6.7  SOLUTIONS

Notes: The three types of inner products described here (in Examples 1, 2, and 7) are matched by
examples in Section 6.8. It is possible to spend just one day on selected portions of both sections.
Example 1 matches the weighted least squares in Section 6.8. Examples 2—6 are applied to trend analysis
in Seciton 6.8, This material is aimed at students who have not had much calculus or who intend to take
more than one course in statistics.

For students who have seen some calculus, Example 7 is needed to develop the Fourier series in
Section 6.8. Example 8 is used to motivate the inner product on Cla, #]. The Cauchy-Schwarz and
triangle inequalities are not used here, but they should be part of the training of every mathematics
student.

1. The inner product is {x. ¥) =4xw + 55, . Letx=(1. 1), ¥y = (5. -1).
a. Since ||x|f=¢x.x)=9, | x||=3. Since ||y [F=¢. ¥} =105, ||v|=+/105. Finally,
|{x. v} P=15% =225.

b. A vector z is orthogonal to v if and only if {x. ¥} = 0, that is, 20z — 5z, =0, or 4z; = z,. Thus

1
all multiples of [4] are orthogonal to y.

[

. The inner product is (x, ¥} =4xv + 55 v,. Let x=(3,-2), y = (-2, 1). Compute that
IxIP=(xxp=56. ||yIF={y. 3 =21 [x|Flly|=56-21=1176  {x, y) = 34, and |(x. y) [=1156.
Thus |{x. vi [P <||x|F|ly|F. as the Cauchy-Schwarz inequality predicts.
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. The inner product is { p, g3 = p(—1)g(=1) + p(Qgl0) + p(1)g(1). so0
{4+1,5-41") =3{1)+ 4({3)+5(1) = 28

4. The inner product is { p. g} = pi-1)g(=1) + p0)g(0) + p(Lig(1), so (3t =7, 3+ 27 =
(—H(5)+0(3)+2(5)=—10.

. The inner product is { p, g3 = p(—1)gi=1) + p(Qgl0) + p(1)g(1). so
(p.p)=(4+14+1)=3+4*+5 =50 and | p|=+fip. p) =50 =542 . Likewise

(g ={5-4"5-4")="+5 +1" =27 and || g|l=flg.q) =-/2T =33

rm

6. The inner product is { p, g} = pi—1Lg(=1) + p(Ohgq(D) + p(1ig(1), s0 {p. p}=(3r—!2,3€—r1)=
(42 +0% +22 =20 and || p|l=+fi p. py =20 = 245. Likewise {q.q) ={3+2¢*.3+2%) =
5 +31+5 =59 and || g |=Aflq.q) =59

7. The orthogonal projection § of g onto the subspace spanned by p is
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8. The orthogonal projection § of g onto the subspace spanned by p is
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9. The inner product is {p, g) = p(-3)g(-3) + pi-1ig(-1) + p{1g(1) + p(3)gi3).
a. The orthogonal projection fp, of p, onto the subspace spanned by p, and p, is
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h. The vector g=p, — p; =¢" —3 will be orthogonal to both py and p, and | py. py.g) will be an
orthogonal basis for Span(p,. py. pa ). The vector of values for gat (-3, -1, 1, 3) is (4, 4. 4. 4),
so scaling by 1/4 yields the new vector g= (114" -35).
10. The best approximation to p=¢" by vectors in W = Span| Po- Py-q) will be
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11. The orthogonal projection of p =1 onto W =Span{py. py. ;| will be
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12. Let W =Span| py. p,. p.}. The vector p, = p—pmjwp=13—(l?'f5)! will make {py. p. p. gl
an orthogonal basis for the subspace P of Py. The vector of values for py at (-2,-1,0, 1. 2)is
(—6/5, 12/5, 0, =12/5, 6/5). so scaling by 5/6 yields the new vector py = (/6K — (17150 =
(/6" —(1716)t.

13. Suppose that A is invertible and that {u, v} = (Au) - (Av) for u and v in R". Check each axiom in the
definition on page 376, using the properties of the dot product.

Lo o vy = (A - (Av) = (Av) - (Au) = {v, u}

. fu+v.w)=(Alu+v)) - (Aw) = (Ao + Av) - (Aw) = (Aa) - (AW) + (Av) - (Aw) = (o, w) + (v, w)

iii. (e, v) = (Alcu)) - (Av) = (clAu)) - (Av) = e((Au) - (Av)) = cfw, ¥)

iv. {uu)=(Au) (Au)=|| Au|*=0, and this quantity is zero if and only if the vector Au is 0. But
Au =0 if and only u = 0 because A is invertible.

14. Suppose that T'is a one-to-one linear transformation from a vector space V into R and that {u, v} =
T{u) - T(v) for u and v in R". Check each axiom in the definition on page 376, using the properties of
the dot product and T. The linearity of T is used often in the following.

