a nice summary of and introduction to what probability is.  In Section 2.2 we are 
introduced to distributions.  A frequency distribution consists of the possible outcomes 
and the frequency with which each outcome occurred.  Generally, more useful than 
frequency is relative frequency:  the fraction of the time each outcome does occur.  (In 
Chapter 3 we see the related idea of probability distribution:  the possible outcomes and 
what fraction of the time each outcome—or a particular range of outcomes—should 
occur.  In Section 2.3 we read about some of the possible distributions—some examples 
are shown in Figure 2.2.14 on page 36—and we are introduced to the idea that area under 
the curve = probability (or relative frequency).  In Section 2.3 median and mean are 
discussed.  In Section 2.4 we learn about boxplots.  Section 2.5 covers some miscellaneous 
ideas, including scatterplots, and numerical vs. categorical data.  In Section 2.6 we learn 
of measures of dispersion (how spread out a collection of data is, i.e. how much variation 
there is in the data), in particular, variance and standard deviation.  Some useful intuition:  
standard (typical, average) deviation (how different something is) is essentially the 
average distance from each of the values in the data to the mean of the data.  Regardless 
of the distribution, the majority of all data is within 1 standard deviation of the mean, 
most of all data is within 2 standard deviations, and nearly all data is within 3 standard 
deviations of the mean.  In Figure 4.3.5 on page 127 we see more precise percentages for 
normally distributed data.  In Section 2.7 we see that if we have a collection of  𝑌𝑌  values 
where  𝑌𝑌 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏, we will have  𝜇𝜇𝑌𝑌 = 𝑎𝑎𝑎𝑎𝑋𝑋 + 𝑏𝑏  and  𝜎𝜎𝑌𝑌 = 𝑎𝑎𝜎𝜎𝑋𝑋.  Other transformations 
are discussed in Section 2.7.  These aren’t too important to what we do in this class, but 
they can occasionally be important in some real life situations.  Finally, in Sections 2.8 and 
2.9 we get back to what statistics is all about:  making inferences about one or more 
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populations based on information we get from samples.  Notation is helpful to do 
mathematical analysis as well as to keep track of what we are talking about.  For instance, 
see Table 2.9.1 on page 78.   
 
 
In Chapter 3 we learn about probability.  In Chapter 3.2 is the simple idea that the 
probability of an event occurring is simply how many times should that event occur out 
of the total number of possible outcomes.  If there is no theoretical prediction of the 
probability, the next best thing to predict what should happen is simply what has 
happened in the past; that is, the probability of an event happening in the future is what 
fraction of the time it has occurred in the past.  An important notion of probability is that 
the more you repeat an experiment, the closer the actual relative frequency will be to the 
probability (the expected relative frequency) of that event.  We see this in Figure 3.2.1 on 
page 87.  Probability trees are quite handy for visualizing and organizing the possible 
outcomes and determining probabilities.  Example 3.2.11 on page 91 is simple, yet quite 
interesting and important.  In Section 3.3, some basic rules of probability are given and 
conditional probability is introduced: 

Pr{𝐸𝐸2|𝐸𝐸1} = # 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝐸𝐸1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸2 𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
# 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  𝐸𝐸1  𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

=
    # 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝐸𝐸1 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸2 𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜     
# 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠  𝐸𝐸1  𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 # 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

= Pr{𝐸𝐸1𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸2}
Pr{𝐸𝐸1}

 .      

 
This is the formula the book gives on page 96.  In Section 3.4 we learn of density curves, 
a function that shows what the possible outcomes are and the relative frequencies of 
those outcomes.  See Example 3.4.2 on page 100.  Section 3.5:  a random variable is simply 
a value that varies (variable) and that is random (it varies from measurement to 
measurement).  Notation:  typically the book uses a capital letter when talking about the 
random variable and a lower case letter when talking about a specific value that variable 
might have.  For example, Pr{𝑌𝑌 = 𝑦𝑦2} = 1

3
  means that there is a probability of  1/3 that 

the value of variable  𝑌𝑌  will be  𝑦𝑦2 .  Related to this: often a Greek letter is used for the 
population and an English letter is used for the sample.  For example, the population 
standard deviation is  𝜎𝜎  (the Greek letter for ‘s’) and the sample standard deviation is  𝑠𝑠.  
We end the chapter in Section 3.6 with the binomial distribution in which there are two 
possible outcomes (a few examples:  a free throw is either made or not;  a child is either 
iron deficient or not;  an animal is either male or not).  The formula corresponding to the 
probability of a particular outcome is on page 110, where  𝑝𝑝  is the probability of “success” 
for an individual trial:   

Pr{𝑗𝑗 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡} = 𝐶𝐶𝑗𝑗𝑛𝑛
⬚ ⋅ 𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)𝑛𝑛−𝑗𝑗  . 

