a. True. If A is invertible and if Ax=1-x for some nonzero x, then left-multiply by A~ to obtain

x=A"'x, which may be rewritten as A7'x=1-x. Since x is nonzero, this shows 1 is an
eigenvalue of A~",

. False. If A is row equivalent to the identity matrix, then A is invertible. The matrix in Example 4

of Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31
in Section 5.3.

. True. If A contains a row or column of zeros, then A is not row equivalent to the identity matrix

and thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an
eigenvalue of A.

. False. Consider a diagonal matrix D whose eigenvalues are 1 and 3, that is, its diagonal entries

are 1 and 3. Then D? is a diagonal matrix whose eigenvalues (diagonal entries) are 1 and 9. In
general, the eigenvalues of A® are the squares of the eigenvalues of A.

. True. Suppose a nonzero vector x satisfies Ax=Ax, then

ATx = A(AX) = A(Ax) = AAx =A°x

This shows that x is also an eigenvector for A

. True. Suppose a nonzero vector x satisfies Ax=Jx, then left-multiply by A™' to obtain

x:A‘l(flx):flA"x. Since A is invertible, the eigenvalue A is not zero. So ?.']x:A']x, which

shows that x is also an eigenvector of A~

. False. Zero is an eigenvalue of each singular square matrix.
. True. By definition, an eigenvector must be nonzero.

20 1 0
i. False. Let A= L] 2}then € :|:0:| and e, :|:1:| are eigenvectors of A for the eigenvalue 2,

and they are linearly independent.

. True. This follows from Theorem 4 in Section 5.2

k. False. Let A be the 3x3 matrix in Example 3 of Section 5.3. Then A is similar to a diagonal

m.

matrix D. The eigenvectors of D are the columns of 7., but the eigenvectors of A are entirely
different.

2.0 1 0
. False. Let A :{ 3}. Then €, ZL]:| and e, ZL} are eigenvectors of A, but e, +e, is not.

0
(Actually, it can be shown that if two eigenvectors of A correspond to distinct eigenvalues, then
their sum cannot be an eigenvector.)
False. All the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix
(Theorem 1 in Section 5.1). A diagonal entry may be zero.

. True. Matrices A and A’ have the same characteristic polynomial, because

det(AT —Aly=det(A—AD)" =det(A—AI), by the determinant transpose property.

o. False. Counterexample: Let A be the 5x5 identity matrix.
p. True. For example, let A be the matrix that rotates vectors through m/2 radians about the origin.

Then Ax is not a multiple of x when x is nonzero.

. False. If A is a diagonal matrix with 0 on the diagonal, then the columns of A are not linearly

independent.

». True. If Ax=Ax and Ax=A,x, then Ax=Ax and (4, —A4,)x=0. If x=0, then 4 must equal

A.

. False. Let A be a singular matrix that is diagonalizable. (For instance, let A be a diagonal matrix

with 0 on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation x — Ax is
represented by a diagonal matrix relative to a coordinate system determined by eigenvectors of
A.
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t. True. By definition of matrix multiplication,
A=Al=Ale, e, e, ]=[Ae, Ae, --- Ae,]
If Ae}. :dje}. for j=1,...,n, then A is a diagonal matrix with diagonal entries d,,....d

u. True. If B=PDP™', where D is a diagonal matrix, and if A=QBQ™", then
A=Q(PDP")Q"' =(QP)D(QP)™", which shows that A is diagonalizable.
v. True. Since B is invertible, AB is similar to B(AB)B", which equals BA.

w. False. Having n linearly independent eigenvectors makes an nxn matrix diagonalizable (by the
Diagonalization Theorem 5 in Section 5.3), but not necessarily invertible. One of the eigenvalues
of the matrix could be zero.

X. True. If A is diagonalizable, then by the Diagonalization Theorem, A has n linearly independent

eigenvectors vy,...,v, in R". By the Basis Theorem, {v,,....v,} spans R". This means that

"

each vector in R" can be written as a linear combination of v,,....v

. Suppose Bx =0 and ABx =Ax for some A.Then A(Bx)=Ax. Left-multiply each side by B and

obtain BA(Bx) = B(Ax)=A(Bx). This equation says that Bx is an eigenvector of BA, because
Bx=0.

. a. Suppose Ax=2Ax, with x=0. Then (5] — A)x =5x — Ax =5x —Ax =(5 —A)x. The eigenvalue

is S—A.
b. (51 =3A+ A%)x = 5x = 3Ax + A(AX) = 5x = 3(Ax) + A7x = (5—- 3+ A%)x. The eigenvalue is
5-3h+A%

. Assume that Ax =Ax for some nonzero vector X. The desired statement is true for m =1, by the

assumption about 4. Suppose that for some k = 1. the statement holds when m = k. That is, suppose
that A*x = A*x. Then A**!x= A(A*x)= A(2*x) by the induction hypothesis. Continuing,
Ay = 2% Ax = 27X, because x is an ei genvector of A corresponding to A. Since x is nonzero, this

equation shows that A**! is an eigenvalue of A**!, with corresponding eigenvector x. Thus the
desired statement is true when m =k +1. By the principle of induction, the statement is true for each
positive integer m.

