- 1. a. True. If A is invertible and if $A\mathbf{x} = 1 \cdot \mathbf{x}$ for some nonzero \mathbf{x} , then left-multiply by A^{-1} to obtain $\mathbf{x} = A^{-1}\mathbf{x}$, which may be rewritten as $A^{-1}\mathbf{x} = 1 \cdot \mathbf{x}$. Since \mathbf{x} is nonzero, this shows 1 is an eigenvalue of A^{-1} .
 - b. False. If A is row equivalent to the identity matrix, then A is invertible. The matrix in Example 4 of Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31 in Section 5.3.
 - c. True. If A contains a row or column of zeros, then A is not row equivalent to the identity matrix and thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an eigenvalue of A.
 - d. False. Consider a diagonal matrix D whose eigenvalues are 1 and 3, that is, its diagonal entries are 1 and 3. Then D² is a diagonal matrix whose eigenvalues (diagonal entries) are 1 and 9. In general, the eigenvalues of A² are the squares of the eigenvalues of A.
 - e. True. Suppose a nonzero vector x satisfies $Ax = \lambda x$, then

$$A^2$$
x = $A(A$ **x**) = $A(\lambda$ **x**) = λA **x** = λ^2 **x**

This shows that x is also an eigenvector for A^2

- f. True. Suppose a nonzero vector \mathbf{x} satisfies $A\mathbf{x} = \lambda \mathbf{x}$, then left-multiply by A^{-1} to obtain $\mathbf{x} = A^{-1}(\lambda \mathbf{x}) = \lambda A^{-1}\mathbf{x}$. Since A is invertible, the eigenvalue λ is not zero. So $\lambda^{-1}\mathbf{x} = A^{-1}\mathbf{x}$, which shows that \mathbf{x} is also an eigenvector of A^{-1} .
- g. False. Zero is an eigenvalue of each singular square matrix.
- h. True. By definition, an eigenvector must be nonzero.
- i. False. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ then $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are eigenvectors of A for the eigenvalue 2, and they are linearly independent.
- i. True. This follows from Theorem 4 in Section 5.2
- k. False. Let A be the 3×3 matrix in Example 3 of Section 5.3. Then A is similar to a diagonal matrix D. The eigenvectors of D are the columns of I₃, but the eigenvectors of A are entirely different.
- I. False. Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Then $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are eigenvectors of A, but $\mathbf{e}_1 + \mathbf{e}_2$ is not. (Actually, it can be shown that if two eigenvectors of A correspond to distinct eigenvalues, then their sum cannot be an eigenvector.)
- m. False. All the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix (Theorem 1 in Section 5.1). A diagonal entry may be zero.
- n. True. Matrices A and A^T have the same characteristic polynomial, because $\det(A^T \lambda I) = \det(A \lambda I)^T = \det(A \lambda I)$, by the determinant transpose property.
- o. False. Counterexample: Let A be the 5×5 identity matrix.
- p. True. For example, let A be the matrix that rotates vectors through $\pi/2$ radians about the origin. Then Ax is not a multiple of x when x is nonzero.
- q. False. If A is a diagonal matrix with 0 on the diagonal, then the columns of A are not linearly independent.
- r. True. If $Ax = \lambda_1 x$ and $Ax = \lambda_2 x$, then $\lambda_1 x = \lambda_2 x$ and $(\lambda_1 \lambda_2) x = 0$. If $x \neq 0$, then λ_1 must equal λ_2 .
- s. False. Let A be a singular matrix that is diagonalizable. (For instance, let A be a diagonal matrix with 0 on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation x → Ax is represented by a diagonal matrix relative to a coordinate system determined by eigenvectors of A.

Math 260 Homework 5.SE

t. True. By definition of matrix multiplication,

$$A = AI = A[\mathbf{e}_1 \quad \mathbf{e}_2 \quad \cdots \quad \mathbf{e}_n] = [A\mathbf{e}_1 \quad A\mathbf{e}_2 \quad \cdots \quad A\mathbf{e}_n]$$

If $A\mathbf{e}_i = d_i\mathbf{e}_i$ for $j = 1, ..., n$, then A is a diagonal matrix with diagonal entries $d_1, ..., d_n$.