Note that   𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)𝑛𝑛−𝑗𝑗  is the probability of having  𝑗𝑗  successes and  𝑛𝑛 − 𝑗𝑗  failures in 
some specific order, and there are  𝐶𝐶𝑗𝑗𝑛𝑛

⬚   different ways (different orderings) of an outcome 
having  𝑗𝑗  successes and  𝑛𝑛 − 𝑗𝑗  failures, so multiplying 𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)𝑛𝑛−𝑗𝑗  by  𝐶𝐶𝑗𝑗𝑛𝑛

⬚   is of course 
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the same as simply adding  𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)𝑛𝑛−𝑗𝑗  up  𝐶𝐶𝑗𝑗𝑛𝑛
⬚   times, since there are 𝐶𝐶𝑗𝑗𝑛𝑛

⬚   different 
ways of having  𝑗𝑗  successes and  𝑛𝑛 − 𝑗𝑗  failures.  In 3.7 they discuss estimating the 
probability  𝑝𝑝  of success from the given data. 
 
 
In Chapter 4 we learn about the normal distribution.  Normal is another word for typical 
or common.   Section 4.1 introduces the main idea of normal distribution.  Many real life 
collections of data are approximately normal.  There are two parameters that define a 
particular normal distribution; that is, there are two parameters that make one normal 
distribution different from another:  the mean (where the data are centered) and the 
standard deviation (how spread out the data are).  See Figure 4.2.2 on page 125 for a 
comparison of three normal distributions.  Quite important is the idea of a standard (or 
𝑍𝑍) value or score, introduced in Section 4.3.  This type of value comes up over and over 
throughout statistics:  how different is our measurement from what we expected to get, 
relative to how much variation there is in the data.  For example, with 

𝑍𝑍 =
𝑌𝑌 − 𝜇𝜇
𝜎𝜎

 

we compute how different a value  𝑌𝑌  is from what (on average) is expected  𝜇𝜇, relative 
to how spread out the rest of the data is, as measured by standard variation  𝜎𝜎.  Another 
way to look at this comes from solving for  𝑌𝑌, which leads to  𝑌𝑌 = 𝜇𝜇 + 𝑍𝑍 ⋅ 𝜎𝜎.  That is,  𝑍𝑍 is 
how many standard deviations the given value  𝑌𝑌  is from the mean  𝜇𝜇.  For normally 
distributed data, Table 3 tells us what fraction of the data a particular value is greater 
than.  For example, a value with a 𝑍𝑍 score of 1.57 is larger than .9418 (94.18%) of the 
other data.  (Again, this is assuming that the data are perfectly normally distributed.)             
We can also pretty easily compute what fraction of the data is between two  𝑍𝑍 values.  
See, for instance, Figure 4.3.9 on page 129.  In Section 4.4 we learn how to determine 
whether data are normally distributed (or more accurately, how normally distributed the 
data are).  We basically are looking at whether the data are spread out in the way that 
normally distributed data should be. 
 
