$$\mathbf{x}_0 = \mathbf{v}_1 + .1\mathbf{v}_2 + .3\mathbf{v}_3$$ $\mathbf{x}_1 = A\mathbf{v}_1 + .1A\mathbf{v}_2 + .3A\mathbf{v}_3 = \mathbf{v}_1 + .1(.5)\mathbf{v}_2 + .3(.2)\mathbf{v}_3$, and $\mathbf{x}_k = \mathbf{v}_1 + .1(.5)^k\mathbf{v}_2 + .3(.2)^k\mathbf{v}_3$. As k increases, \mathbf{x}_k approaches \mathbf{v}_1 . 16. [M] $$A = \begin{bmatrix} .90 & .01 & .09 \\ .01 & .90 & .01 \\ .09 & .09 & .90 \end{bmatrix} \cdot \text{ev} = \text{eig}(A) = \begin{bmatrix} 1.0000 \\ 0.8900 \\ .8100 \end{bmatrix}. \text{ To four decimal places,}$$ $$v_1 = \text{nulbasis}(A - \text{eye}(3)) = \begin{bmatrix} 0.9192 \\ 0.1919 \\ 1.0000 \end{bmatrix}. \text{ Exact: } \begin{bmatrix} 91/99 \\ 19/99 \\ 1 \end{bmatrix}$$ $$v_2 = \text{nulbasis}(A - \text{ev}(2) * \text{eye}(3)) = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$ $$v_3 = \text{nulbasis}(A - \text{ev}(3) * \text{eye}(3)) = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$ The general solution of the dynamical system is $\mathbf{x}_k = c_1 \mathbf{v}_1 + c_2 (.89)^k \mathbf{v}_2 + c_3 (.81)^k \mathbf{v}_3$. Note: When working with stochastic matrices and starting with a probability vector (having nonnegative entries whose sum is 1), it helps to scale \mathbf{v}_1 to make its entries sum to 1. If $\mathbf{v}_1 = (91/209, 19/209, 99/209)$, or (.435, .091, .474) to three decimal places, then the weight c_1 above turns out to be 1. See the text's discussion of Exercise 27 in Section 5.2. 17. **a.** $$A = \begin{bmatrix} 0 & 1.6 \\ .3 & .8 \end{bmatrix}$$ **b.** $\det \begin{bmatrix} -\lambda & 1.6 \\ .3 & .8 - \lambda \end{bmatrix} = \lambda^2 - .8\lambda - .48 = 0$. The eigenvalues of A are given by $$\lambda = \frac{.8 \pm \sqrt{(-.8)^2 - 4(-.48)}}{2} = \frac{.8 \pm \sqrt{2.56}}{2} = \frac{.8 \pm 1.6}{2} = 1.2 \text{ and } -.4$$ The numbers of juveniles and adults are increasing because the largest eigenvalue is greater than 1. The eventual growth rate of each age class is 1.2, which is 20% per year. To find the eventual relative population sizes, solve $(A-1.2I)\mathbf{x} = \mathbf{0}$: $$\begin{bmatrix} -1.2 & 1.6 & 0 \\ .3 & -.4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -4/3 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \quad x_1 = (4/3)x_2 \\ x_2 \text{ is free} \quad \text{Set } \mathbf{v}_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$ Eventually, there will be about 4 juveniles for every 3 adults. c. [M] Suppose that the initial populations are given by x₀ = (15,10). The Study Guide describes how to generate the trajectory for as many years as desired and then to plot the values for each population. Let x_k = (j_k, a_k). Then we need to plot the sequences {j_k}, {a_k}, {j_k + a_k}, and {j_k/a_k}. Adjacent points in a sequence can be connected with a line segment. When a sequence is plotted, the resulting graph can be captured on the screen and printed (if done on a computer) or copied by hand onto paper (if working with a graphics calculator). 18. a. $$A = \begin{bmatrix} 0 & 0 & .42 \\ .6 & 0 & 0 \\ 0 & .75 & .95 \end{bmatrix}$$ b. $ev = eig(A) = \begin{bmatrix} 0.0774 + 0.4063i \\ 0.0774 - 0.4063i \\ 1.1048 \end{bmatrix}$ The long-term growth rate is 1.105, about 10.5 % per year For each 100 adults, there will be approximately 38 calves and 21 yearlings. Note: The MATLAB box in the *Study Guide* and the various technology appendices all give directions for generating the sequence of points in a trajectory of a dynamical system. Details for producing a graphical representation of a trajectory are also given, with