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where ¢ and ¢, now are real numbers. To satisfy the initial condition X(DJ=|:I7:|' we solve

-1 -2 0
0 +0; = to get ¢ =12,c, =—6. We now have
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5. Since A'x =|:

:| is an estimate for an eigenvector, the vector

a vector with a 1 in its second entry that is close to an

. The vectors in the given sequence approach an eigenvector v). The last vector in the sequence,

1. . . .
X, =|:.3326 . is probably the best estimate for v,. To compute an estimate for &, examine

4.0978
Axy =|:] 665"]' This vector is approximately X, v,. From the first entry in this vector, an estimate

of 4, 15 4.9978.

. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

-2520 . i i i i
Xy =|: . 15 probably the best estimate for v;. To compute an estimate for A,. examine

Ax, =

4=

-1.2536
|: 5 :| This vector is approximately &,¥,. From the second entry in this vector, an

estimate of A, is 5.0064.

. The vectors in the given sequence approach an eigenvector v, The last vector in the sequence,

5188
X5 =|: , :| is probably the best estimate for ¥,. To compute an estimate for &, examine

4504
Ax, = |: 90?5]- This vector is approximately &,v,. From the second entry in this vector, an estimate

of A, is 9075,

. The vectors in the given sequence approach an eigenvector v,. The last vector in the sequence,

1
X, =|: _502]. is probably the best estimate for v,. To compute an estimate for &, examine

—4012
Axy =|: 300‘9i|' This vector is approximately &,v,. From the first entry in this vector, an estimate

of &, is —4012.

4.0015
eigenvector of A. To estimate the dominant eigenvalue A, of A, compute Av =|: 5 DO"’D:|' From the
second entry in this vector, an estimate of A is —5.0020.

- s 2045 . ) 1 | -2045| [ —4996]
6. Since A'x = is an estimate for an eigenvector, the vector v =—— = is
4093 4003) 4003 1

a vector with a 1 in its second entry that is close to an eigenvector of A. To estimate the dominant

—2.0008
eigenvalue &, of A, compute Av =|: N DDZ4:| From the second entry in this vector, an estimate of
A is 4.0024.
6 7 1 . ) . .
7.IM] A= _— X = ol The data in the table below was calculated using Mathematica, which
carried more digits than shown here.
k 0 1 2 3 4 5
{ l} s I 9932 1 9998
X
0 1 0565 1 9990 1
] H 115 12.6957 12.9592 12.9927 12.9990
Ax,
£ 8 110 12.7826 12.9456 12.9948 12.9987
iy 8 11.5 12.7826 12.9592 12.9948 12.9990

The actual eigenvalue is 13.

21 1
8 [M] A =|:4 5], Xg =|:0i|. The data in the table below was calculated using Mathematica, which
carried more digits than shown here.
k 0 1 2 3 4 3
. l 5 2857 2558 2510 2502
: 0 1 1 I I I
Ax 2 2 1.5714 1.5116 1.5019 1.5003
' 4 7 6.1429 6.0233 6.0039 6.0006
M 4 7 6.1429 6.0233 6.0039 60006

The actual eigenvalue is 6.



5 0 12
9 [M] A=[1 -2 1|, xy =] 0]. The data in the table below was calculated using Mathematica,
o 3 0 0

which carried more digits than shown here.

k 0 1 2 3 4 5 6

1 1 I I I 1 1
X; 0 125 0938 1004 0991 0994 0993
0 0 0469 0328 0359 0353 0354
8 8 8.3625 8.3042 5.4304 §.4233 84246
Axy 1 5 8504 8321 8376 B366 8368
0 375 2812 3011 2974 L2981 2979
Ly g 8 8.5623 8.3042 84304 8.4233 8.4246

Thus g, =8.4233 and g, =8 4246, The actual eigenvalue is (T+f971/2, or 842443 to five
decimal places.

1 2 -2 1
10, [M] A=|1 1 9| x;=|0]|. The data in the table below was calculated using Mathematica,
o1 9 0
which carried more digits than shown here.
k 0 | 2 3 4 5 6
1 1 1 3571 0932 D183 0038
X; 0 1 B66T | 1 1 1
0 0 3333 1857 9576 o004 D982
1 3 1.6667 T857 ATRD 0375 0075
Axy 1 2 4.6667 8.4286 9.7119 09319 0.9872
0 1 36667 8.0714 96186 9.9136 0.9834
A 1 3 4.6667 8.4286 97119 9.0319 00872

Thus g5 =9.9319 and g, =9.9872. The actual eigenvalue is 10.