 
Chapter 5 is all about samples.  First, Section 5.1 points out something obvious, but 
important to realize:  every sample from a particular population will be different from 
(even if similar to) every other sample.  The sampling distribution for a given population 
consists of the possible sample means and what fraction of the time those sample means 
would occur.  In other words, if we could take lots and lots (infinitely many) samples from 
the same population (that is, if we carried out a meta study), the sampling distribution 
would be the collection (distribution) of all of the sample means.  As discussed in Section 
5.2, we would expect that most of those samples would have a mean approximately equal 
to the population mean, but there would still be some with mean somewhat different 
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from the population mean.  In Figure 5.2.1 we see an example of a sampling distribution 
of the sample mean  𝑌𝑌�.  Theorem 5.2.1 describes how the statistics (the mean and 
standard deviation) of the sample means relate to the statistics of the original population.  
Figure 5.2.6 gives a nice example of how given a certain population (shown in (a)) what a 
particular sample of size  𝑛𝑛 = 25  might look like—the values are in Table 5.2.3.  In Figure 
5.2.7 are several other possible  𝑛𝑛 = 25  samples from the same population, each with its 
own mean.  Notice each sample is like a miniature version of the original population:  
same basic shape (in this case, normally distributed), and approximately the same mean 
and standard deviation.  If we were to take lots and lots (infinitely many) of  𝑛𝑛 = 25  
samples then the distribution of those samples means would be as given in Figure 5.2.6(c).  
Notice the mean in (c) is the same as the mean in (a) and the standard deviation in (c) is 
the standard deviation in (a) divided by  √25, where  25  is the sample size.  These values 
are summarized in Table 5.2.2 on page 156.  Let me remind you that most samples would 
have a mean near the population mean of (500 for this example), but occasionally there 
can be an unusual sample, like that in Figure 5.2.7(c).  One of the big questions is:  given 
a single sample (we usually take only a single sample from a population), how likely is it 
that the population is what we thought it would be?   (For example, often we are 
interested in the population mean.)  For instance, consider any one the eight samples in 
Figure 5.2.7.  How likely are we to believe that the population mean is 500 given that one 
particular sample?  The Central Limit Theorem in Section 5.3 says that no matter what the 
distribution of the original population, the sampling distribution will become more and 
more normal the larger the sample is.  This is actually the main reason that the normal 
distribution is so important:  it is not because many populations themselves are normally 
distributed; it’s because their sample distributions would be approximately normal.  The 
population whose distribution is given in Figure 5.3.3 is not normal.  Suppose we took lots 
and lots (infinity many) samples of size  𝑛𝑛 = 4.  The resulting distribution of the sample 
means is the first plot in Figure 5.3.4.  Suppose that we did this again, but with larger 
sample sizes.  The distributions of the sample means for the different sample sizes are 
shown in the other plots.  We see that the larger the sample size, the more normally 
distributed the sample means would be.  Shifting gears a bit, Section 5.4 shows us that a 
binomial distribution is approximately normal—the larger the sample size, the more 
normally distributed it is.  Since a normal distribution includes a mean and a standard 
deviation, we are told what the mean and standard deviation are for binomially 
distributed data.  These are summarized in Theorem 5.4.1 on page 164.  The continuity 
correction is a minor adjustment that makes our use of the normal distribution to 
approximate a binomial distribution more accurate. 
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Chapter 6 is finally a more detailed discussion of how to use a sample to make inferences 
(estimates) about the population—this is the main purpose of this course.  Section 6.1 
tells us the obvious:  our best estimate for the population mean  𝜇𝜇  and standard deviation  
𝜎𝜎  are the sample mean  𝑦𝑦�  and standard deviation  𝑠𝑠.  Of course, there is always some 
uncertainly, since we don’t have the entire population, just a small part of it in the sample.  
The standard error is a measure of how uncertain we are about the sample statistics (such 
as the sample mean 𝑦𝑦�)  as estimates for population statistics (such as the population mean 
𝜇𝜇).  The two main things that affect uncertainty are (1) variation within the sample data 
(which is measured by the sample standard deviation 𝑠𝑠) and (2) the sample size 𝑛𝑛.                    
In general, the standard error will be smaller if (1) there is less variation in the data and/or 
(2) the sample size is larger.  Both (1) and (2) make us happy.  In Section 6.3, this 
uncertainty shows up in the confidence interval we find in estimating  𝜇𝜇  using  𝑦𝑦�:   

𝜇𝜇 = 𝑦𝑦� ± 𝑡𝑡𝛼𝛼/2𝑆𝑆𝑆𝑆 . 

The formula for the standard error  𝑆𝑆𝑆𝑆  varies depending on what we are estimating:  a 
population mean, the difference between two population means, a population 
proportion, etc.  See the Summary of Formulas and Tests for the formulas (that I created) 
for various ways  𝑆𝑆𝑆𝑆  is computed.  The  𝑡𝑡 value comes from Student’s  𝑡𝑡 distribution, from 
Table 4.  We’re familiar with this confidence interval formula  𝜇𝜇 = 𝑦𝑦� ± 𝑡𝑡𝛼𝛼/2𝑆𝑆𝑆𝑆 , but where 
does it come from?  Formula 6.3.1 on page 183 and the subsequent lines show how we 
go from  

The probability that a sample mean would be within 1.96 standard deviations is 0.95 
to 