several options available in MATLAB, Maple, and Mathematica. ## 5.7 SOLUTIONS From the "eigendata" (eigenvalues and corresponding eigenvectors) given, the eigenfunctions for the differential equation x' = Ax are v₁e^{4t} and v₂e^{2t}. The general solution of x' = Ax has the form $$c_1\begin{bmatrix} -3\\1 \end{bmatrix}e^{4t} + c_2\begin{bmatrix} -1\\1 \end{bmatrix}e^{2t}$$ The initial condition $\mathbf{x}(0) = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$ determines c_1 and c_2 : $$c_1 \begin{bmatrix} -3 \\ 1 \end{bmatrix} e^{4(0)} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2(0)} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$$ $$\begin{bmatrix} -3 & -1 & -6 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5/2 \\ 0 & 1 & -3/2 \end{bmatrix}$$ Thus $$c_1 = 5/2$$, $c_2 = -3/2$, and $\mathbf{x}(t) = \frac{5}{2} \begin{bmatrix} -3 \\ 1 \end{bmatrix} e^{4t} - \frac{3}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t}$. 2. From the eigendata given, the eigenfunctions for the differential equation x' = Ax are $v_1 e^{-3t}$ and $v_2 e^{-1t}$. The general solution of x' = Ax has the form $$c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-1t}$$ The initial condition $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ determines c_1 and c_2 : $$c_{1} \begin{bmatrix} -1\\1 \end{bmatrix} e^{-3(0)} + c_{2} \begin{bmatrix} 1\\1 \end{bmatrix} e^{-1(0)} = \begin{bmatrix} 2\\3 \end{bmatrix}$$ $$\begin{bmatrix} -1&1&2\\1&1&3 \end{bmatrix} \sim \begin{bmatrix} 1&0&1/2\\0&1&5/2 \end{bmatrix}$$ Thus $c_1 = 1/2$, $c_2 = 5/2$, and $\mathbf{x}(t) = \frac{1}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-3t} + \frac{5}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t}$. 3. $$A = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$$, $det(A - \lambda I) = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1) = 0$. Eigenvalues: 1 and -1. For $$\lambda = 1$$: $\begin{bmatrix} 1 & 3 & 0 \\ -1 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = -3x_2$ with x_2 free. Take $x_2 = 1$ and $\mathbf{v}_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$. For $$\lambda = -1$$: $\begin{bmatrix} 3 & 3 & 0 \\ -1 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = -x_2$ with x_2 free. Take $x_2 = 1$ and $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. For the initial condition $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, find c_1 and c_2 such that $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{x}(0)$: $$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{x}(0) \end{bmatrix} = \begin{bmatrix} -3 & -1 & 3 \\ 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5/2 \\ 0 & 1 & 9/2 \end{bmatrix}$$ Thus $$c_1 = -5/2$$, $c_2 = 9/2$, and $\mathbf{x}(t) = -\frac{5}{2} \begin{bmatrix} -3 \\ 1 \end{bmatrix} e^t + \frac{9}{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-t}$. Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical system described by $\mathbf{x}' = A\mathbf{x}$. The direction of greatest attraction is the line through \mathbf{v}_2 and the origin. The direction of greatest repulsion is the line through \mathbf{v}_1 and the origin. 