52 1
11. [M] A =|:2 ,’:|, Xy =[0:|. The data in the table below was calculated using Mathematica, which

carried more digits than shown here.

k 0

< | L]

1 2 3 4

o] o] [

A 5 58 5.9655 5.9942 5.9000
X
t 2 28 2.9655 2.0042 2.9990
Ly 5 5.8 5.9655 5.0042 5.9990
Rixg) 5 5.9655 5.9990 5.00907  5.9000003

The actual eigenvalue is 6. The bottom two columns of the table show that R(x; ) estimates the

eigenvalue more accurately than g, .

-3 2 1
12, [M] A =|: 5 ‘}:|,xu =Ll:|. The data in the table below was calculated using Mathematica,

which carried more digits than shown here.

k 0 I 2 3 4
1 1 1 1 1
X
! 0 —.6667 —4615 —.5098 —4976
Ax =3 —4.3333 —3.9231 —4.0196 —3.995]
o 2 2.0000 2.0000 2.0000 2.0000
Ly -3 —4.3333 -3.9231 -4.019% —-3.9951
Rix;) =3 -3.9231 -3.9951 —-3.9997 —-3.99998

The actual eigenvalue is —4. The bottom two columns of the table show that

eigenvalue more accurately than ;.

Rix, ) estimates the

. If the eigenvalues close to 4 and —4 have different absolute values, then one of these is a strictly

dominant eigenvalue, so the power method will work. But the power method depends on powers of
the quotients A,/&, and A,/k, going to zero. If |A,/4, | is close to 1, its powers will go to rero

slowly, and the power method will converge slowly.

. If the eigenvalues close to 4 and —4 have the same absolute value, then neither of these is a strictly

dominant eigenvalue, so the power method will not work. However, the inverse power method may
still be used. If the initial estimate is chosen near the eigenvalue close to 4, then the inverse power

method should produce a sequence that estimates the eigenvalue close to 4.

A—al isinvertible and A —er is not 0; hence

x={A—aly'(h—ag)x and (A —a)'x=(A—al)'x

5. Suppose Ax=2Aix, with x# 0. Forany & Ax —afx=(A—a)x If o is not an eigenvalue of A, then

This last equation shows that x is an eigenvector of (A— i)™ corresponding to the eigenvalue

(h—ay.

(A—al) " x=pux,
x=(A—al)ux)=A(ux)— (@l (ux) = g Ax)—aux

. Suppose that & is an eigenvalue of (A — af)™" with corresponding eigenvector x. Since