- u. True. If $B = PDP^{-1}$, where *D* is a diagonal matrix, and if $A = QBQ^{-1}$, then $A = Q(PDP^{-1})Q^{-1} = (QP)D(QP)^{-1}$, which shows that *A* is diagonalizable.
- v. True. Since B is invertible, AB is similar to $B(AB)B^{-1}$, which equals BA.
- w. False. Having n linearly independent eigenvectors makes an n×n matrix diagonalizable (by the Diagonalization Theorem 5 in Section 5.3), but not necessarily invertible. One of the eigenvalues of the matrix could be zero.
- x. True. If A is diagonalizable, then by the Diagonalization Theorem, A has n linearly independent eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_n$ in \mathbf{R}^n . By the Basis Theorem, $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ spans \mathbf{R}^n . This means that each vector in \mathbf{R}^n can be written as a linear combination of $\mathbf{v}_1, ..., \mathbf{v}_n$.
- 2. Suppose $Bx \neq 0$ and $ABx = \lambda x$ for some λ . Then $A(Bx) = \lambda x$. Left-multiply each side by B and obtain $BA(Bx) = B(\lambda x) = \lambda(Bx)$. This equation says that Bx is an eigenvector of BA, because $Bx \neq 0$.
- 3. a. Suppose $Ax = \lambda x$, with $x \neq 0$. Then $(5I A)x = 5x Ax = 5x \lambda x = (5 \lambda)x$. The eigenvalue is 5λ .
 - b. $(5I 3A + A^2)x = 5x 3Ax + A(Ax) = 5x 3(\lambda x) + \lambda^2 x = (5 3\lambda + \lambda^2)x$. The eigenvalue is $5 3\lambda + \lambda^2$.
- 4. Assume that Ax = λx for some nonzero vector x. The desired statement is true for m = 1, by the assumption about λ. Suppose that for some k≥1, the statement holds when m = k. That is, suppose that A^kx = λ^kx. Then A^{k+1}x = A(A^kx) = A(λ^kx) by the induction hypothesis. Continuing, A^{k+1}x = λ^kAx = λ^{k+1}x, because x is an eigenvector of A corresponding to A. Since x is nonzero, this equation shows that λ^{k+1} is an eigenvalue of A^{k+1}, with corresponding eigenvector x. Thus the desired statement is true when m = k + 1. By the principle of induction, the statement is true for each positive integer m.
- 5. Suppose $Ax = \lambda x$, with $x \neq 0$. Then

$$p(A)\mathbf{x} = (c_0I + c_1A + c_2A^2 + \dots + c_nA^n)\mathbf{x}$$

= $c_0\mathbf{x} + c_1A\mathbf{x} + c_2A^2\mathbf{x} + \dots + c_nA^n\mathbf{x}$
= $c_0\mathbf{x} + c_1\lambda\mathbf{x} + c_2\lambda^2\mathbf{x} + \dots + c_n\lambda^n\mathbf{x} = p(\lambda)\mathbf{x}$

So $p(\lambda)$ is an eigenvalue of p(A).

6. a. If
$$A = PDP^{-1}$$
, then $A^k = PD^kP^{-1}$, and $B = 5I - 3A + A^2 = 5PIP^{-1} - 3PDP^{-1} + PD^2P^{-1}$
= $P(5I - 3D + D^2)P^{-1}$

b.
$$p(A) = c_0 I + c_1 P D P^{-1} + c_2 P D^2 P^{-1} + \dots + c_n P D^n P^{-1}$$