4. $$A = \begin{bmatrix} -2 & -5 \\ 1 & 4 \end{bmatrix}$$, $\det(A - \lambda I) = \lambda^2 - 2\lambda - 3 = (\lambda + 1)(\lambda - 3) = 0$. Eigenvalues: -1 and 3. For $$\lambda = 3$$: $\begin{bmatrix} -5 & -5 & 0 \\ 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = -x_2$ with x_2 free. Take $x_2 = 1$ and $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. For $$\lambda = -1$$: $\begin{bmatrix} -1 & -5 & 0 \\ 1 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = -5x_2$ with x_2 free. Take $x_2 = 1$ and $\mathbf{v}_2 = \begin{bmatrix} -5 \\ 1 \end{bmatrix}$. For the initial condition $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, find c_1 and c_2 such that $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{x}(0)$: $$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{x}(0) \end{bmatrix} = \begin{bmatrix} -1 & -5 & 3 \\ 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 13/4 \\ 0 & 1 & -5/4 \end{bmatrix}$$ Thus $$c_1 = 13/4, c_2 = -5/4$$, and $\mathbf{x}(t) = \frac{13}{4} \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{3t} - \frac{5}{4} \begin{bmatrix} -5 \\ 1 \end{bmatrix} e^{-t}$. Since one eigenvalue is positive and the other is negative, the origin is a saddle point of the dynamical system described by $\mathbf{x}' = A\mathbf{x}$. The direction of greatest attraction is the line through \mathbf{v}_2 and the origin. The direction of greatest repulsion is the line through \mathbf{v}_1 and the origin. 5. $$A = \begin{bmatrix} 7 & -1 \\ 3 & 3 \end{bmatrix}$$, det $(A - \lambda I) = \lambda^2 - 10\lambda + 24 = (\lambda - 4)(\lambda - 6) = 0$. Eigenvalues: 4 and 6. For $$\lambda = 4$$: $\begin{bmatrix} 3 & -1 & 0 \\ 3 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1/3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = (1/3)x_2$ with x_2 free. Take $x_2 = 3$ and $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. For $$\lambda = 6$$: $\begin{bmatrix} 1 & -1 & 0 \\ 3 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = x_2$ with x_2 free. Take $x_2 = 1$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. For the initial condition $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, find c_1 and c_2 such that $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{x}(0)$: $$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{x}(0) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 \\ 3 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 7/2 \end{bmatrix}$$ Thus $$c_1 = -1/2$$, $c_2 = 7/2$, and $\mathbf{x}(t) = -\frac{1}{2} \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^{4t} + \frac{7}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{6t}$. Since both eigenvalues are positive, the origin is a repellor of the dynamical system described by $\mathbf{x}' = A\mathbf{x}$. The direction of greatest repulsion is the line through \mathbf{v}_2 and the origin. 6. $$A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}$$, det $(A - \lambda I) = \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2) = 0$. Eigenvalues: -1 and -2. For $$\lambda = -2$$: $\begin{bmatrix} 3 & -2 & 0 \\ 3 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2/3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = (2/3)x_2$ with x_2 free. Take $x_2 = 3$ and $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. For $$\lambda = -1$$: $\begin{bmatrix} 2 & -2 & 0 \\ 3 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, so $x_1 = x_2$ with x_2 free. Take $x_2 = 1$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. For the initial condition $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, find c_1 and c_2 such that $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{x}(0)$ $$[\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{x}(0)] = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 5 \end{bmatrix}$$ Thus $$c_1 = -1$$, $c_2 = 5$, and $\mathbf{x}(t) = -\begin{bmatrix} 2 \\ 3 \end{bmatrix} e^{-2t} + 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t}$. Since both eigenvalues are negative, the origin is an attractor of the dynamical system described by $\mathbf{x}' = A\mathbf{x}$. The direction of greatest attraction is the line through \mathbf{v}_1 and the origin. 