. Suppose Ax =Ax, with x=0. Then

pAX=(cyl + A+, A* +..+¢,A")x
=X+ AX+ AN+ 4+, A"X
=X+ AX+ 027\.2_\' +.o.+c, A= p(A)x

So p(k) is an eigenvalue of p(A).

.a. If A=PDP™, then A* =PD*P", and

B=5I-3A+ A’ =5PIP"' —3PDP~' + PD*P"'
= P(5I-3D + D*)P-!



7.

10.

11.

b. p(A)=cyl +¢PDP™ +¢c,PD* P+ 4, PD"P!
=P(cyl +¢,D+c,D +---+ ¢ D) P!
= Pp(D)P-!
This shows that p(A) is diagonalizable, because p([?) is a linear combination of diagonal
matrices and hence is diagonal. In fact, because D is diagonal, it is easy to see that

p2 0
(D)=
o7 )

If A:PDP'], then p(A)= Pp(D)P‘]. as shown in Exercise 6. If the ( 7, j) entry in D is A, then the
(j,j) entry in DF is ?Lk, and so the (j, j) entry in p(D) is p(i). If p is the characteristic
polynomial of A, then p(A)=0 for each diagonal entry of D, because these entries in D are the
eigenvalues of A. Thus p(D) is the zero matrix. Thus p(A)=P-0- pl=q.

a. If Ais an eigenvalue of an nxn diagonalizable matrix A, then A=PDP™" for an invertible
matrix P and an nxn diagonal matrix D whose diagonal entries are the eigenvalues of A. If the
multiplicity of 4 is n, then A must appear in every diagonal entry of D. Thatis, D= Al. In this
case, A=P(ANP™ = APIP' = APP' = AL

31
0 3

eigenvalue with multiplicity 2. If the 2x2 matrix A were diagonalizable, then A would be 31, by
part (a). This is not the case, so A is not diagonalizable.

b. Since the matrix A :{ } is triangular, its eigenvalues are on the diagonal. Thus 3 is an

. If I — A were not invertible, then the equation (/ — A)x=0. would have a nontrivial solution x. Then

x—Ax=0 and Ax=1-x, which shows that A would have | as an eigenvalue. This cannot happen if
all the eigenvalues are less than 1 in magnitude. So [/ — A must be invertible.

To show that A tends to the zero matrix, it suffices to show that each column of A¥ can be made as
close to the zero vector as desired by taking k sufficiently large. The jth column of A is Ae ;. where
e; is the jth column of the identity matrix. Since A is diagonalizable, there is a basis for R"
consisting of eigenvectors v,,....v

Cpseees €, such that

sl

corresponding to eigenvalues A,,...,A,. So there exist scalars

ne

e, =qv +te,v,

Then, for k=1,2.....

(an eigenvector decomposition of e J-)

Ale, =) v+t (), ®)
If the eigenvalues are all less than 1 in absolute value, then their kth powers all tend to zero. So ()

shows that A%e ; tends to the zero vector, as desired.

a. Take x in H. Then x = cu for some scalar ¢. So Ax = A(cu) =c(Au) =c(hu) =(cA)u, which
shows that Ax isin H.

14.

16.

b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar
multiples of x. If K is invariant under A, then Ax isin K and hence Ax is a multiple of x. Thus x
is an eigenvector of A.

. Let U and V be echelon forms of A and B, obtained with r and s row interchanges, respectively, and

no scaling. Then det A=(-1)"det U/ and det B=(-1)"det V

Using first the row operations that reduce A to U, we can reduce G to a matrix of the form

iy
G'= { 0 B}' Then, using the row operations that reduce B to V, we can further reduce G” to
L U . -
G"= 0o vl There will be r+s row interchanges, and so
A X Uy u vy
det G =det =(=1)""det Since is upper triangular, its determinant
0 B 0o v 0 Vv

equals the product of the diagonal entries,
and since U/ and V are upper triangular, this product also equals (det U ) (det V). Thus

det G =(=1)""(det U)(det V) =(det A)(det B)

For any scalar A ., the matrix G —A/ has the same partitioned form as G, with A— Al and B—AI as
its diagonal blocks. (Here I represents various identity matrices of appropriate sizes.) Hence the
result about det G shows that det(G —AJ) =det(A—Al)-det(B—AL[l)

. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix [3] together with the

2 5
3}. The only eigenvalue of [3] is 3, while the eigenvalues of { 4

1 and 7. Thus the eigenvalues of A are 1, 3, and 7.

