6.4 SOLUTIONS

Notes: The QR factorization encapsulates the essential outcome of the Gram-Schmidt process, just as the LU factorization describes the result of a row reduction process. For practical use of linear algebra, the factorizations are more important than the algorithms that produce them. In fact, the Gram-Schmidt process is *not* the appropriate way to compute the QR factorization. For that reason, one should consider deemphasizing the hand calculation of the Gram-Schmidt process, even though it provides easy exam questions.

The Gram-Schmidt process is used in Sections 6.7 and 6.8, in connection with various sets of orthogonal polynomials. The process is mentioned in Sections 7.1 and 7.4, but the one-dimensional projection constructed in Section 6.2 will suffice. The QR factorization is used in an optional subsection of Section 6.5, and it is needed in Supplementary Exercise 7 of Chapter 7 to produce the Cholesky factorization of a positive definite matrix.

1. Set
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and compute that $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - 3\mathbf{v}_1 = \begin{bmatrix} -1 \\ 5 \\ -3 \end{bmatrix}$. Thus an orthogonal basis for W

is
$$\left\{ \begin{bmatrix} 3\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\5\\-3 \end{bmatrix} \right\}$$
.

2. Set
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and compute that $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - \frac{1}{2} \mathbf{v}_1 = \begin{bmatrix} 5 \\ 4 \\ -8 \end{bmatrix}$. Thus an orthogonal basis for W

is
$$\left\{ \begin{bmatrix} 0\\4\\2 \end{bmatrix}, \begin{bmatrix} 5\\4\\-8 \end{bmatrix} \right\}$$
.

3. Set
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and compute that $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - \frac{1}{2} \mathbf{v}_1 = \begin{bmatrix} 3 \\ 3/2 \\ 3/2 \end{bmatrix}$. Thus an orthogonal basis for

$$W \text{ is } \left\{ \begin{bmatrix} 2\\-5\\1 \end{bmatrix}, \begin{bmatrix} 3\\3/2\\3/2 \end{bmatrix} \right\}.$$

4. Set
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and compute that $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - (-2)\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 3 \end{bmatrix}$. Thus an orthogonal basis for

$$W \text{ is } \left\{ \begin{bmatrix} 3 \\ -4 \\ 5 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ 3 \end{bmatrix} \right\}.$$

5. Set
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and compute that $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - 2\mathbf{v}_1 = \begin{bmatrix} 5\\1\\-4\\-1 \end{bmatrix}$. Thus an orthogonal basis for W is $\left\{ \begin{bmatrix} 1\\-4\\0 \end{bmatrix}, \begin{bmatrix} 5\\1\\-4 \end{bmatrix} \right\}$.

6. Set
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and compute that $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - (-3)\mathbf{v}_1 = \begin{bmatrix} 4 \\ 6 \\ -3 \\ 0 \end{bmatrix}$. Thus an orthogonal basis for

$$W \text{ is } \left\{ \begin{bmatrix} 3 \\ -1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 4 \\ 6 \\ -3 \\ 0 \end{bmatrix} \right\}.$$

7. Since $\|\mathbf{v}_1\| = \sqrt{30}$ and $\|\mathbf{v}_2\| = \sqrt{27/2} = 3\sqrt{6}/2$, an orthonormal basis for W is

$$\left\{ \frac{\mathbf{v}_{1}}{\|\|\mathbf{v}_{1}\|\|}, \frac{\mathbf{v}_{2}}{\|\|\mathbf{v}_{2}\|\|} \right\} = \left\{ \begin{bmatrix} 2/\sqrt{30} \\ -5/\sqrt{30} \\ 1/\sqrt{30} \end{bmatrix}, \begin{bmatrix} 2/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix} \right\}.$$

8. Since $\|\mathbf{v}_1\| = \sqrt{50}$ and $\|\mathbf{v}_2\| = \sqrt{54} = 3\sqrt{6}$, an orthonormal basis for W is

$$\left\{ \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}, \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} \right\} = \left\{ \begin{bmatrix} 3/\sqrt{50} \\ -4/\sqrt{50} \\ 5/\sqrt{50} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix} \right\}.$$

 Call the columns of the matrix x₁, x₂, and x₃ and perform the Gram-Schmidt process on these vectors:

$$v_1 = x_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - (-2)\mathbf{v}_1 = \begin{bmatrix} 1\\3\\3\\-1 \end{bmatrix}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} = \mathbf{x}_{3} - \frac{3}{2} \mathbf{v}_{1} - \left(-\frac{1}{2}\right) \mathbf{v}_{2} = \begin{bmatrix} -3\\1\\1\\3 \end{bmatrix}$$