The probability that the mean would be within 1.96 standard errors of the sample mean is 0.95 
We would use  𝑧𝑧 = 1.96  from Table 4 for a 95% confidence interval if we knew that the 
sample means were perfectly normally distributed.  Since we can’t count on that, Student 
developed his  𝑡𝑡 distribution (Student is the name of the fellow who came up with the 
idea), which is reflected in Table 4.  Let’s make an important distinction:  Table 3 is used 
when we have perfectly normal distributed population data and we are making 
predictions about a sample.  Table 4 is used when (1) we have a sample from an 
approximately normally distributed population or else a large enough sample (say  𝑛𝑛 =
20 or 30) so that we can assume approximately normal distribution in the sample 
distribution and (2) we are taking a sample and making inferences/estimates about the 
population.  As the Central Limit Theorem states, for infinitely large samples, the sample 
distribution would be perfectly normal (of course this can’t happen in real life, but we 
often have large enough samples for which it essentially happens), thus the bottom row 
of Table 4 with  𝑑𝑑𝑑𝑑 = ∞  corresponds to the values in Table 3.  In Table 3 we use a  𝑧𝑧  
value to find an area, and in Table 4 for a given desired area we find the corresponding  𝑡𝑡  
value.  Now back to the confidence interval  𝜇𝜇 = 𝑦𝑦� ± 𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝑆𝑆.  Things that will make a 
more precise (narrower, i.e. the margin of error  𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝑆𝑆  smaller) estimate include:            
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(1) a smaller  𝑆𝑆𝑆𝑆, already mentioned half-a-page above, and (2) a smaller  𝑡𝑡𝛼𝛼/2  value, 
which occurs if the sample size  𝑛𝑛  is larger and/or the confidence level is lower.  It’s a 
trade-off:  lower confidence  ⇔  smaller  𝑡𝑡𝛼𝛼/2, or equivalently, higher confidence  ⇔  
larger  𝑡𝑡𝛼𝛼/2.  Also notice in Table 4 that for a given confidence level, larger sample ⇒ 
smaller 𝑡𝑡𝛼𝛼/2.  Consider the interval given at the bottom of page 187.  It doesn’t make 
sense to say that there is a 95% chance the population mean  𝜇𝜇  is in that interval, since 
it is either in the interval or it is not.  A more appropriate interpretation:  if the population 
mean were whatever the sample mean  𝑦𝑦�  is, then there is a 95% probability the sample 
mean would be a value within the given interval.  So for the example just mentioned, 
there is a 95% probability that the sample mean would be between 31.4 and 34.2.  It’s a 
subtle distinction.  To conclude 6.3, one-sided confidence intervals are discussed.  In 
Section 6.4 we learn how to estimate what sample size would be needed to ensure the 
margin of error  𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝑆𝑆  is smaller than a given tolerance (i.e. how much error or 
uncertainty we can live with).  This is a big issue:  how large does our sample size need to 
be in order to achieve a particular result, for example, a particular confidence interval 
width?  Section 6.5 discusses when the formulas given can be used:  (1) a sufficiently large 
sample and (2) sample data that are independent.  The first is easy to determine (but not 
necessarily easy to make happen in real life), the second is a little tougher to be sure of.  
In Sections 6.6 and 6.7 we first learn about determining whether two populations have 
different means.  We take a sample from each population and determining how different 
the two samples are from each other.  The more different the two samples are, the more 
certain we are that the populations are different.  There are three ways to do this, all of 
which are essentially equivalent.  Two involve test statistics, the third involves a 
confidence interval, which is what is covered at this stage, in Section 6.7.  Remember that 
the standard error is a measure of how much uncertainty there is about how reliably the 
sample can be used to estimate or make an inference about the population.  There are 
two ways to compute the standard error for the difference in two sample means: 

𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 = �𝑆𝑆𝐸𝐸12 + 𝑆𝑆𝐸𝐸22 = �
𝑠𝑠12

𝑛𝑛1
+
𝑠𝑠22

𝑛𝑛2
 

or 

𝑆𝑆𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2

𝑛𝑛1
+
𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2

𝑛𝑛2
= �𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 �

1
𝑛𝑛1

+
1
𝑛𝑛2
� 

 
where  𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  is a weighted average of  𝑠𝑠12  and  𝑠𝑠22:  

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 =
(𝑛𝑛1 − 1)𝑠𝑠12 + (𝑛𝑛2 − 1)𝑠𝑠22