5 - -2
eigenvalues of 4 NE

15
By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix |: 5 4} together with the

2

-7 4 I 5
eigenvalues of { 3 J. The eigenvalues of { 4} are —1 and 6, while the eigenvalues of

-7 4
{ 3 1:| are —5 and —1. Thus the eigenvalues of A are —1. -5, and 6, and the eigenvalue —1 has

multiplicity 2.

. Replace a by a—A in the determinant formula from Exercise 16 in Chapter 3 Supplementary

Exercises.

det(A—A =(a—b—A)""a—A+(n-1)b]

This determinant is zero only if a—b—A =0 or a—A+(n—1)b=0. Thus A is an eigenvalue of A if
and only if A=a—b or A=a+(n—1). From the formula for det(A—Af) above, the algebraic
multiplicity is n—1 for a—b and | for a+(n—1)b.

The 3x3 matrix has eigenvalues 1—2 and 1+(2)(2), that is, —1 and 5. The eigenvalues of the 5x5
matrix are 7—3 and 7+(4)(3), thatis 4 and 19.



17. Note that det(A—AI) = (ay, — May — A — @y, = A* — (@, +ay b+ (a0 —apay)

=A% —(tr A)A +det A. and use the quadratic formula to solve the characteristic equation:

P trzilli\ﬂ'(trﬁ«)2 —4det A

2

The eigenvalues are both real if and only if the discriminant is nonnegative, that is,

\2
2 A
(tr A)* —4det A = 0. This inequality simplifies to (tr A)* >4detA and [%) =det A.
18. The eigenvalues of A are 1 and .6. Use this to factor A and A*,
A= -1 31 0]1]2 3
L2 2§00 6] 42 -
-1 31 o|1[2 3
2 2o 6 42 -1

Ak

_1[-1 3 2 3
T4 2 2]2.6)F —(6)
_1{-2+6(6) —3+3(6)
4 4406 62060
-
—)l - 3}ask—)m
6
0 1 s
19. C,=|  o[1deUC, M) =6-5A+1" =p(h)
0 10
2. C,=| 0 0 1
24 26 9

det(C, —A1)=24-26)+ 91T =1 = p(h)

21. If pis a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic
polynomial of €, is p(X) =(=1)> p(%), so the result is true for n=2. Suppose the result is true for
n=k forsome k =2, and consider a polynomial p of degree k +1. Then expanding det(C, —Al)
by cofactors down the first column, the determinant of C, —Al equals

A1 0
(—A)det +(-D"'a,

—a; —a, —a, —h

24,

26.

The kxk matrix shown is C, — I, where g(1)=gq +ayt+---+a, 1" +1*. By the induction
assumption, the determinant of C, —A[ is (-n* g(A). Thus
det(C, — Al =(-1""a, +(=)(-1" g()
=(=D""ay +Ma, +--+a, A + 25
=(=D"" p(h)

So the formula holds for n =k +1 when it holds for n =k. By the principle of induction, the formula
for del(Cp — A1) is true for all n=2.

0 1 0

CaC= 0 0 1

=% -4 4

b. Since X is azero of p, ay +ah+a,A* +1° =0 and —q, —ah—a,h* =A°. Thus
177 A A
C,| A |=] A =2
Ay —ah—ar | A}
That is, C‘P(l,l,?\.l)= A(1,A, %), which shows that (1,%,1%) is an eigenvector of c,
corresponding to the eigenvalue A .

. From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of C,,, corresponding

to the eigenvalues A, A,,A; (the roots of the polynomial p). Since these eigenvalues are distinct, the

eigenvectors from a linearly independent set, by Theorem 2 in Section 5.1. Thus V has linearly
independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally, since the
columns of Vare eigenvectors of C . the Diagonalization Theorem (Theorem 5 in Section 5.3)

shows that V~'C,V is diagonal.

[M] The MATLAB command roots (p) requires as input a row vector p whose entries are the
coefficients of a polynomial, with the highest order coefficient listed first. MATLAB constructs a
companion matrix €, whose characteristic polynomial is p, so the roots of p are the eigenvalues of
C,. The numerical values of the eigenvalues (roots) are found by the same QR algorithm used by

the command eig ().

. [M] The MATLAB command [P D]=eig(A) produces a matrix P, whose condition number is

1.6X1{]s, and a diagonal matrix D, whose entries are almost 2, 2, 1. However, the exact eigenvalues
of Aare 2,2, 1, and A is not diagonalizable.

[M] This matrix may cause the same sort of trouble as the matrix in Exercise 25. A matrix program
that computes eigenvalues by an interative process may indicate that A has four distinct eigenvalues,
all close to zero. However, the only eigenvalue is 0, with multiplicity 4, because A* =0.