7. From Exercise 5, $$A = \begin{bmatrix} 7 & -1 \\ 3 & 3 \end{bmatrix}$$, with eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ corresponding to eigenvalues 4 and 6 respectively. To decouple the equation $\mathbf{x}' = A\mathbf{x}$, set $P = [\mathbf{v}_1 \ \mathbf{v}_2] = \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$ and let $D = \begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix}$, so that $A = PDP^{-1}$ and $D = P^{-1}AP$. Substituting $\mathbf{x}(t) = P\mathbf{y}(t)$ into $\mathbf{x}' = A\mathbf{x}$ we have $$\frac{d}{dt}(P\mathbf{y}) = A(P\mathbf{y}) = PDP^{-1}(P\mathbf{y}) = PD\mathbf{y}$$ Since P has constant entries, $\frac{d}{dt}(Py) = P(\frac{d}{dt}(y))$, so that left-multiplying the equality $P(\frac{d}{dt}(y)) = PDy$ by P^{-1} yields y' = Dy, or $$F(\frac{d}{dt}(\mathbf{y})) = FD\mathbf{y}$$ by F yields $\mathbf{y} = I$ $$\begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$$ 8. From Exercise 6, $A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}$, with eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ corresponding to eigenvalues -2 and -1 respectively. To decouple the equation $\mathbf{x}' = A\mathbf{x}$, set $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$ and let $D = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$, so that $A = PDP^{-1}$ and $D = P^{-1}AP$. Substituting $\mathbf{x}(t) = P\mathbf{y}(t)$ into $\mathbf{x}' = A\mathbf{x}$ we have $$\frac{d}{dt}(P\mathbf{y}) = A(P\mathbf{y}) = PDP^{-1}(P\mathbf{y}) = PD\mathbf{y}$$ Since P has constant entries, $\frac{d}{dt}(Py) = P(\frac{d}{dt}(y))$, so that left-multiplying the equality $$P\left(\frac{d}{dt}(\mathbf{y})\right) = PD\mathbf{y}$$ by P^{-1} yields $\mathbf{y}' = D\mathbf{y}$, or $$\begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix}$$ 9. $$A = \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix}$$. An eigenvalue of A is $-2+i$ with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} 1-i \\ 1 \end{bmatrix}$. The complex eigenfunctions $\mathbf{v}e^{\lambda t}$ and $\overline{\mathbf{v}}e^{\overline{\lambda t}}$ form a basis for the set of all complex solutions to $\mathbf{x}' = A\mathbf{x}$. The general complex solution is $$c_1 \begin{bmatrix} 1-i \\ 1 \end{bmatrix} e^{(-2+i)t} + c_2 \begin{bmatrix} 1+i \\ 1 \end{bmatrix} e^{(-2-i)t}$$ where c_1 and c_2 are arbitrary complex numbers. To build the general real solution, rewrite $\mathbf{v}e^{(-2+i)t}$ as: $$\mathbf{v}e^{(-2+i)t} = \begin{bmatrix} 1-i\\1 \end{bmatrix} e^{-2t}e^{it} = \begin{bmatrix} 1-i\\1 \end{bmatrix} e^{-2t}(\cos t + i\sin t)$$ $$= \begin{bmatrix} \cos t - i\cos t + i\sin t - i^2\sin t\\ \cos t + i\sin t \end{bmatrix} e^{-2t}$$ $$= \begin{bmatrix} \cos t + \sin t\\ \cos t \end{bmatrix} e^{-2t} + i \begin{bmatrix} \sin t - \cos t\\ \sin t \end{bmatrix} e^{-2t}$$ The general real solution has the form $$c_1 \begin{bmatrix} \cos t + \sin t \\ \cos t \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} \sin t - \cos t \\ \sin t \end{bmatrix} e^{-2t}$$ where c_1 and c_2 now are real numbers. The trajectories are spirals because the eigenvalues are complex. The spirals tend toward the origin because the real parts of the eigenvalues are negative. 