 $= P(c_0 I + c_1 D + c_2 D^2 + \dots + c_n D^n) P^{-1}$
 $= Pp(D) P^{-1}$

This shows that p(A) is diagonalizable, because p(D) is a linear combination of diagonal matrices and hence is diagonal. In fact, because D is diagonal, it is easy to see that

$$p(D) = \begin{bmatrix} p(2) & 0 \\ 0 & p(7) \end{bmatrix}$$

- 7. If $A = PDP^{-1}$, then $p(A) = Pp(D)P^{-1}$, as shown in Exercise 6. If the (j, j) entry in D is λ , then the (j, j) entry in D^k is λ^k , and so the (j, j) entry in p(D) is $p(\lambda)$. If p is the characteristic polynomial of A, then $p(\lambda) = 0$ for each diagonal entry of D, because these entries in D are the eigenvalues of A. Thus p(D) is the zero matrix. Thus $p(A) = P \cdot 0 \cdot P^{-1} = 0$.
- 8. a. If λ is an eigenvalue of an $n \times n$ diagonalizable matrix A, then $A = PDP^{-1}$ for an invertible matrix P and an $n \times n$ diagonal matrix D whose diagonal entries are the eigenvalues of A. If the multiplicity of λ is n, then λ must appear in every diagonal entry of D. That is, $D = \lambda I$. In this case, $A = P(\lambda I)P^{-1} = \lambda PIP^{-1} = \lambda I$.
 - b. Since the matrix $A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$ is triangular, its eigenvalues are on the diagonal. Thus 3 is an eigenvalue with multiplicity 2. If the 2×2 matrix A were diagonalizable, then A would be 3I, by part (a). This is not the case, so A is not diagonalizable.
- 9. If I A were not invertible, then the equation (I A)x = 0. would have a nontrivial solution x. Then x Ax = 0 and $Ax = 1 \cdot x$, which shows that A would have 1 as an eigenvalue. This cannot happen if all the eigenvalues are less than 1 in magnitude. So I A must be invertible.
- 10. To show that A^k tends to the zero matrix, it suffices to show that each column of A^k can be made as close to the zero vector as desired by taking k sufficiently large. The jth column of A is Ae_j , where e_j is the jth column of the identity matrix. Since A is diagonalizable, there is a basis for \mathbb{R}^n consisting of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$, corresponding to eigenvalues $\lambda_1, \dots, \lambda_n$. So there exist scalars c_1, \dots, c_n , such that

$$\mathbf{e}_i = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$
 (an eigenvector decomposition of \mathbf{e}_i)

Then, for k = 1, 2, ...,

$$A^{k}\mathbf{e}_{j} = c_{1}(\lambda_{1})^{k}\mathbf{v}_{1} + \dots + c_{n}(\lambda_{n})^{k}\mathbf{v}_{n} \qquad (*)$$

If the eigenvalues are all less than 1 in absolute value, then their kth powers all tend to zero. So (*) shows that $A^k e_j$ tends to the zero vector, as desired.

11. a. Take x in H. Then $x = c\mathbf{u}$ for some scalar c. So $A\mathbf{x} = A(c\mathbf{u}) = c(A\mathbf{u}) = c(\lambda \mathbf{u}) = (c\lambda)\mathbf{u}$, which shows that $A\mathbf{x}$ is in H.

- b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar multiples of x. If K is invariant under A, then Ax is in K and hence Ax is a multiple of x. Thus x is an eigenvector of A.
- 12. Let U and V be echelon forms of A and B, obtained with r and s row interchanges, respectively, and no scaling. Then det $A = (-1)^r \det U$ and det $B = (-1)^s \det V$

Using first the row operations that reduce A to U, we can reduce G to a matrix of the form

$$G' = \begin{bmatrix} U & Y \\ 0 & B \end{bmatrix}$$
. Then, using the row operations that reduce *B* to *V*, we can further reduce *G'* to $G'' = \begin{bmatrix} U & Y \\ 0 & V \end{bmatrix}$. There will be $r + s$ row interchanges, and so

$$\det G = \det \begin{bmatrix} A & X \\ 0 & B \end{bmatrix} = (-1)^{r+s} \det \begin{bmatrix} U & Y \\ 0 & V \end{bmatrix}$$
 Since
$$\begin{bmatrix} U & Y \\ 0 & V \end{bmatrix}$$
 is upper triangular, its determinant

