Invertible Matrix Theorem for *n* × *n* matrix A

a. A is invertible. b. A is row equivalent to I. c. A has *n* pivot positions. d. Ax = 0 has only trivial solution. e. Columns of A lin. independent. f. Linear transf. $\mathbf{x} \rightarrow A\mathbf{x}$ 1-to-1. g. Ax = b has at least one solution for each b. h. Columns of A span Rⁿ. i. Linear transf. $\mathbf{x} \rightarrow A\mathbf{x}$ onto. j. There is C such that CA = I. k. There is D such that AD = I. I. A^T is invertible. m. Columns of A form basis for **R**ⁿ. n. Column space of A is Rⁿ.

- o. dim Col A = n, *i.e.* dimension of column space of A is n.
- p. rank A = n, *i.e.* rank of A is n.
- q. Nul A = $\{0\}$, *i.e.* nullspace of A is {0}.
- r. dim Nul A = 0, the dimension of the null space of A is 0.
- s. A has *n* nonzero eigenvalues, *i.e.* 0 is not an eigenvalue of A.
- t. det $A \neq 0$.
- u. $(Col A)^{\perp} = \{0\}, i.e.$ orthogonal complement of column space of A is {0}.
- v. (Nul A)^{\perp} = Rⁿ, *i.e.* orthogonal complement of null space of A is Rⁿ.

w. Row $A = \mathbf{R}^n$, row space of A is \mathbf{R}^n .