(𝑛𝑛1 − 1) + (𝑛𝑛2 − 1)
 . 
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Equivalently, 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2  is really just the mean square (denoted 𝑀𝑀𝑀𝑀 in later chapters) of the 
difference between each value and its sample mean:  for each sample, the variance is              

𝑠𝑠2 = ∑(𝑦𝑦𝑖𝑖−𝑦𝑦�)2

𝑛𝑛−1
,  so 

(𝑛𝑛 − 1)𝑠𝑠2 = (𝑛𝑛 − 1)
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2

𝑛𝑛 − 1
= �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2   

 (in later chapters denoted as the sum of squares 𝑆𝑆𝑆𝑆), thus 

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 =
(𝑛𝑛1 − 1)𝑠𝑠12 + (𝑛𝑛1 − 1)𝑠𝑠22

(𝑛𝑛1 − 1) + (𝑛𝑛2 − 1)
=
∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 + ∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2

(𝑛𝑛1 − 1) + (𝑛𝑛2 − 1)
              

 

The first version of the standard error  𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 = �𝑆𝑆𝐸𝐸12 + 𝑆𝑆𝐸𝐸22 = �𝑠𝑠12

𝑛𝑛1
+ 𝑠𝑠22

𝑛𝑛2
  is what we 

use most of the time.  The pooled version shows up again in Chapter 11 when doing 
ANOVA testing.  Of course for the confidence interval we need a  𝑡𝑡𝛼𝛼/2  value in                           
𝜇𝜇 = 𝑦𝑦� ± 𝑡𝑡𝛼𝛼/2𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2,  and for the  𝑡𝑡𝛼𝛼/2  value from Table 4, we need  𝑑𝑑𝑑𝑑.  Formula 6.7.1 
on page 211 is a little complicated, and the value is usually just given to us.  Note that  
min(𝑛𝑛1 − 1, 𝑛𝑛2 − 1) ≤ 𝑑𝑑𝑑𝑑 ≤ (𝑛𝑛1 + 1) + (𝑛𝑛2 − 1) . 
 
 
In Chapter 7 we learn about doing hypothesis testing (which in a way, we’ve already 
learned a bit about, since we could actually do hypothesis testing using a confidence 
interval, which we learned about in Chapter 6).  The first version of hypothesis testing is 
regarding whether two populations have different means.  The more different the 
samples are from each other, the more likely we are to conclude that the populations are 
different.  Reminder: the only way to know with 100% certainty something about an 
entire population is to get that information from the entire population, not just a sample.  
Thus no matter what inferences or conclusions we do or do not make about a population 
(such as comparing two populations means), there is always the possibility that we are 
making a mistake.  If we decide to reject the null hypothesis (for example, that the 
population means are the same), then there is the possibility that we are making a Type 
I Error.  If we decide that there is not enough difference in the sample means to be 
sufficiently certain that the populations are different (that is, if the test statistic is not 
sufficiently large), then there is a possibility that we are making a Type II Error.  These 
error types are discussed in Section 7.3.  In Section 7.2 we learn about the first type of 
test statistic, 𝑡𝑡𝑠𝑠, which we would use if the two populations are approximately normal 
and/or the sample sizes are large (say 20 or 30 or more).  The intuition that we see for the 
first time in this section is true in every test through the rest of the book:  the more 
different the two samples are, the larger the test statistic will be, or conversely the larger 
the test statistic, the more different the two samples are.  There are three things that 
make us more certain that two populations do actually have different means, that is, 