10. $$A = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$$. An eigenvalue of A is $2+i$ with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} 1+i \\ -2 \end{bmatrix}$. The complex eigenfunctions $\mathbf{v}e^{\lambda t}$ and $\overline{\mathbf{v}}e^{\overline{\lambda}t}$ form a basis for the set of all complex solutions to $\mathbf{x}' = A\mathbf{x}$. The general complex solution is $$c_1\begin{bmatrix}1+i\\-2\end{bmatrix}e^{(2+i)t}+c_2\begin{bmatrix}1-i\\-2\end{bmatrix}e^{(2-i)t}$$ where c_1 and c_2 are arbitrary complex numbers. To build the general real solution, rewrite $\mathbf{v}e^{(2+i)t}$ as: $$\mathbf{v}e^{(2+i)t} = \begin{bmatrix} 1+i \\ -2 \end{bmatrix} e^{2t} e^{it} = \begin{bmatrix} 1+i \\ -2 \end{bmatrix} e^{2t} (\cos t + i \sin t)$$ $$= \begin{bmatrix} \cos t + i \cos t + i \sin t + i^2 \sin t \\ -2 \cos t - 2i \sin t \end{bmatrix} e^{2t}$$ $$= \begin{bmatrix} \cos t - \sin t \\ -2 \cos t \end{bmatrix} e^{2t} + i \begin{bmatrix} \sin t + \cos t \\ -2 \sin t \end{bmatrix} e^{2t}$$ The general real solution has the form $$c_{1}\begin{bmatrix} \cos t - \sin t \\ -2\cos t \end{bmatrix} e^{2t} + c_{2}\begin{bmatrix} \sin t + \cos t \\ -2\sin t \end{bmatrix} e^{2t}$$ where c_1 and c_2 now are real numbers. The trajectories are spirals because the eigenvalues are complex. The spirals tend away from the origin because the real parts of the eigenvalues are positive. 11. $$A = \begin{bmatrix} -3 & -9 \\ 2 & 3 \end{bmatrix}$$. An eigenvalue of A is 3i with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} -3+3i \\ 2 \end{bmatrix}$. The complex eigenfunctions $\mathbf{v}e^{\lambda t}$ and $\overline{\mathbf{v}}e^{\overline{\lambda}t}$ form a basis for the set of all complex solutions to $\mathbf{x}' = A\mathbf{x}$. The general complex solution is $$c_1 \begin{bmatrix} -3+3i \\ 2 \end{bmatrix} e^{(3i)t} + c_2 \begin{bmatrix} -3-3i \\ 2 \end{bmatrix} e^{(-3i)t}$$ where c_1 and c_2 are arbitrary complex numbers. To build the general real solution, rewrite $\mathbf{v}e^{(3i)t}$ as: $$\mathbf{v}e^{(3t)t} = \begin{bmatrix} -3+3i \\ 2 \end{bmatrix} (\cos 3t + i\sin 3t)$$ $$= \begin{bmatrix} -3\cos 3t - 3\sin 3t \\ 2\cos 3t \end{bmatrix} + i \begin{bmatrix} -3\sin 3t + 3\cos 3t \\ 2\sin 3t \end{bmatrix}$$ The general real solution has the form $$c_1 \begin{bmatrix} -3\cos 3t - 3\sin 3t \\ 2\cos 3t \end{bmatrix} + c_2 \begin{bmatrix} -3\sin 3t + 3\cos 3t \\ 2\sin 3t \end{bmatrix}$$ where c_1 and c_2 now are real numbers. The trajectories are ellipses about the origin because the real parts of the eigenvalues are zero. 12. $$A = \begin{bmatrix} -7 & 10 \\ -4 & 5 \end{bmatrix}$$. An eigenvalue of A is $-1 + 2i$ with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} 3 - i \\ 2 \end{bmatrix}$. The complex eigenfunctions $\mathbf{v}e^{\lambda t}$ and $\nabla e^{\lambda t}$ form a basis for the set of all complex solutions to $\mathbf{x}' = A\mathbf{x}$. The general complex solution is $$c_1 \begin{bmatrix} 3-i \\ 2 \end{bmatrix} e^{(-1+2i)t} + c_2 \begin{bmatrix} 3+i \\ 2 \end{bmatrix} e^{(-1-2i)t}$$ where c_1 and c_2 are arbitrary complex numbers. To build the general real solution, rewrite $\mathbf{v}e^{(-1+2i)t}$ $$\mathbf{v}e^{(-1+2i)t} = \begin{bmatrix} 3-i\\2 \end{bmatrix} e^{-t} (\cos 2t + i\sin 2t)$$ $$= \begin{bmatrix} 3\cos 2t + \sin 2t\\2\cos 2t \end{bmatrix} e^{-t} + i \begin{bmatrix} 3\sin 2t - \cos 2t\\2\sin 2t \end{bmatrix} e^{-t}$$ The general real solution has the form $$c_1 \begin{bmatrix} 3\cos 2t + \sin 2t \\ 2\cos 2t \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 3\sin 2t - \cos 2t \\ 2\sin 2t \end{bmatrix} e^{-t}$$ where c_1 and c_2 now are real numbers. The trajectories are spirals because the eigenvalues are complex. The spirals tend toward the origin because the real parts of the eigenvalues are negative. 