32, [M]
a. One computes that || &, ||=[|a; ||=||a; ||=[|a, ||=1 and that a; -a, =0 fori#j.
b. Answers will vary, but it should be that || Au | = || u || and || A¥ || = || v |I.
c. Answers will again vary, but the cosines should be equal.
d. A conjecture is that multiplying by A does not change the lengths of vectors or the angles

between vectors.

33. [M] Answers to the calculations will vary, but will demonstrate that the mapping
x=T(x)= [u]v (for v = 0) is a linear transformation. To confirm this, let x and y be in R", and

let ¢ be any scalar. Then
fo_'_}l]=((x+]j-\']‘.=((1"ﬁ']+{y-\']]‘. =[ﬂ]‘- +(u)‘-=r(x)+rw)
v

V-V LR V-V -
and
Ttm)=[w]v=[ﬂ]v=c[u]?=rr(x)
VoV V¥ VoV,
34. [M] One finds that
] 1
-1 4 I 05 0 -l/3
N=| 1 O0LR={0 1 1 0 -4/3
0 -1 0o o0 0 1 173
o 3

The row-column rule for computing RN produces the 3 % 2 zero matrix, which shows that the rows of
R are orthogonal to the columns of N. This is expected by Theorem 3 since each row of R is in Row
A and each column of N is in Nul A.

6.2 SOLUTIONS

Notes: The nonsquare matrices in Theorems 6 and 7 are needed for the QR factorization in Section 6.4. It
is important to emphasize that the term orthogonal matrix applies only to certain sguare matrices. The
subsection on orthogonal projections not only sets the stage for the general case in Section 6.3, it also
provides what is needed for the orthogonal diagonalization exercises in Section 7.1, because none of the
eigenspaces there have dimension greater than 2. For this reason, the Gram-Schmidt process (Section 6.4)
is not really needed in Chapter 7. Exercises 13 and 14 are good preparation for Section 6.3.
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1. Since | 4|-| -4 |=2=0. the set is not orthogonal.
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. Since | -2 || 1 |=|2|-1-2|=| 1]-| -2 |=0. the set is orthogonal.
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. Since | =31-] 1|{=-30=0, the set is not orthogonal.
L oll-1
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. Since | -5 |-|0|=]-5]-]1-21=] 0] -2 |=0, the set is orthogonal.
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since | 2 2=l 2HE || 211E]=0. the setis orthogonal
. Since 3 1117171 =3 ] 7|7 the setis orthogonal.
L 311 4] 3L0] | 4] 10]
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1
. Since all s =-32%0, the set is not orthogonal.
L 8_ __I_
. Since u;-u, =12-12=0, {u;,u,] is an orthogonal set. Since the vectors are non-zero, u; and u,

are linearly independent by Theorem 4. Two such vectors in R automatically form a basis for R’ So
{u.u, ) is an orthogonal basis for B%. By Theorem 5.

X-u; X-u;
X=——u;+
- u; u,

I
u, =3 Uy

. Since v, -u; =—6+6=0, {u.u,} is an orthogonal set. Since the vectors are non-zero, u; and u,

are linearly independent by Theorem 4. Two such vectors in R® automatically form a basis for R% So
{u,.u,) is an orthogonal basis for B®. By Theorem 5,
X-1 Xl 3 3

x= u + Uy =——l; +—1l,
-y u; -uy 2 4

. Since uy-uy =u; -uy =u; -uy =0, ju,u,.u;] is an erthogonal set. Since the vectors are non-zero,

w,. u,. and u, are linearly independent by Theorem 4. Three such vectors in K automatically form
a basis for &', So {u,,u,.u,} is an orthogonal basis for . By Theorem 3,

X-u X-u X-u 5 3
= Lu, + lu,+ u, =—u, —u, + 2u,
u; -u u; -1y LB 2 2 -



. Since uy-uy =u; -uy =uy -u; =0, ju,u,.u;5] is an orthogonal set. Since the vectors are non-zero,
u;, u,. and u, are linearly independent by Theorem 4. Three such vectors in R automatically form
a basis for R'. So {u,.u;.u,} is an orthogonal basis for R’ By Theorem 5,

X-u XU, XUy 4 1 1
X= u + u; + Uy =—U +—0; + Uy
u, -uy u,-u, u;-u, 3 3 3

1 —4
CLety =|:_£| and u=|: 2i|. The orthogonal projection of y onto the line through v and the origin is

the orthogonal projection of y onto w, and this vector is

-1
. Let y=|: I:| and w =|: 3:|_ The orthogonal projection of y onto the line through v and the origin is

the orthogonal projection of y onto w, and this vector is

. yu 2 2/5
y=—u=——u=
. —6/5

. The orthogonal projection of ¥ onto u is

. ¥-u 13 —4/5
y="—n=——n=
T oweu 65 715

The component of y orthogonal to uis

bog 14
T e

Thus y=¥+({y—-¥)= 4 + 14
S FEXTRYEIT s ws |

. The orthogonal projection of ¥ onto u is
. yu 2 1475
a5 L s

The component of y orthogonal to uis

s
Y7¥Y=) ogss

S s s
us Y=¥+(y=¥=| 55| * 2gss |

15. The distance from y to the line through v and the origin is [ly — §||. One computes that

r-sor-L Rl ]

—

so ||y =¥ l=J9/25+16/25 =1 is the desired distance.

16. The distance from y to the line through u and the origin is |ly - ¥||. One computes that

o= e B

so |y =% |=36+9 =35 is the desired distance.