Solving this equation for Ax, we find that

A

Ax= L{ |(o:,c:x+x} =l(a+_l; X
A v A 0 7 8 7 1
Thus &=+ (1/4) is an eigenvalue of A with corresponding eigenvector x. 7 5 6 5 0
19. [M] A= ) =1
0 s g | IMIA=lg 6 10 o™ 0
17. [M] A=|-8 13 4|.x,=|0[.@=3.3. The data in the table below was calculated using TS5 910 0
4 5 4 0 (a) The data in the table below was calculated using Mathematica, which carried more digits than
Mathematica, which carried more digits than shown here. shown here.
k 0 | 2 k 0 I 2 3
1 1 | 1 1 [ 988679 ] (961467 ]
0 T 00434 691491
X, 0 7873 870 x, 0 ¢ | |
0 0908 0957 :
0 N |.932075 | | 942201 |
26.0552 471975 47,1233 0 62 20 37747 "29.0505]
Ve 20,5128 37.1436 37.0866 ; ]‘8; 5 “I 253 20‘3;}3'?
2.3669 45187 45083 Ax, ) T !
8 26.5 30.5547 30.3205
5 7 7
i 23384 232119 23212209 iy 10 26.5 30.5547 30.3205
Thus an estimate for the eigenvalue to four decimal places is 3.3212. The actual eigenvalue is
(25—+f337)/2, or 33212201 to seven decimal places. k 4 5 6 7
s 0 1 | (958115 [.957691 (857637 ] (957630
- i ) 689261 GEBOTE 6ER942 6ERI3E
18 [M] A=|1 -2 1|,x; =| 0 [, =—1.4. The data in the table below was calculated using X | . . .
3
Fl o 0 . 0 . 043578 943755 943778 943781
Mathematica, which carried more digits than shown here. - - — - — - — -
20.0110 29.0060 29.0054 29.0053
k 0 | 2 i 4 A 20,8710 20.8675 208671 20.8670
X
1 1 1 1 1 ! 30.2927 30.2892 30.2887 30.2887
X, 0 3646 3734 37729 3720 | 28.5839 | | 28.5863 | | 28.5859 | | 28.5859 |
0 —T813 — 1833 —T854 — 7854 4y 30.2927 30.2892 30.2887 30.2887
4 5 3, s
) 40 38123 _4]_" 134 —40.243 —40.9358 Thus an estimate for the eigenvalue to four decimal places is 30.2887. The actual eigenvalue is
¥ 14.5833 —14.2361 —15.3300 —15.2608 —15.2650 30.2886853 to seven decimal places. An estimate for the corresponding eigenvector is
-31.25 29.9479 32.2888 321407 321497 957630
2 40 -38.125 411134 409243 —40.9358 688938 |
1
¥ -1.375 —1.42623 —1.42432 —1.42444 —1.42443
: 943781

Thus an estimate for the eigenvalue to four decimal places is —1.4244, The actual eigenvalue is

(7T—+/97)/2, or —1.424429 to six decimal places.




(b) The data in the table below was calculated using Mathematica, which carried more digits than k 5 6 7 8 0
hown here. m - - - m — = _ = -
SR e 184441 184414 184417 184416 184416
k 0 1 2 3 4 . : : : ! :
| 6007561 T—6040071 6030737 [—603072] 179539 179622 179615 179615 179615
0 | 1 1 1 | 407778 | | 407021 | | 407121 | | 407108 | |-407110 |
e 0 —.243902 —251051 -251134 251135 [3.53861] [3.53732] [3.537507] [3.53748] [3.53748]
0 | (146341 | | (148890 | | (148053 | | 148053 | Ax 19,1884 19,1811 19.1822 19.1820 19.1820
- [— - = F— - o 5
2 _50.5610 _50.5041 50,5044 50,5044 344667 3.44521 344541 344538 344539
. _a1 986008 98,5211 98.5217 08.5217 | 781010 | | 7.80903 | | 7.80921 | | 7.80919 | | 7.80919 |
Ve 10 -24.7561 —24.7420 -24.7423 —24.7423 y 19,1884 19.1811 19,1822 19.1820 19.1820
-6 14.6829 14.6750 14.6751 14.6751
= - - - - - = Thus an estimate for the eigenvalue to four decimal places is 19.1820. The actual eigenvalue is
A —41 98.6098 98.5211 98.5217 98.5217 19.1820368 to seven decimal places. An estimate for the corresponding eigenvector is
- 184416
vy 0243902 0101410 0101501 0101500 0101500 1
. . . . . . 179615 |
Thus an estimate for the eigenvalue to five decimal places is .01015. The actual eigenvalue is
01015005 to eight decimal places. An estimate for the corresponding eigenvector is A07110]
—.603972 (b) The data in the table below was calculated using Mathematica, which carried more digits than
1 shown here.
-251135|
1480953 k 0 — ] - — 2 -
1 1 1
12 3 2 1 0 226087 222577
X
212 13 11 0 t 0 —-921739 917970
20, [M] A= Xy =1 L
-2 3 0 2 0 0 | -6608T0 | | 660496 |
572 0 115 [ 81.7304] [ 81.9314]
(a) The data in the table below was calculated using Mathematica, which carried more digits than 26 18.1913 18.2387
shown here. Ye 106 -75.0261 -75.2125
ﬁ
k 0 1 P 3 4 76 | 53.9826 | | 54.1143]
| 25 (1500917 [.187023] [.184166] A 115 81.7304 81.9314
0 3 I 1 1 ' 0869565 0122353 122053
i _5 17272 3 3
0 - 272127 ATO48: 180439 Thus an estimate for the eigenvalue to four decimal places is .0122. The actual eigenvalue is
0 ! LIBISIS| | 442748 ] | 402157 ] 01220556 to eight decimal places. An estimate for the corresponding eigenvector is
1 1.75 (3340017 [3.58397] [3.52088] !
B 2 1 17.8636 | |19.4606 | |19.1382 222577 |
. -2 3 3.04545| |351145| | 343606 —917970
4 2 | 7.90909 | | 7.82697| | 7.80413] 660496
g 4 11 17.8636 19.4606 10,1382
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[+{om e oL one