13. $$A = \begin{bmatrix} 4 & -3 \\ 6 & -2 \end{bmatrix}$$. An eigenvalue of A is $1+3i$ with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} 1+i \\ 2 \end{bmatrix}$. The complex eigenfunctions $\mathbf{v}e^{\lambda t}$ and $\nabla e^{\lambda t}$ form a basis for the set of all complex solutions to $\mathbf{x}' = A\mathbf{x}$. The general complex solution is $$c_1 \begin{bmatrix} 1+i \\ 2 \end{bmatrix} e^{(1+3i)t} + c_2 \begin{bmatrix} 1-i \\ 2 \end{bmatrix} e^{(1-3i)t}$$ where c_1 and c_2 are arbitrary complex numbers. To build the general real solution, rewrite $\mathbf{v}e^{(1+3i)t}$ as: $$\mathbf{v}e^{(1+3i)t} = \begin{bmatrix} 1+i\\2 \end{bmatrix} e^t(\cos 3t + i\sin 3t)$$ $$= \begin{bmatrix} \cos 3t - \sin 3t\\2\cos 3t \end{bmatrix} e^t + i \begin{bmatrix} \sin 3t + \cos 3t\\2\sin 3t \end{bmatrix} e^t$$ The general real solution has the form $$c_1 \begin{bmatrix} \cos 3t - \sin 3t \\ 2\cos 3t \end{bmatrix} e^t + c_2 \begin{bmatrix} \sin 3t + \cos 3t \\ 2\sin 3t \end{bmatrix} e^t$$ where c_1 and c_2 now are real numbers. The trajectories are spirals because the eigenvalues are complex. The spirals tend away from the origin because the real parts of the eigenvalues are positive. 14. $$A = \begin{bmatrix} -2 & 1 \\ -8 & 2 \end{bmatrix}$$. An eigenvalue of A is 2i with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} 1-i \\ 4 \end{bmatrix}$. The complex eigenfunctions $\mathbf{v}e^{\lambda t}$ and $\overline{\mathbf{v}}e^{\overline{\lambda}t}$ form a basis for the set of all complex solutions to $\mathbf{x}' = A\mathbf{x}$. The general complex solution is $$c_1\begin{bmatrix} 1-i\\4 \end{bmatrix}e^{(2i)t} + c_2\begin{bmatrix} 1+i\\4 \end{bmatrix}e^{(-2i)t}$$ where c_1 and c_2 are arbitrary complex numbers. To build the general real solution, rewrite $\mathbf{v}e^{(2i)t}$ as: $$\mathbf{v}e^{(2i)t} = \begin{bmatrix} 1-i\\4 \end{bmatrix} (\cos 2t + i\sin 2t)$$ $$= \begin{bmatrix} \cos 2t + \sin 2t\\4\cos 2t \end{bmatrix} + i \begin{bmatrix} \sin 2t - \cos 2t\\4\sin 2t \end{bmatrix}$$ The general real solution has the form $$c_1 \begin{bmatrix} \cos 2t + \sin 2t \\ 4\cos 2t \end{bmatrix} + c_2 \begin{bmatrix} \sin 2t - \cos 2t \\ 4\sin 2t \end{bmatrix}$$ where c_1 and c_2 now are real numbers. The trajectories are ellipses about the origin because the real parts of the eigenvalues are zero. 15. [M] $$A = \begin{bmatrix} -8 & -12 & -6 \\ 2 & 1 & 2 \\ 7 & 12 & 5 \end{bmatrix}$$. The eigenvalues of A are: $$ev = eig(A) =$$ 1.0000 -1.0000 -2,0000 nulbasis(A-ev(1)*eye(3)) = $$\begin{array}{l} -1.0000 \\ 0.2500 \\ 1.0000 \\ \\ \text{so that } \mathbf{v}_1 = \begin{bmatrix} -4 \\ 1 \\ 4 \end{bmatrix} \\ \text{nulbasis} (A-\text{ev}(2) *\text{eye}(3)) = \\ -1.2000 \\ 0.2000 \\ 1.0000 \\ \\ \text{so that } \mathbf{v}_2 = \begin{bmatrix} -6 \\ 1 \\ 5 \end{bmatrix} \\ \text{nulbasis} \ (A-\text{ev}(3) *\text{eye}(3)) = \\ -1.0000 \\ 0.0000 \\ 1.0000 \\ \\ \text{so that } \mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \\ \end{array}$$ Hence the general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} -4 \\ 1 \\ 4 \end{bmatrix} e^t + c_2 \begin{bmatrix} -6 \\ 1 \\ 5 \end{bmatrix} e^{-t} + c_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} e^{-2t}$. The origin is a saddle point. A solution with $c_1 = 0$ is attracted to the origin while a solution with $c_2 = c_3 = 0$ is repelled. 