Lo {w vi=Tw) - Tiv) = Tiv) - Tiu) = (v, u)

i, fu+v,w)=T+v) - Tiw) = (Tu)+ T(v)) - Tiw) = Tla) - Tiw) + T(v) - Tiw) = (o, we) + (v, w)

i, {cu, v) = Tlew) - Tiv) = (cTu)) - Tiv) = c(TTu) - Tiv)) = cfu, v}

iv. {wu)=Tu) T(u)=|T)|=0. and this quantity is zero if and only if u = 0 since T'is a one-
to-one transformation.
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. Using Axioms | and 3, {u, cv) = {ev, u) = o{v, u) = c{u, v).

Using Axioms 1, 2 and 3.
[[u—v|F=(m—v.u—v)={mu—v}—{v.u—v
= (o} —{u, vi— (v + v, v = () — 2{u, v +{v, v}
=lluf 26w v) +[| v|?
Since {w, v} is orthonormal, ||u|*=|| v|F=1 and {u, ¥} = 0. S0 Ju—v|*=2.
Following the method in Exercise 16,
[[u+v ||2= (u+v.u+v)={mu+v+{v.u+v)
=)+ {w, v v+ (v, vy = (o + 2o, vy (v, v)
=llulf + 2w v) +[|vIF
Subtracting these results, one finds that [|u+v | —|Ju—v|=4{u,¥). and dividing by 4 gives the
desired identity.
In Exercises 16 and 17, it has been shown that [ju—v |F=|lu]? —2{w.v} +]| v| and Ju+v]|F=
llulf + 2w, v} +]| v|* . Adding these two results gives||u+v |} +|lu—v|F=2|u]f +2|v|}.

. let u=|:£] and 1'=|:JE]. Then ||ulF=a+b, || v|[F=a+b, and {u,v)=24/ab. Since a and b are

Ja

nonnegative, ||ull=ya+b, || v]=+a+b. Plugging these values into the Cauchy-Schwarz
inequality gives

Wab =| vy < |Jul||vl|=vVa+bJa+rb=a+b
Dividing both sides of this equation by 2 gives the desired inequality.

The Cauvchy-Schwarz inequality may be altered by dividing both sides of the inequality by 2 and then
squaring both sides of the inequality. The result is

((u-ﬂ): < HulF v IF
2 - 4
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Now let u =[:] and v =l:|i|- Then ||u|f =a® +5%, || v|F =2, and {u, ¥} = a + b. Plugging these

values into the inequality above yields the desired inequality.
The inner product is {f,g}=ﬁf(ngft]dr. Let f(f)=1-3" g(th=t—r. Then
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(fog)=f Q=3 )=t = 3¢ —4¢ +1dr =0

The inner product is (f.g) = [} (0g(t) di. Letf ()= 5t -3, g(t)="~*. Then
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{f.g}—fﬂ (56 =301 —1 m‘;-L 5178 +3rdt =0

- The inner product is (f.g)= [} F(g(dt, so (f.f)= [|(1-3¢dt = [[9" ~67 +1dt =415, and

I F =i Ty =2445.

. . 1 13 2.2 16 a5, .4
The inner product is (f.g)= [ f()g(t)dr, so (g.g)=[ (" —"Vdr=[ 1* =26 +1*dt=1/105, and

e l=+ftg.8) =1/+/105.

. The inner product is {f.g}=_|-_llfl.'ﬂgfndf. Then 1 and ¢ are orthogonal because (1, 1) = ﬂ]l dt =10

So 1 and ¢ can be in an orthogonal basis for Span{l,1.+*}. By the Gram-Schmidt process, the third
basis element in the orthogonal basis can be
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Since (7,1)= [ Pdt=2/3, (L) =[' 1dt=2. and (%.1)= ' r'dt=0, the third hasis element can
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be written as +* —(1/3). This element can be scaled by 3, which gives the orthogonal basis as
L3 -1}

The inner product is {f.g}=_|-_z1f(ﬂgfr‘.ldt. Then 1 and ¢ are orthogonal because (1, 1) = fztdl =0.

So 1 and ¢ can be in an orthogonal basis for Span{l,1.+*}. By the Gram-Schmidt process, the third
basis element in the orthogonal basis can be
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Since (.1y=[" Fdr=16/3, (1.1y=[" 1dt=4, and (1*.1)= [ £dr =0, the third basis clement can
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be written as +* —(4/3). This element can be scaled by 3, which gives the orthogonal basis as
{Lt.3¢" -4}

[M] The new orthogonal polynomials are multiples of —17¢ +5¢° and 72—155* + 35t*. These
polynomials may be scaled so that their values at -2, -1, 0, 1. and 2 are small integers.

[M] The orthogonal basis is f,(ry=1, fi(t)=cost, f(f) =cos t —(1/2)=(1/2)cos 2t. and
falt)=cos’t —(3/4)cos = (1/ 4)cos ¥.