Notice that A*x is approximately .8(A*x).

5
21 ia) A=[ :| x=|: S:|- Here is the sequence A*x for k=1,...5:

Conclusion: If the eigenvalues of A are all less than | in magnitude, and if x=0, then A*x is
approximately an eigenvector for large k.

1 0 5
(b}A=|:0 8:|,x=|: 5:|. Here is the sequence Afx for k=1,...5:

m [32“232][204;] [Iﬁssﬂ

.5
Notice that A'x seems to be converging to |: D:|-
Conclusion: If the strictly dominant eigenvalue of A is 1, and if x has a component in the

direction of the corresponding eigenvector, then {A*x} will converge to a multiple of that
eigenvector.

0 2

Hi el

Notice that the distance of A*x from either eigenvector of A is increasing rapidly as k increases.

8 0 5 . ‘
c. A= LX= sf Here is the sequence A™x for k=1..5:

Conclusion: If the eigenvalues of A are all greater than 1 in magnitude, and if x is not an
eigenvector, then the distance from A*x to the nearest eigenvector will increase as k — o=

Chapter5 SUPPLEMENTARY EXERCISES

1. a. True. If A is invertible and if Ax=1-x for some nonzero x, then left-multiply by A™ to obtain
x=A"'x, which may be rewritten as A”'x =1-x Since x is nonzero, this shows 1 is an
cigenvalue of A7,

b. False. If A is row equivalent to the identity matrix, then A is invertible. The matrix in Example 4

of Section 5.3 shows that an invertible matrix need not be diagonalizable. Also, see Exercise 31
in Section 5.3,

¢. True. If A contains a row or column of zeros, then A is not row equivalent to the identity matrix
and thus is not invertible. By the Invertible Matrix Theorem (as stated in Section 5.2), 0 is an
eigenvalue of A.

m

. False. Consider a diagonal matrix [J whose eigenvalues are | and 3. that is, its diagonal entries

are | and 3. Then D¥ isa diagonal matrix whose eigenvalues (diagonal entries) are | and 9. In
general, the eigenvalues of A? are the squares of the eigenvalues of A.

. True. Suppose a nonzero vector x satisfies Ax=Ax, then

Alx = AlAx) = AlAx) = Adx = x

This shows that x is also an eigenvector for A

. True. Suppose a nonzero vector X satisfies Ax=Ax, then lef-multiply by A™ to obtain

x=A"(Ax)=AA"x Since A is invertible, the eigenvalue L is not zero. So A 'x=A"x, which

shows that x is also an eigenvector of A~

. False. Zero is an eigenvalue of each singular square matrix.
. True. By definition. an eigenvector must be nonzero.

20 1 0
i. False. Let A= |:|] 2i| then e =[D] and &, =|:] are eigenvectors of A for the eigenvalue 2.

and they are linearly independent.

. True. This follows from Theorem 4 in Section 5.2
. False. Let A be the 33 matrix in Example 3 of Section 5.3. Then A is similar to a diagonal

matrix [. The eigenvectors of [ are the columns of I, but the eigenvectors of A are entirely
different.

20 1 0
. False. Let A=[0 3]. Then ¢ =|:Di| and e, =[l] are eigenvectors of A, but e +e, is not.

(Actually, it can be shown that if two eigenvectors of A correspond to distinct eigenvalues, then
their sum cannot be an eigenvector.)

. False. All the diagonal entries of an upper triangular matrix are the eigenvalues of the matrix

(Theorem 1 in Section 5.1). A diagonal entry may be zero.