16. [M] $$A = \begin{bmatrix} -6 & -11 & 16 \\ 2 & 5 & -4 \\ -4 & -5 & 10 \end{bmatrix}$$. The eigenvalues of A are: $$e\mathbf{v} = eig(A) = 4.0000$$ 3.0000 2.0000 nulbasis $(A - e\mathbf{v}(1) * eye(3)) = 2.3333$ -0.6667 1.0000 so that $\mathbf{v}_1 = \begin{bmatrix} 7 \\ -2 \\ 3 \end{bmatrix}$ nulbasis $(A - e\mathbf{v}(2) * eye(3)) = 3.0000$ -1.0000 1.0000 so that $\mathbf{v}_2 = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$ nulbasis $(A - e\mathbf{v}(3) * eye(3)) = 2.0000$ 0.0000 1.0000 so that $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ Hence the general solution is $\mathbf{x}(t) = c_1 \begin{bmatrix} 7 \\ -2 \\ 3 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} e^{3t} + c_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} e^{2t}$. The origin is a repellor, because all eigenvalues are positive. All trajectories tend away from the origin. 17. [M] $$A = \begin{bmatrix} 30 & 64 & 23 \\ -11 & -23 & -9 \\ 6 & 15 & 4 \end{bmatrix}$$. The eigenvalues of A are: $ev = eig(A) = 5.0000 + 2.0000i = 5.0000 - 2.0000i = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0000 = 1.0$ Hence the general complex solution is $$\mathbf{x}(t) = c_1 \begin{bmatrix} 23 - 34i \\ -9 + 14i \\ 3 \end{bmatrix} e^{(5+2i)t} + c_2 \begin{bmatrix} 23 + 34i \\ -9 - 14i \\ 3 \end{bmatrix} e^{(5-2i)t} + c_3 \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} e^t$$ Rewriting the first eigenfunction yields $$\begin{bmatrix} 23 - 34i \\ -9 + 14i \\ 3 \end{bmatrix} e^{5t} (\cos 2t + i \sin 2t) = \begin{bmatrix} 23\cos 2t + 34\sin 2t \\ -9\cos 2t - 14\sin 2t \\ 3\cos 2t \end{bmatrix} e^{5t} + i \begin{bmatrix} 23\sin 2t - 34\cos 2t \\ -9\sin 2t + 14\cos 2t \\ 3\sin 2t \end{bmatrix} e^{5t}$$ Hence the general real solution is $$\mathbf{x}(t) = c_1 \begin{bmatrix} 23\cos 2t + 34\sin 2t \\ -9\cos 2t - 14\sin 2t \\ 3\cos 2t \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} 23\sin 2t - 34\cos 2t \\ -9\sin 2t + 14\cos 2t \\ 3\sin 2t \end{bmatrix} e^{5t} + c_3 \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix} e^{t}$$ where c_1, c_2 , and c_3 are real. The origin is a repellor, because the real parts of all eigenvalues are positive. All trajectories spiral away from the origin. 18. [M] $$A = \begin{bmatrix} 53 & -30 & -2 \\ 90 & -52 & -3 \\ 20 & -10 & 2 \end{bmatrix}$$. The eigenvalues of A are: ev = eig (A) = -7.0000 5.0000 + 1.0000i 5.0000 - 1.0000i nulbasis (A-ev(1)*eye(3)) = 0.5000 1.0000 0.0000 so that $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ nulbasis (A-ev(2)*eye(3)) = $0.6000 + 0.2000i$ 0.9000 + 0.3000i 1.0000 so that $\mathbf{v}_2 = \begin{bmatrix} 6+2i \\ 9+3i \\ 10 \end{bmatrix}$ nulbasis (A-ev(3)*eye(3)) = $0.6000 - 0.2000i$ 0.9000 - 0.3000i 1.0000 so that $\mathbf{v}_3 = \begin{bmatrix} 6-2i \\ 9-3i \\ 9-3i \end{bmatrix}$ Hence the general complex solution is $$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} e^{-7t} + c_2 \begin{bmatrix} 6 + 2i \\ 9 + 3i \\ 10 \end{bmatrix} e^{(5+i)t} + c_3 \begin{bmatrix} 6 - 2i \\ 9 - 3i \\ 10 \end{bmatrix} e^{(5-i)t}$$ Rewriting the second eigenfunction yields $$\begin{bmatrix} 6+2i \\ 9+3i \\ 10 \end{bmatrix} e^{5t} (\cos t + i \sin t) = \begin{bmatrix} 6\cos t - 2\sin t \\ 9\cos t - 3\sin t \\ 10\cos t \end{bmatrix} e^{5t} + i \begin{bmatrix} 6\sin t + 2\cos t \\ 9\sin t + 3\cos t \\ 10\sin t \end{bmatrix} e^{5t}$$ Hence the general real solution is $$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} e^{-7t} + c_2 \begin{bmatrix} 6\cos t - 2\sin t \\ 9\cos t - 3\sin t \\ 10\cos t \end{bmatrix} e^{5t} + c_3 \begin{bmatrix} 6\sin t + 2\cos t \\ 9\sin t + 3\cos t \\ 10\sin t \end{bmatrix} e^{5t}$$ where c_1 , c_2 , and c_3 are real. When $c_2 = c_3 = 0$ the trajectories tend toward the origin, and in other cases the trajectories spiral away from the origin. 