equals the product of the diagonal entries,

and since U and V are upper triangular, this product also equals (det U) (det V). Thus

$$\det G = (-1)^{r+s} (\det U) (\det V) = (\det A) (\det B)$$

For any scalar λ , the matrix $G - \lambda I$ has the same partitioned form as G, with $A - \lambda I$ and $B - \lambda I$ as its diagonal blocks. (Here I represents various identity matrices of appropriate sizes.) Hence the result about det G shows that $\det(G - \lambda I) = \det(A - \lambda I) \cdot \det(B - \lambda I)$

- 13. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix [3] together with the eigenvalues of $\begin{bmatrix} 5 & -2 \\ -4 & 3 \end{bmatrix}$. The only eigenvalue of [3] is 3, while the eigenvalues of $\begin{bmatrix} 5 & -2 \\ -4 & 3 \end{bmatrix}$ are 1 and 7. Thus the eigenvalues of A are 1, 3, and 7.
- 14. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix $\begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}$ together with the eigenvalues of $\begin{bmatrix} -7 & -4 \\ 3 & 1 \end{bmatrix}$. The eigenvalues of $\begin{bmatrix} 1 & 5 \\ 2 & 4 \end{bmatrix}$ are -1 and 6, while the eigenvalues of $\begin{bmatrix} -7 & -4 \\ 3 & 1 \end{bmatrix}$ are -5 and -1. Thus the eigenvalues of A are -1, -5, and 6, and the eigenvalue -1 has multiplicity 2.
- 15. Replace a by a λ in the determinant formula from Exercise 16 in Chapter 3 Supplementary Exercises.

$$\det(A - \lambda I) = (a - b - \lambda)^{n-1} [a - \lambda + (n-1)b]$$

This determinant is zero only if $a-b-\lambda=0$ or $a-\lambda+(n-1)b=0$. Thus λ is an eigenvalue of A if and only if $\lambda=a-b$ or $\lambda=a+(n-1)$. From the formula for $\det(A-\lambda I)$ above, the algebraic multiplicity is n-1 for a-b and 1 for a+(n-1)b.

16. The 3×3 matrix has eigenvalues 1-2 and 1+(2)(2), that is, -1 and 5. The eigenvalues of the 5×5 matrix are 7-3 and 7+(4)(3), that is 4 and 19.

17. Note that $\det(A - \lambda I) = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = \lambda^2 - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21})$ = $\lambda^2 - (\operatorname{tr} A)\lambda + \det A$, and use the quadratic formula to solve the characteristic equation:

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4\operatorname{det} A}}{2}$$

The eigenvalues are both real if and only if the discriminant is nonnegative, that is, $(\operatorname{tr} A)^2 - 4 \det A \ge 0$. This inequality simplifies to $(\operatorname{tr} A)^2 \ge 4 \det A$ and $\left(\frac{\operatorname{tr} A}{2}\right)^2 \ge \det A$.

18. The eigenvalues of A are 1 and .6. Use this to factor A and A^k .

$$A = \begin{bmatrix} -1 & -3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & .6 \end{bmatrix} \cdot \frac{1}{4} \begin{bmatrix} 2 & 3 \\ -2 & -1 \end{bmatrix}$$

$$A^{k} = \begin{bmatrix} -1 & -3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1^{k} & 0 \\ 0 & .6^{k} \end{bmatrix} \cdot \frac{1}{4} \begin{bmatrix} 2 & 3 \\ -2 & -1 \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} -1 & -3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -2 \cdot (.6)^{k} & -(.6)^{k} \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} -2 + 6(.6)^{k} & -3 + 3(.6)^{k} \\ 4 - 4(.6)^{k} & 6 - 2(.6)^{k} \end{bmatrix}$$

$$\to \frac{1}{4} \begin{bmatrix} -2 & -3 \\ 4 & 6 \end{bmatrix} \text{ as } k \to \infty$$