. True. Matrices A and A" have the same characteristic polynomial, because

det(AT — Aty =det(A—Al)" =det(A—AJ). by the determinant transpose property.

. False. Counterexample: Let A be the 55 identity matrix.
p. True. For example, let A be the matrix that rotates vectors through /2 radians about the origin.

Then Ax is not a multiple of x when x is nonzero.

. False. If A is a diagonal matrix with 0 on the diagonal. then the columns of A are not linearly

independent.

. True. If Ax=Ax and Ax=A,x, then Ax=A4x and (4 -4, )x=0. If x#0, then 4, must equal

Ay

. False. Let A be a singular matrix that is diagonalizable. (For instance, let A be a diagonal matrix

with 0 on the diagonal.) Then, by Theorem 8 in Section 5.4, the transformation x— Ax is
represented by a diagonal matrix relative to a coordinate system determined by eigenvectors of



[

rm

t. True. By definition of matrix multiplication,
A=Al=Aley e, - el=[A¢ Ae; - Ae,]

If Ae;=de; for j=L...n. then A is a diagonal matrix with diagonal entries dy.....d,.

w. True. If B=PDP”, where Disa diagonal matrix, and if A= OBO™. then
A=Q(PDP Q' =(QP)D(QP)", which shows that A is diagonalizable.

v. True. Since B is invertible, AB is similar to B(AB)B™', which equals BA.

w. False. Having n linearly independent eigenvectors makes an nxn matrix diagonalizable (by the
Diagonalization Theorem 3 in Section 5.3), but not necessarily invertible. One of the eigenvalues
of the matrix could be zero.

x. True. If A is diagonalizable, then by the Diagonalization Theorem. A has n linearly independent
eigenvectors v,,....v_in R". By the Basis Theorem. {v,....,v_| spans R". This means that

each vector in R" can be written as a linear combination of ¥,,...,v,.

. Suppose Bx=0 and ABx=Ax for some A.Then A(Bx)=Ax. Left-multiply each side by B and

obtain BA(Bx) = B(Ax) =A(Bx). This equation says that Bx is an eigenvector of BA, because
Bx=0.

. a. Suppose Ax=Ax, with x=0. Then (5 — A)x=5x— Ax =5x—Ax =(5-2)x. The eigenvalue

is 5—A.
b (51 —3A+ AT )x=5x —3Ax + A(Ax) = Sx - 3(hx0) + A x = (-3 + A" )x. The eigenvalue is
S5-I +aL

. Assume that Ax=Ax for some nonzero vector x. The desired statement is true for m =1, by the

assumption about A. Suppose that for some & = . the statement holds when m = k. That is, suppose
that A*x=A'x Then A**'x=A(A*¥%) =A(A*x) by the induction hypothesis. Continuing,
A= A" Ax=4""x, because x is an eigenvector of A corresponding to A. Since x is nonzero, this

equation shows that A** is an eigenvalue of A**. with corresponding eigenvector x. Thus the
desired statement is true when m =k + 1. By the principle of induction, the statement is true for each
positive integer .

. Suppose Ax=2x. with x#0. Then

plAX= (ol +e, A+, A"+ +e, A")x
=+ AR+ oA N+ 40, AT
=X+ ohx+ oA N+ o R x= plh)x

So p(X) is an eigenvalue of p(A).

ca. IF A=PDP, then A" =PD*P', and

B=51-3A+A*=5PIP”' —3PpP' + PD'P!
=P(5I-3D + DY) P

Since I is diagonal, so is 57 =30+ D?. Thus B is similar to a diagonal matrix.

b, plA)=cod + o PDP + 0, PP P 4ot PO P
= Plcyd +qD +c, D% +--- +c Do)
=Pp(D)pP!
This shows that p(A) is diagonalizable, because p(D) is a linear combination of diagonal
matrices and hence is diagonal. In fact, because [ is diagonal. it is easy to see that

pi2y 0
0=
ploy [ 0 P(TJ

7.1f A=PDP, then p(A)=Pp(D)P~, as shown in Exercise 6. If the ( j, j) entry in D is &, then the
( j.j) entryin D¥ is A, and so the (j.j) entry in p(D) is p(k). If pis the characteristic
polynomial of A, then p(A)=0 for each diagonal entry of [, because these entries in [ are the
eigenvalues of A. Thus p(D) is the zero matrix. Thus p(A)=P-0- P~ =0.