8 
 

three things that result in a larger test statistic:  (1) larger difference between the sample 
means, (2) smaller variation (standard deviation) within each sample, and (3) larger 
sample sizes.  Another idea that we first learn in Section 7.2 but that carries into each of 
the tests that we learn about is that each test statistic has a corresponding  𝑃𝑃 value.  How 
we find the  𝑃𝑃 value depends on what sort of test we are doing (different tables in the 
back of the book relate to different tests), and these different tests depend on what we 
are testing (Different population means?  Are the proportions of some characteristic in a 
single population as expected? etc.) and the assumptions we are making (Normally 
distributed data?  Paired data?  etc.).  The  P value is the likelihood that we would get 
samples this different (i.e. as different as these two samples) are even more different if 
the null hypothesis were really true.  More precisely,  𝑃𝑃  is the likelihood of getting a 
sample with the given test statistic or larger if the null hypothesis were actually true.  Thus 
is also described as the likelihood we are making a Type I Error: that the null hypothesis 
is actually true but we are deciding it is false based on the samples.  The level of 
significance  𝛼𝛼  is the maximum amount of Type I Error we can stand to live with—it is the 
level of risk we are willing to take.  The confidence level is 1 − 𝛼𝛼, e.g. if  𝛼𝛼 = 0.05  then 
the confidence level is 95%.  In Section 7.2 we are reminded that in real life we use 
technology to do a lot of the work, including to find a  𝑃𝑃 value for a given test statistic.  In 
7.3 we see the connection between the  𝑡𝑡  test and a confidence interval.  The four 
possible results, including Type I and Type II Errors are summarized in Table 7.3.2.  Again, 
no matter what our conclusion is (whether we reject 𝐻𝐻0 or not), there is always the 
possibility that we are making a mistake, since are using just a sample, rather than the 
entire population(s).  In 7.4, association (two things happen to occur at the same time) 
and causation (one thing actually causes another) are discussed, as are observational 
studies (the researcher doesn’t do anything—he/she merely observes) and experimental 
studies (the researcher intervenes or manipulates the study to see what happens).                 
An experimental unit is one (hence the word “unit”) of the objects in the sample, e.g. a 
person or a plant or an animal.  We can do one tailed tests, first mentioned in 7.5, if we 
have legitimate reason to believe that there is a certain direction in which the alternative 
hypothesis might be true (for example,  𝐻𝐻𝐴𝐴:𝜇𝜇1 > 𝜇𝜇2  or  𝐻𝐻𝐴𝐴:𝜇𝜇1 < 𝜇𝜇2, rather than the non-
directional  𝐻𝐻𝐴𝐴:𝜇𝜇1 ≠ 𝜇𝜇2), based on prior information.  We can also have one-sided 
confidence intervals.  When a direction is possible for an alternative hypothesis, then we 
can do a one tailed test.  The 𝑃𝑃 value for a one tailed test is half of the  𝑃𝑃 value for a two-
tailed (also known as non-directional) test.  As described in 7.6, significant evidence 
means that there is enough evidence (for example, two sample means are different 
enough) to conclude that the null hypothesis is false and the alternative is true (for 
example, that the two population means are different).  Importance means that that the 
difference actually matters.  Table 7.6.3 on page 273 is a nice summary of some possible 
scenarios.  Effect size corresponds to how different the two samples are:  how much effect 
does the thing we’re interested in have.  For example, how much effect does a weight 
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loss drug actually have, i.e. how different is the one sample which received the drug from 
the control group sample which did not?  Larger effect means the two samples are more 
different (less overlap between the samples), which in general means we are more likely 
to conclude the populations are different.  However, even with small effect size (small 
difference between sample, i.e. large overlap between the two samples), larger sample 
sizes can still allow us to conclude that the two populations are different.  We see this fact 
in Table 5.  In 7.7 power is introduced.  Level of confidence is the probability that we 
would correctly not reject the null hypothesis when the null hypothesis is true.  Similarly, 
power is the probability that we would correctly reject the null hypothesis when the null 
hypothesis is false.  For example, a confidence level of 95% and power of 90% means that 
there is up to a  𝛼𝛼 = 0.05 (5%) chance we will make a Type I Error and up to a  𝛽𝛽 = 0.10 
(10%) chance of making a Type II Error.  We see in Table 5 that larger power and/or higher 
significance level and/or smaller effect all lead to the need for a larger sample size.  In 7.9 
the meaning of  𝑃𝑃  is further discussed.  Some ways of thinking of  𝑃𝑃  are on page 287.      
In 7.10 is our first introduction to the fact that the  𝑡𝑡  test is not always the appropriate 
test.  We learn of the Wilcoxon-Mann-Whitney Test, which is used if (1) we don’t know 
anything about the population (that is, we don’t know that it is normally distributed) and 
(2) the sample is small.  Remember that if the sample is large, regardless of the 
distribution of the population, we can use the  𝑡𝑡  test.   
 