1/3 -1/2
CLetu=|1/3|, v= 0. Since w- v =0, {u, v} is an orthogonal set. However, lulf=u-u=1/3
1/3 1/2

and || v |F=v-¥=1/2, so {u. v} is not an orthonormal set. The vectors u and v may be normalized to
form the orthonormal set

V3| [yarn
iR R
e NEVEL AT

o 0
. Letu=| 1|, v=|-1]. Since w- v=-1 =0, {u, v} is not an orthogonal set.
0 0
(-6 8] . )
. Letu= s Y=l sl Since w - v=0, {u. v} is an orthogonal set. Also, |Ju|f=u-u=1 and
| ¥[F=v-v=1, so {u. v} is an orthonormal set.
213 173
.Letu={ 1/3|, v=|2/3{ Sinceu-v=0, [u, v} is an orthogonal set. However, [Ju[f=u-u=1
213 0

and || v|P=v-¥=5/9, so {u. v} is not an orthonormal set. The vectors u and v may be normalized
to form the orthonormal set

—2/37 | /5

{"—“”"‘—”}= 131 2045

i 23 0
1410 34410 ]

Cletu= 3!@ L W= —]Nrﬁ L, and w= —IH’E CSinceu-v=u-w=v-w=0{u, v.w}isan

3720 1170 142

orthogonal set. Also, |lulf=u-u=1 | v|F=v-v=1 and || w|'=w-w=L so {u. v. w}isan
orthonormal set.
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24,

26,

27.

28,

249,

30.

118 142 —2/3

CLetu=|4/18 ], v= 0, and w=| /3| Sinceu-v=u-w=v-w=0,{u, v.,w]isan
TN -12 —2/3
orthogonal set. Also, |lulf=u-u=1, |v|f=v-v=1 and |w|'=w-w=1, so {u, v, w}isan

orthonormal set.
True. For example, the vectors u and y in Example 3 are linearly independent but not orthogonal.
True. The formulas for the weights are given in Theorem 5.

a.

b.

¢. False. See the paragraph following Example 5.

d. False. The matrix must also be square. See the paragraph before Example 7.
e

False. See Example 4. The distance is [ly - ¥|-

a. True. But every orthogonal set of nonzero vectors is linearly independent. See Theorem 4.

b. False. To be orthonormal, the vectors is § must be unit vectors as well as being orthogonal to each
other.

¢. True. See Theorem T(a).
d. True. See the paragraph before Example 3.
e. True. See the paragraph before Example 7.

. To prove part (b). note that

(L) - Uy =) (Uy)=x"UTUy=x"y=x-y
because UL =1 . If y = x in part (b), {Ux) - (Ux) = x - x, which implies part {a). Part (c) of the
Theorem follows immediately fom part (b).

A set of n nonzero orthogonal vectors must be linearly independent by Theorem 4, so if such a set
spans Wit is a basis for W. Thus Wis an a-dimensional subspace of R, and W =R".

If I/ has orthonormal columns, then U7L =1 by Theorem 6. If U is also a square matrix, then the
equation vlu=1 implies that I is invertible by the Invertible Matrix Theorem.

If [/ is an n * n orthogonal matrix, then / =0U™ =0T . Since Uis the transpose of U7, Theorem

6 applied to U7 says that /7 has orthogonal columns. In particular, the columns of U7 are linearly
independent and hence form a basis for R" by the Invertible Matrix Theorem. That is, the rows of I
form a basis (an orthonormal basis) for B

Since UV and V are orthogonal, each is invertible. By Theorem 6 in Section 2.2, UV is invertible and
vy =v ' =vTUT = (V). where the final equality holds by Theorem 3 in Section 2.1. Thus
UV is an orthogonal matrix.

If [/ is an orthogonal matrix, its columns are orthonormal. Interchanging the columns does not
change their orthonormality, so the new matrix — say, V — still has orthonormal columns. By

Theorem 6, V'V = 1. Since Vis square, V7 =V~ by the Invertible Matrix Theorem.

. Suppose that ¥ = uu . Replacing uw by cu with ¢ # 0 gives
u-u
y - (cu) (cu)= ‘P""’ . =c:[y-u}u=uu=§_
(cw)- (cw) co(u-m) c(u-m) u-u

So y does not depend on the choice of a nonzero u in the line L used in the formula.

. f v - vy =0, then by Theorem I(c) in Section 6.1,

(owd-leava =gl v, (e ¥y = ges (v - ¥a =, =10

. Let L= Span{u}, where u is nonzero, and let T(x) =Xy For any vectors x and y in R" and any
u-u
scalars ¢ and d, the properties of the inner product (Theorem 1) show that
(ex+dv)-u u

Ticx+dy)=

cx-u+tdy-u
=——u
u-u
cx-u dy-u
=——u+——0u
u-u u-u
=cT(x)+dT(y)
Thus Tis a linear transformation. Another approach is to view T as the composition of the following
three linear mappings: x = a=x-v.atr b=a/v-v.and b= bv.

3. Let L = Span{u}, where u is nonzero, and let T(x)=refl;y = 2proj,y —y . By Exercise 33, the

mapping ¥ — proj, ¥ is linear. Thus for any vectors y and z in R" and any scalars ¢ and d,
Ticy +dz)=2 proj, (cy +dz)—(cy +dz)
=2(c proj, ¥ +d proj,z)—cy —dz
=2¢ proj ¥y —cy+2d projz—dz
=cl2 proj, y —¥)+d(2 proj,z —z)
=cT{y)+dT(z)

Thus T is a linear transformation.

35, [M] One can compute that ATA= 1004,. Since the off-diagonal entries in AT A are zero, the columns

of A are orthogonal.