8 a. If A is an eigenvalue of an nxna diagonalizable matrix A, then A= PDP™" for an invertible
matrix P and an nxa diagonal matrix I whose diagonal entries are the eigenvalues of A. If the
multiplicity of A is n, then A must appear in every diagonal entry of [). That is, ) =A1. In this

case, A=PANP = APIP = APP' =41

301
b. Since the matrix A =|:0 3] is triangular, its eigenvalues are on the diagonal. Thus 3 is an

eigenvalue with multiplicity 2. If the 22 matrix A were diagonalizable, then A would be 31, by
part (a). This is not the case, so A is not diagonalizable.

9. If I —A were not invertible, then the equation (f —Ajx =0. would have a nontrivial solution x. Then

x—Ax=0 and Ax=1-x. which shows that A would have 1 as an eigenvalue. This cannot happen if
all the eigenvalues are less than 1 in magnitude. So | — A must be invertible.
10. To show that A® tends to the zero matrix, it suffices to show that each column of A® can be made as
close to the zero vector as desired by taking k sufficiently large. The jth column of A is Ae;. where
e is the jth column of the identity matrix. Since A is diagonalizable, there is a basis for R*

i
consisting of eigenvectors v,,...,v,. corresponding to eigenvalues A,.....A,. So there exist scalars

Cys.es Cq, SUCh that

€; =¥ +-+c, ¥, (an eigenvector decomposition of e;)

Then, for k=1,2,...,

Ale =) v +re v, )

If the eigenvalues are all less than | in absolute value, then their kth powers all tend to zero. So (*)
shows that A*ej tends to the zero vector, as desired.

11. a. Take x in H. Then x=cu for some scalar c. S0 Ax= Alcu) = c(Au) =c(hu) =(ch)u, which
shows that Ax isin H.



b. Let x be a nonzero vector in K. Since K is one-dimensional, K must be the set of all scalar
multiples of x. If K is invariant under A, then Ax isin K and hence Ax is a multiple of x. Thus x
is an eigenvector of A.

. Let U and V be echelon forms of A and B, obtained with r and 5 row interchanges. respectively. and

no scaling. Then det A=(—1)"det I/ and det B=(-I)"det V

Using first the row operations that reduce A to U, we can reduce (r to a matrix of the form

vy
G'= |:0 Bi|. Then, using the row operations that reduce B to V, we can further reduce &' to

(L
G"=|:D Vi|_ There will be r+5 row interchanges, and so

A X . (L o . . . .
det (7 =det |:D B:|=(—I‘.| det |:D P':| Since |: V:| is upper triangular, its determinant
equals the product of the diagonal entries,
and since U and V are upper triangular, this product also equals (det 7 ) (det V' ). Thus
det G=(=1)""(det U/)(det V) =(det A)det B)

For any scalar X, the matrix &G —AJ has the same partitioned form as G, with A—Af and B—AJ as
its diagonal blocks. (Here I represents various identity matrices of appropriate sizes.) Hence the
result about det G shows that det(G — M) =det{A—AI) -det(B—AI)

. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix [3] together with the

5 -2 5 -2
eigenvalues of . The only eigenvalue of [3] is 3, while the eigenvalues of ) are
-4 3 -4 3

1 and 7. Thus the eigenvalues of A are 1. 3, and 7.

1 3
. By Exercise 12, the eigenvalues of A are the eigenvalues of the matrix |:2 4:| together with the

-7 4 1 5
eigenvalues of |: 3 ]]. The eigenvalues of |:2 4] are —| and 6, while the eigenvalues of
-7 -4 X .
3 | —5 and —I. Thus the eigenvalues of A are —1,—5. and 6. and the eigenvalue —| has
multiplicity 2.

. Replace a by a— A in the determinant formula from Exercise 16 in Chapter 3 Supplementary

Exercises.
det( A=) =(a—b=)""[a—h+(n—1)b]
This determinant is zero only if a—b—A=0 or a—A&+(n—1)b=0. Thus A& is an eigenvalue of A if

and only if A=a—& or A=a+(n—1). From the formula for det{A—AJ) above. the algebraic
multiplicity is a—1 for a—& and 1 for a+(n—1)bh.