 
In Chapter 8 we begin learning about several other types of tests, as summarized in the 
Summary of Formulas and Tests.  In pretty much every situation, we compute a test 
statistic which measures how different the samples are from what the null hypothesis  𝐻𝐻0  
describes.  There are many ways that the test statistic is computed, depending on what 
test is being used.  But in every case, there are a few recurring themes:  larger samples 
make us more confident about whatever it is we will conclude, more variation within each 
population’s sample makes us less certain about making a conclusion, and in general, the 
more different the two (or more) samples are, the larger the test statistic and the smaller 
the  𝑃𝑃  value, that is, the less likely this sample could have come from the population(s) if 
the null hypothesis were actually true.  Chapter 8 deals with whether two population 
means are different, using paired data.  There are a few different tests we use for paired 
data, depending on whether we assuming normal distribution.  If we can assume 
approximately normal distribution and/or we have sufficiently larger sample sizes, then 
we can use the paired-sample  𝑡𝑡  Test.  If not, we can use the Sign Test or (by doing a bit 
more work) the Wilcoxon Signed-Rank Test.  At the beginning of 8.3, the idea of pairing is 
discussed.  Pairing makes our test more powerful.  That is, if the two populations are 
actually different, it is more likely that we would actually end up concluding they are 
different (rejecting  𝐻𝐻0  and accepting  𝐻𝐻𝐴𝐴).  However, if there is pairing and we ignore 
that pairing, our test is less powerful.  Even worse than ignoring paring is treating 
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unpaired data as if it were paired.  The moral of the story:  if data is paired, treat it as 
paired.  If not, then do not treat it as paired.       
 
  
Chapter 9 deals first with categorical (rather than numerical) data for the case of one 
population, two categories (in Section 9.1).  This is also known as dichotomous 
observations.  (A dichotomy is the splitting of a whole into two non-overlapping parts.  
Some “splittings” are more obvious or clear than others.  Examples:  male or female, 
diseased or not, old or young, etc.)  We are interested in the proportion of the 
sample/population that is in one of the two categories (e.g. male).  We sometimes refer 
to this as “success.”  (This is related to binomial distributions.)  Notation for proportion:  
𝑝𝑝  is population proportion,  𝑝̂𝑝  is sample proportion, and  𝑝𝑝�  is the Wilson-Adjusted Sample 
Proportion (a slight modification of  𝑝̂𝑝).  𝑝𝑝� is used in computing a test statistic or a 
confidence interval, both of which also involve standard error.  As always, the standard 
error decreases as sample sizes increases.  In 9.2 we work with confidence intervals at 
95% confidence, and in 9.3 we generalize the same idea to other confidence levels.  So 
what is covered in 9.2 is simply a special case of what is covered in 9.3.  One thing a little 
different than what we’ve been used to is that for proportions we use 𝑧𝑧 values rather 
than 𝑡𝑡 values.  This is because the binomial distribution is essentially normal.  In Section 
9.4 we work with one population with multiple categories (red or blond or dark hair; etc.).  
This is our first experience with the Chi-Square Goodness-of-Fit Test:  we are testing how 
well the given proportions in each category match what we had expected.  As usual, the 
more different what you observe is from what is expected, the larger the test statistic  𝜒𝜒𝑠𝑠2, 
the smaller  𝑃𝑃 (from Table 9), and the more likely we are to conclude that the population 
is different from what we expected it to be. 

 
 
In Chapter 10 we generalize this idea with categorical data to two or more populations 
with multiple categories.  Table 10.5.4 is a nice example of this.  We still perform a Chi-
Square test.  If there is one population, then each expected value is the fraction of the 
sample specified in the null hypothesis, like in HW 9.4.1 (the ratio of 12:3:1).  If there are 
multiple populations, then the expected values are computed based on the given data, 
like in Table 10.5.3.  Section 10.7 is included in Chapter 10 (rather than in Chapter 9, which 
deals with proportions, like in 9.2) since it involves two populations rather than one.  In 
10.8 the special case of paired data from two populations with two categories is discussed.   
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In Chapter 11 is our first encounter with working with more than two populations.  While 
the details are bit more complex than earlier, the main idea is the same:  just as  

𝑡𝑡𝑠𝑠 =
𝑦𝑦�1 − 𝑦𝑦�2
𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2

 

is “what is the difference between the samples” divided by “what is the variation within 
the samples.”  The same is true with ANOVA, in its three forms, in which  

𝐹𝐹𝑠𝑠 =
𝑀𝑀𝑀𝑀(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)
𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖)   𝑜𝑜𝑜𝑜  𝐹𝐹𝑠𝑠 =

𝑀𝑀𝑀𝑀(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)
𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖)  . 

