6.1

Orthogonality and
Least Squares

SOLUTIONS

Notes: The first half of this section is computational and is easily learned. The second half concerns the
concepts of orthogonality and orthogonal complements, which are essential for later work. Theorem 3 is
an important general fact, but is needed only for Supplementary Exercise 13 at the end of the chapter and
in Section 7.4. The optional material on angles is not used later. Exercises 27-31 concern facts used later.
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. Since u=| -5 | and z=| -1 |, [lu—z|F=[0— (=] +[-5— (-1 +[2— 8] =68 and

2 g

dist (u,z) =~/68 = 2/17.

5. Since a - b = B(-2) +(-3)( -3) =1 # 0, a and b are not orthogonal.
. Since v - v=12(2) + (3)( -3) + (=5)(3) = 0, v and v are orthogonal.
. Since v - v=3(-4) +2(1) + (-5} -2} + 6} = 0, w and ¥ are orthogonal.

. Since y -z=(=3)(1)+ T(-8) + H15) + 0=T) = 1 £ 0, ¥ and z are not orthogonal.

a. True. See the definition of || v ||.
b. True. See Theorem 1ic).
¢. True. See the discussion of Figure 5.

I
d. False. Count lex .
al ounterexample: |:D D:|

e. True. See the box following Example 6.

a. True. See Example 1 and Theorem 1(a).

b. False. The absolute value sign is missing. See the box before Example 2.
¢. True. See the defintion of orthogonal complement.

d. True. See the Pythagorean Theorem.

e. True. See Theorem 3.

Theorem 1{b):

u+v)-w= (u+1')rw=(uT +vrjw=urw+vrw =U-W+V-W
The second and third equalities used Theorems 3i(b) and 2(c), respectively, from Section 2.1.
Theorem 1{c):

(cu)-v= (cu}rv = c(urv}= clu-v)

The second equality used Theorems 3(c) and 2(d). respectively. from Section 2.1.

. Since u - u is the sum of the squares of the entries in w, u - u = 0. The sum of squares of numbers is

zero if and only if all the numbers are themselves zero.

One computes that u - v = 2(-7) + (=50 4) + (-1)6 =0, [Ju|F=u-u=2" + (-5 +(-1)* =30,
[ ¥IF=v-v=(=T +(=4" +6* =101, and ||u+v|=(u+v)-(u+vi=
2+ (=T +(=5+ (=) +(-1+6)* =131

One computes that
lu+v|f=(u+v)-usvi=u-u+2u-v+v-v=u | 2o v+ v|*

and
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. When v =|::i|. the set H of all vectors |:I] that are orthogonal to v is the subspace of vectors whose
v

entries satisfy ax + by = 0. If @ = 0, then x = — (Wa)y with v a free variable, and H is a line through
-h

the origin. A natural choice for a basis for H in this case is { |: a] } Ifa=0and & =0, then by = (0.

Since b= 0, y =0 and x is a free variable. The subspace H is again a line through the origin. A

natural choice for a basis for H in this case is { [‘;:| } but { [_b] } is still a basis for H since a =0
a

and b= 0. If a= 0 and b =0, then H = R’ since the equation Ox + Oy = 0 places no restrictions on x or
¥.

Theorem 2 in Chapter 4 may be used to show that Wis a subspace of R, because W is the null space
of the 1 3 matrix u”. Geometrically, Wis a plane through the origin.
If ¥ is orthogonal to wand v. then y - w =¥ - v = (0, and hence by a property of the inner product.
y-u+vi=y-u+y-v=0+0=0 Thusy is orthogonal to u + v.
An arbitrary w in Span{u, v} has the form w =cu+c,v . Ify is orthogonal to u and v, then
u-y=v-y=1_0. By Theorem 1({b) and 1(c).

w-y=(cu+c,v)-y=glu-yl+c(v-yl=0+0=0

A typical vector in W has the form w=gv, +...+c,v,. If xis orthogonal to each v;, then by
Theorems 1(b) and 1(c).
w-x={clvl+...+cp1'P)-x=c|{v|-5)+...+cp(\-‘P-x}=0
So x is orthogonal to each win W,
a. Ifzisin W, wisin W, and c is any scalar, then (c£) - u = o(z - u) = ¢0 = 0. Since u is any
element of W, cz is in W+,
b. Let z, and z, be in W*. Then for any win W, (z, +2,)-u=2, -u+z, u=0+0=0. Thus
7, +%, isin Wt

¢. Since 0 is orthogonal to every vector, 0 is in W*. Thus W* is a subspace.

. Suppose that x is in W and W*. Since x is in W, x is orthogonal to every vector in W, including x

itself. So x - x =0, which happens only when x = 0.