Thus an orthogonal basis for W is $\left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} \right\}.$

10. Call the columns of the matrix x₁, x₂, and x₃ and perform the Gram-Schmidt process on these vectors:

 $\mathbf{v}_1 = \mathbf{x}_1$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - (-3)\mathbf{v}_1 = \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} = \mathbf{x}_{3} - \frac{1}{2} \mathbf{v}_{1} - \frac{5}{2} \mathbf{v}_{2} = \begin{bmatrix} -1 \\ -1 \\ 3 \\ -1 \end{bmatrix}$$

Thus an orthogonal basis for W is $\left\{ \begin{bmatrix} -1\\3\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\3\\-1 \end{bmatrix} \right\}.$

11. Call the columns of the matrix x₁, x₂, and x₃ and perform the Gram-Schmidt process on these vectors:

 $v_1 = x_1$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\mathbf{x}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} = \mathbf{x}_{2} - (-1)\mathbf{v}_{1} = \begin{bmatrix} 3\\0\\3\\-3\\3 \end{bmatrix}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} = \mathbf{x}_{3} - 4\mathbf{v}_{1} - \left(-\frac{1}{3}\right) \mathbf{v}_{2} = \begin{bmatrix} 2\\0\\2\\2\\-2 \end{bmatrix}$$

Thus an orthogonal basis for
$$W$$
 is
$$\left\{ \begin{bmatrix} 1\\-1\\-1\\1\\3\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\0\\2\\2\\3\\-2 \end{bmatrix} \right\}.$$

12. Call the columns of the matrix x₁, x₂, and x₃ and perform the Gram-Schmidt process on these vectors:

 $\mathbf{v}_1 = \mathbf{x}$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - 4\mathbf{v}_1 = \begin{bmatrix} -1\\1\\2\\1\\1 \end{bmatrix}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} = \mathbf{x}_{3} - \frac{7}{2} \mathbf{v}_{1} - \frac{3}{2} \mathbf{v}_{2} = \begin{bmatrix} 3\\3\\0\\-3\\3 \end{bmatrix}$$

Thus an orthogonal basis for W is $\left\{ \begin{bmatrix} 1\\-1\\0\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\3\\0\\-3\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\3\\0\\-3\\3 \end{bmatrix} \right\}$.

13. Since A and Q are given,

$$R = Q^{T} A = \begin{bmatrix} 5/6 & 1/6 & -3/6 & 1/6 \\ -1/6 & 5/6 & 1/6 & 3/6 \end{bmatrix} \begin{bmatrix} 5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 0 & 6 \end{bmatrix}$$

14. Since A and Q are given,

$$R = Q^{T} A = \begin{bmatrix} -2/7 & 5/7 & 2/7 & 4/7 \\ 5/7 & 2/7 & -4/7 & 2/7 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 5 & 7 \\ 2 & -2 \\ 4 & 6 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 0 & 7 \end{bmatrix}$$

15. The columns of Q will be normalized versions of the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 found in Exercise 11. Thus

$$Q = \begin{bmatrix} 1/\sqrt{5} & 1/2 & 1/2 \\ -1/\sqrt{5} & 0 & 0 \\ -1/\sqrt{5} & 1/2 & 1/2 \\ 1/\sqrt{5} & -1/2 & 1/2 \\ 1/\sqrt{5} & 1/2 & -1/2 \end{bmatrix}, R = Q^{T} A = \begin{bmatrix} \sqrt{5} & -\sqrt{5} & 4\sqrt{5} \\ 0 & 6 & -2 \\ 0 & 0 & 4 \end{bmatrix}$$

16. The columns of Q will be normalized versions of the vectors v₁, v₂, and v₃ found in Exercise 12. Thus

$$Q = \begin{bmatrix} 1/2 & -1/(2\sqrt{2}) & 1/2 \\ -1/2 & 1/(2\sqrt{2}) & 1/2 \\ 0 & 1/\sqrt{2} & 0 \\ 1/2 & 1/(2\sqrt{2}) & -1/2 \\ 1/2 & 1/(2\sqrt{2}) & 1/2 \end{bmatrix}, R = Q^{T} A = \begin{bmatrix} 2 & 8 & 7 \\ 0 & 2\sqrt{2} & 3\sqrt{2} \\ 0 & 0 & 6 \end{bmatrix}$$

