6.4  SOLUTIONS
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Notes: The QR factorization encapsulates the essential outcome of the Gram-Schmidt process, just as the 5. Set v, =x, and compute that v, =x; - vl_ VI V=¥ —2v, = al Thus an orthogonal basis for W
LU factorization describes the result of a row reduction process. For practical use of linear algebra, the i
factorizations are more important than the algorithms that produce them. In fact, the Gram-Schmidt -1

process is not the appropriate way to compute the QR factorization. For that reason. one should consider
deemphasizing the hand calculation of the Gram-Schmidt process, even though it provides easy exam
uestions.

! The Gram-Schmidt process is vsed in Sections 6.7 and 6.8, in connection with various sets of
orthogonal polynomials. The process is mentioned in Sections 7.1 and 7.4, but the one-dimensional
projection constructed in Section 6.2 will suffice. The QR factorization is used in an optional subsection
of Section 6.5, and it is needed in Supplementary Exercise 7 of Chapter 7 to produce the Cholesky
factorization of a positive definite matrix.
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10. Call the columns of the matrix x;. x,. and x; and perform the Gram-Schmidt process on these

veclors:
v, =X,
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11. Call the columns of the matrix x;. x,. and x; and perform the Gram-Schmidt process on these

veclors:
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12. Call the columns of the matrix x, . x,, and x, and perform the Gram-Schmidt process on these

veclors:
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13. Since A and () are given,
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14. Since A and (2 are given,
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15. The columns of @ will be normalized versions of the vectors v;. v, and v, found in Exercise 11.
Thus
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The columns of @ will be normalized versions of the vectors v,. v,.and v, found in Exercise 12.
Thus
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a. False. Scaling was used in Example 2. but the scale factor was nonzero.
b. True. See (1) in the statement of Theorem 11.
¢. True. See the solution of Example 4.

a. False. The three orthogonal vectors must be nonzero to be a basis for a three-dimensional
subspace. (This was the case in Step 3 of the solution of Example 2.)

b. True. If x is not in a subspace w, then x cannot equal projg x , because proj,x is in W, This idea
was used for v, in the proof of Theorem 11.

¢. True. See Theorem 12.

Suppose that x satisfies Rx = 0 then 0 Rx = 00 = 0, and Ax = 0. Since the columns of A are linearly
independent, x must be 0. This fact, in turn, shows that the columns of R are linearly indepedent.
Since R is square, it is invertible by the Invertible Matrix Theorem.

If v is in ColA, then ¥ = Ax for some x. Then y = ORx = ((Rx). which shows that v is a linear
combination of the columns of () using the entries in Rx as weights. Conversly, suppose that v = Ox

for some x. Since R is invertible, the equation A = QR implies that 0= AR, So
v=AR 'x= A(R"'x), which shows that y is in Col A.

Denote the columns of by (q;.....q, ). Note that a = m, because A is m * n and has linearly
independent columns. The columns of ( can be extended to an orthonormal basis for R" as follows.
Let £ be the first vector in the standard basis for R™ that is nof in W, =Span|g;.....q, ). let

u; =h —projy £ and let q,., =u, /||, ||. Then [g;.....q,.q,.} is an orthonormal basis for

W, =Span|gy.....q,.q,.. - Next let f, be the first vector in the standard basis for R™ that is

notin W, . let u, =f; —projy, F,. and let q,,; =u,/||u, ||. Then [q,.....q,.9,.,.9,.2} isan

orthogonal basis for W,,, =Span{q,.....q,.9,..9..2 ). This process will continue until m — n vectors
have been added to the original n vectors, and {q,.....q,.q,,;.....q,, | is an orthonormal basis for R™.

Let O, =[q,, q,] and @, =[@ O;]. Then, using partitioned matrix multiplication,
R
0, [o} —QR=A.

. We may assume that {w,,...,u} is an orthonormal basis for W, by normalizing the vectors in the

original basis given for W, if necessary. Let I/ be the matrix whose columns are w,.....u,. Then, by

Theorem 10 in Section 6.3, T(x)=projyx= (UUT )x for x in R, Thus T'is a matrix transformation
and hence is a linear transformation, as was shown in Section 1.8.

. Given A = OR, partition A=[4, A,]. where A has p columns. Partition Jas 0=[Q ;]
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0 R :| where R, is a p p matrix. Then

where () has p columns, and partition R as R =|:
Ry Ry

A=[4 A]=0R=[0, O] o0 R, =[QR, OR,+0OR,]

Thus 4 =(,R,,. The matrix (} has orthonormal columns because its columns come from (). The
matrix R, is square and upper triangular due to its position within the upper triangular matrix R. The
diagonal entries of Ry, are positive because they are diagonal entries of R. Thus @R, isa QR

factorization of A, .

. [M] Call the columns of the matrix x,, x,, x;. and x, and perform the Gram-Schmidt process on

these vectors:
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