I’ll not expect you to compute these values—they’ll be given.  But you should have some 
intuition about how things change when a certain value in the data is smaller or larger.  In 
One-Way ANOVA, we are interested in how different levels in one factor/treatment 
affects whatever we are measuring.  See the big box on page 454.  Section 11.3 helps us 
understand how the total variation of data  (the total sum of the squares  ∑�𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦���

2
  

for each observed value  𝑦𝑦𝑖𝑖𝑖𝑖)  is partly from the variation between the groups and partly 
within each group.  Section 11.4 tells us what to do with these values:  find  𝐹𝐹𝑠𝑠, then find 
the corresponding  𝑃𝑃  in Table 10, etc.  In One-Way ANOVA with blocking, there are two 
different factors, one of them being how we organized or blocked the experimental units, 
which we want to remove or adjust for.  In Two-Way ANOVA, there are two factors that 
affect whatever we are measuring, and we are interested in how each factor affects 
things, as well as how the interaction between those two factors might affect things.  In 
Two-Way ANOVA, we always check the interaction first, and if   

𝐹𝐹𝑠𝑠 =
𝑀𝑀𝑀𝑀(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)
𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖)  

is significant, then the test ends:  we reject the null (that there is no difference due to the 
factors”) and accept the alternative (that there is a difference due to the factors).               
We wouldn’t check the individual factors, as the strong interaction between them makes 
it unclear which of the two factors is having an effect on whatever is being measured.  If 
the interaction is not significant, then we do check both   

𝐹𝐹𝑠𝑠 =
𝑀𝑀𝑀𝑀(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)
𝑀𝑀𝑀𝑀(𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖) 

values to see if Factor 1 and/or Factor 2 has an effect.  A rule of thumb is that more parallel 
lines in the plots (as in Figure 11.7.3) means less effect of interaction of the two factors, 
and less parallel lines means more interaction between the two factors is affecting things 
(as in Figure 11.7.4).   
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The main idea of Chapter 12 is fitting models (functions, such as straight lines) to data.  
This is also known as regression.  We mostly focus on straight lines (so we are doing linear 
regression), but we see in Section 12.8 there are other types of functions we can fit to 
data.  We don’t do that in this course.  There are two main types of data:  lots of  𝑌𝑌  values 
for each of a few given  𝑋𝑋  values, as in Figure 12.1.1 (random subsampling), or simply lots 
of pairs of values, as in Figure 12.1.2 (bivariate random sampling).  In either case, we can 
determine what line  𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋  would best fit the sample data and how well the line 
would fit the data, as measured by the correlation coefficient  𝑟𝑟,  where  −1 ≤ 𝑟𝑟 ≤ 1.  
The closer  𝑟𝑟  is to 1 or  −1, the more linear the data are, that is, the more the data are 
linearly correlated.  As usual, the values found from the sample are our best estimates for 
the same values for the population.  As is typical, there is some uncertainly in the estimate 
of  𝑏𝑏1  for  𝛽𝛽1, so we can find a confidence interval for  𝛽𝛽1  using  𝑏𝑏1  rather than simply 
saying  𝛽𝛽1 ≈ 𝑏𝑏1.  The formula for the population line  𝜇𝜇𝑌𝑌|𝑋𝑋 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋  reminds us that 
this line doesn’t predict a specific  𝑌𝑌  value for a given  𝑋𝑋  value:  it predicts what the 
average  𝑌𝑌  value would be for a given  𝑋𝑋  value.  This is illustrated in Figure 12.4.1.  
Associated with this is the standard deviation of the error (how much difference there is 
in the predicted values  𝑦𝑦�𝑖𝑖  vs. the measured values  𝑦𝑦𝑖𝑖   for each given value of  𝑥𝑥𝑖𝑖):  𝑠𝑠𝑒𝑒  for 
the sample and  𝜎𝜎𝑒𝑒  for the population.  About 2/3 of the measured data is within one 
standard deviation of the regression line, as seen in Figure 12.3.8, and similiarly for two 
and three standard deviations, as first discussed way back in Figure 4.3.5.  Finally, one 
thing that we see a few times in this chapter is how data points farther away from the 
main cluster of data can affect things.  This is one of the difficult-to-answer questions 
when working with data:  do we use outliers (probably) or do we simply ignore them 
(probably a little dangerous)? 
 
 
Chapter 13 gives a nice summary of the various tests we’ve covered.  I would read it 
through once as you study for the final.   