- a. False. Scaling was used in Example 2, but the scale factor was nonzero.
 - b. True. See (1) in the statement of Theorem 11.
 - c. True. See the solution of Example 4.
- 18. a. False. The three orthogonal vectors must be nonzero to be a basis for a three-dimensional subspace. (This was the case in Step 3 of the solution of Example 2.)
 - b. True. If x is not in a subspace w, then x cannot equal proj_W x, because proj_W x is in W. This idea was used for v_{t+1} in the proof of Theorem 11.
 - c. True. See Theorem 12.
- 19. Suppose that x satisfies Rx = 0; then Q Rx = Q0 = 0, and Ax = 0. Since the columns of A are linearly independent, x must be 0. This fact, in turn, shows that the columns of R are linearly independent. Since R is square, it is invertible by the Invertible Matrix Theorem.
- 20. If y is in ColA, then y = Ax for some x. Then y = QRx = Q(Rx), which shows that y is a linear combination of the columns of Q using the entries in Rx as weights. Conversly, suppose that y = Qx for some x. Since R is invertible, the equation A = QR implies that Q = AR⁻¹. So y = AR⁻¹x = A(R⁻¹x), which shows that y is in Col A.
- 21. Denote the columns of Q by {q₁,...,q_n}. Note that n ≤ m, because A is m × n and has linearly independent columns. The columns of Q can be extended to an orthonormal basis for R^m as follows. Let f₁ be the first vector in the standard basis for R^m that is not in W_n = Span{q₁,...,q_n}, let u₁ = f₁ proj_{w_n} f₁, and let q_{n+1} = u₁ / ||u₁||. Then {q₁,...,q_n,q_{n+1}} is an orthonormal basis for W_{n+1} = Span{q₁,...,q_n,q_{n+1}}. Next let f₂ be the first vector in the standard basis for R^m that is not in W_{n+1}, let u₂ = f₂ proj_{W_n1} f₂, and let q_{n+2} = u₂ / ||u₂||. Then {q₁,...,q_n,q_{n+1},q_{n+2}} is an orthogonal basis for W_{n+2} = Span{q₁,...,q_n,q_{n+1},q_{n+2}}. This process will continue until m n vectors have been added to the original n vectors, and {q₁,...,q_n,q_{n+1},...,q_m} is an orthonormal basis for R^m.

Let $Q_0 = [\mathbf{q}_{n+1} \quad \dots \quad \mathbf{q}_m]$ and $Q_1 = [Q \quad Q_0]$. Then, using partitioned matrix multiplication, $Q_1 \begin{bmatrix} R \\ O \end{bmatrix} = QR = A$.

- 22. We may assume that {u₁,...,u_p} is an orthonormal basis for W, by normalizing the vectors in the original basis given for W, if necessary. Let U be the matrix whose columns are u₁,...,u_p. Then, by Theorem 10 in Section 6.3, T(x) = proj_Wx = (UU^T)x for x in Rⁿ. Thus T is a matrix transformation and hence is a linear transformation, as was shown in Section 1.8.
- 23. Given A = QR, partition $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$, where A_1 has p columns. Partition Q as $Q = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}$ where Q_1 has p columns, and partition R as $R = \begin{bmatrix} R_{11} & R_{12} \\ O & R_{22} \end{bmatrix}$, where R_{11} is a $p \times p$ matrix. Then $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix} = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} \\ O & R_{22} \end{bmatrix} = \begin{bmatrix} Q_1R_{11} & Q_1R_{12} + Q_2R_{22} \end{bmatrix}$

Thus $A_1 = Q_1 R_{11}$. The matrix Q_1 has orthonormal columns because its columns come from Q. The matrix R_{11} is square and upper triangular due to its position within the upper triangular matrix R. The diagonal entries of R_{11} are positive because they are diagonal entries of R. Thus $Q_1 R_{11}$ is a QR factorization of A_1 .

24. [M] Call the columns of the matrix x₁, x₂, x₃, and x₄ and perform the Gram-Schmidt process on these vectors:

$$v_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - (-1)\mathbf{v}_1 = \begin{bmatrix} 3\\3\\-3\\0\\3 \end{bmatrix}$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1} - \frac{\mathbf{x}_{3} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2} = \mathbf{x}_{3} - \left(-\frac{1}{2}\right) \mathbf{v}_{1} - \left(-\frac{4}{3}\right) \mathbf{v}_{2} = \begin{bmatrix} 6\\0\\6\\6\\0 \end{bmatrix}$$

$$\mathbf{v}_4 = \mathbf{x}_4 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \frac{\mathbf{x}_4 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 = \mathbf{x}_4 - \frac{1}{2} \mathbf{v}_1 - (-1) \mathbf{v}_2 - \left(-\frac{1}{2}\right) \mathbf{v}_3 = \begin{bmatrix} 0 \\ 5 \\ 0 \\ 0 \\ -5 \end{bmatrix}$$