19.
$$C_p = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}$$
; $\det(C_p - \lambda I) = 6 - 5\lambda + \lambda^2 = p(\lambda)$

20.
$$C_p = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 24 & -26 & 9 \end{bmatrix};$$

$$\det(C_p - \lambda I) = 24 - 26\lambda + 9\lambda^2 - \lambda^3 = p(\lambda)$$

21. If p is a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic polynomial of C_p is $p(\lambda) = (-1)^2 p(\lambda)$, so the result is true for n = 2. Suppose the result is true for n = k for some $k \ge 2$, and consider a polynomial p of degree k + 1. Then expanding $\det(C_p - \lambda I)$ by cofactors down the first column, the determinant of $C_p - \lambda I$ equals

$$(-\lambda) \det \begin{bmatrix} -\lambda & 1 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & & 1 \\ -a_1 & -a_2 & \cdots & -a_k - \lambda \end{bmatrix} + (-1)^{k+1} a_0$$

The $k \times k$ matrix shown is $C_q - \lambda I$, where $q(t) = a_1 + a_2 t + \dots + a_k t^{k-1} + t^k$. By the induction assumption, the determinant of $C_q - \lambda I$ is $(-1)^k q(\lambda)$. Thus

$$\det(C_p - \lambda I) = (-1)^{k+1} a_0 + (-\lambda)(-1)^k q(\lambda)$$

$$= (-1)^{k+1} [a_0 + \lambda (a_1 + \dots + a_k \lambda^{k-1} + \lambda^k)]$$

$$= (-1)^{k+1} p(\lambda)$$

So the formula holds for n = k + 1 when it holds for n = k. By the principle of induction, the formula for $\det(C_n - \lambda I)$ is true for all $n \ge 2$.

22. a.
$$C_p = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{bmatrix}$$

b. Since λ is a zero of p, $a_0 + a_1\lambda + a_2\lambda^2 + \lambda^3 = 0$ and $-a_0 - a_1\lambda - a_2\lambda^2 = \lambda^3$. Thus

$$C_{p}\begin{bmatrix} 1\\ \lambda\\ \lambda^{2} \end{bmatrix} = \begin{bmatrix} \lambda\\ \lambda^{2}\\ -a_{0} - a_{1}\lambda - a_{2}\lambda^{2} \end{bmatrix} = \begin{bmatrix} \lambda\\ \lambda^{2}\\ \lambda^{3} \end{bmatrix}$$

That is, $C_p(1,\lambda,\lambda^2) = \lambda(1,\lambda,\lambda^2)$, which shows that $(1,\lambda,\lambda^2)$ is an eigenvector of C_p corresponding to the eigenvalue λ .

- 23. From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of C_p , corresponding to the eigenvalues $\lambda_1, \lambda_2, \lambda_3$ (the roots of the polynomial p). Since these eigenvalues are distinct, the eigenvectors from a linearly independent set, by Theorem 2 in Section 5.1. Thus V has linearly independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally, since the columns of V are eigenvectors of C_p , the Diagonalization Theorem (Theorem 5 in Section 5.3) shows that $V^{-1}C_pV$ is diagonal.
- 24. [M] The MATLAB command roots (p) requires as input a row vector p whose entries are the coefficients of a polynomial, with the highest order coefficient listed first. MATLAB constructs a companion matrix C_p whose characteristic polynomial is p, so the roots of p are the eigenvalues of C_p. The numerical values of the eigenvalues (roots) are found by the same QR algorithm used by the command eig(A).
- 25. [M] The MATLAB command [P D] = eig (A) produces a matrix P, whose condition number is 1.6×10^8 , and a diagonal matrix D, whose entries are *almost* 2, 2, 1. However, the exact eigenvalues of A are 2, 2, 1, and A is not diagonalizable.
- 26. [M] This matrix may cause the same sort of trouble as the matrix in Exercise 25. A matrix program that computes eigenvalues by an interative process may indicate that A has four distinct eigenvalues, all close to zero. However, the only eigenvalue is 0, with multiplicity 4, because A⁴ = 0.