. The 3x3 matrix has eigenvalues 1-2 and 1+(2)(2), thatis, —1 and 5. The eigenvalues of the 3x3

matrix are 7—3 and 7+ (4)(3), thatis 4 and 19.

17. Note that det(A—hI)=(a;; — A)az; —X) — @paay; =A% — (@ + @y YA+ (a0 — dypay,)
=27 —(tr A)A.+det A, and use the quadratic formula to solve the characteristic equation:
i tr A f(r A —4det A

2
The eigenvalues are both real if and only if the discriminant is nonnegative, that is.

: ) AY
{tr A)" —4det A = 0. This inequality simplifies to (tr A)” =24det A and [%J =det A

18. The eigenvalues of A are 1 and .6. Use this to factor A and A%
-1 A0 o)1 2 3
A= -
2 2]l0 6] 4|2 -1
-1 a7 o022 3
I 2jo 642 -l
1[-1 = 2 37
42 2[-2-(60F (6}
-2 +OL6 336
4-4i6)k  6-2(6)
1
4

© 2 3]
4 6

ask —» oo

01 .,
19. C =|:—6 :|:d.et(CF—M)=E-—5?..+?..'=p(M

’ 5
0 10
0.C,={ 0 0 1
M -2 9

det(C, —A1)=24-260+93% - 1" = p(h)

21. If pis a polynomial of order 2, then a calculation such as in Exercise 19 shows that the characteristic
polynomial of € is P =(=1)* p(L), so the result is true for 7 =2. Suppose the result is true for
n=k for some k=2, and consider a polynomial p of degree k +1. Then expanding det(C, —AJ)
by cofactors down the first column, the determinant of C, —AJ equals

-1 0
(~A)det 5 | +(-1)" g,
—; i —a; —A
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24

26.

The kxk matrix shown is C - &1, where g(r)=a +ayt +---+ a, " +1*. By the induction
assumption. the determinant of €, —AJ is (- 1) g(k). Thus
det(C, - A0) =(=1)*"ag + (=R)-1\ g(A)
=(-1"ay +May +---+a " +24)]
=(-D*" p(n)

So the formula holds for 1=k +1 when it holds for a =&, By the principle of induction, the formula
for da(CP —ad) is true forall n=2.

0 1 0
a. C,=| 0 0 1
I Y |
b. Since A isa zeroof p, @, +ah+a,h* +1* =0 and —ay —ah —a,n* =3°. Thus
11 A A
Cp| &= A =:12

A |~ —ah—ah?| {3
That is, C,(LA,A")=A(LX,A%). which shows that (1,A,2") is an eigenvector of C,
corresponding to the eigenvalue A

From Exercise 22, the columns of the Vandermonde matrix V are eigenvectors of C . corresponding
to the eigenvalues A, A, A, (the roots of the polynomial p). Since these eigenvalues are distinct, the

eigenvectors from a linearly independent set. by Theorem 2 in Section 5.1. Thus V has linearly
independent columns and hence is invertible, by the Invertible Matrix Theorem. Finally. since the
columns of V are eigenvectors of €. the Diagonalization Theorem (Theorem 5 in Section 5.3)

shows that V™'C,V is diagonal.

[M] The MATLAB command roots (p) requires as input a row vector p whose entries are the
coefficients of a polynomial, with the highest order coefficient listed first. MATLAB constructs a
companion matrix € whose characteristic polynomial is p. so the roots of p are the eigenvalues of

Cp- The numerical values of the eigenvalues (roots) are found by the same QR algorithm used by

the command eigid).

. [M] The MATLARB command [F D]=eig(&) produces a matrix P, whose condition number is

1.6x10°, and a diagonal matrix D), whose entries are almost 2, 2, 1. However, the exact eigenvalues
of Aare 2. 2, 1, and A is not diagonalizable.

[M] This matrix may cause the same sort of trouble as the matrix in Exercise 25. A matrix program
that computes eigenvalues by an interative process may indicate that A has four distinct eigenvalues,

all close to zero. However, the only eigenvalue is 0, with multiplicity 4, because At =0,