19. [M] Substitute R₁ = 1/5, R₂ = 1/3, C₁ = 4, and C₂ = 3 into the formula for A given in Example 1, and use a matrix program to find the eigenvalues and eigenvectors: $$A = \begin{bmatrix} -2 & 3/4 \\ 1 & -1 \end{bmatrix}, \quad \lambda_1 = -.5 : \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \lambda_2 = -2.5 : \mathbf{v}_1 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$ The general solution is thus $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -3 \\ 2 \end{bmatrix} e^{-2.5t}$. The condition $\mathbf{x}(0) = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ implies that $$\begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}. \text{ By a matrix program, } c_1 = 5/2 \text{ and } c_2 = -1/2, \text{ so that}$$ $$\begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \mathbf{x}(t) = \frac{5}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-5t} - \frac{1}{2} \begin{bmatrix} -3 \\ 2 \end{bmatrix} e^{-25t}$$ 20. [M] Substitute $R_1 = 1/15$, $R_2 = 1/3$, $C_1 = 9$, and $C_2 = 2$ into the formula for A given in Example 1, and use a matrix program to find the eigenvalues and eigenvectors: $$A = \begin{bmatrix} -2 & 1/3 \\ 3/2 & -3/2 \end{bmatrix}, \quad \lambda_1 = -1 : \mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \lambda_2 = -2.5 : \mathbf{v}_2 = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$ The general solution is thus $\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} -2 \\ 3 \end{bmatrix} e^{-2.5t}$. The condition $\mathbf{x}(0) = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ implies that $$\begin{bmatrix} 1 & -2 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$. By a matrix program, $c_1 = 5/3$ and $c_2 = -2/3$, so that $\begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} = \mathbf{x}(t) = \frac{5}{3} \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^{-t} - \frac{2}{3} \begin{bmatrix} -2 \\ 3 \end{bmatrix} e^{-2.5t}$ 21. [M] $A = \begin{bmatrix} -1 & -8 \\ 5 & -5 \end{bmatrix}$. Using a matrix program we find that an eigenvalue of A is -3 + 6i with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} 2+6i \\ 5 \end{bmatrix}$. The conjugates of these form the second eigenvalue-eigenvector pair. The general complex solution is $$\mathbf{x}(t) = c_1 \begin{bmatrix} 2+6i \\ 5 \end{bmatrix} e^{(-3+6i)t} + c_2 \begin{bmatrix} 2-6i \\ 5 \end{bmatrix} e^{(-3-6i)t}$$ where c_1 and c_2 are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real and imaginary parts, we have $$\mathbf{v}e^{(-3+6i)t} = \begin{bmatrix} 2+6i \\ 5 \end{bmatrix} e^{-3t} (\cos 6t + i\sin 6t)$$ $$= \begin{bmatrix} 2\cos 6t - 6\sin 6t \\ 5\cos 6t \end{bmatrix} e^{-3t} + i \begin{bmatrix} 2\sin 6t + 6\cos 6t \\ 5\sin 6t \end{bmatrix} e^{-3t}$$ The general real solution has the form $$\mathbf{x}(t) = c_1 \begin{bmatrix} 2\cos 6t - 6\sin 6t \\ 5\cos 6t \end{bmatrix} e^{-3t} + c_2 \begin{bmatrix} 2\sin 6t + 6\cos 6t \\ 5\sin 6t \end{bmatrix} e^{-3t}$$ where c_1 and c_2 now are real numbers. To satisfy the initial condition $\mathbf{x}(0) = \begin{bmatrix} 0 \\ 15 \end{bmatrix}$, we solve $$c_{1} \begin{bmatrix} 2 \\ 5 \end{bmatrix} + c_{2} \begin{bmatrix} 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 15 \end{bmatrix} \text{ to get } c_{1} = 3, c_{2} = -1. \text{ We now have}$$ $$\begin{bmatrix} i_{L}(t) \\ v_{C}(t) \end{bmatrix} = \mathbf{x}(t) = 3 \begin{bmatrix} 2\cos 6t - 6\sin 6t \\ 5\cos 6t \end{bmatrix} e^{-3t} - \begin{bmatrix} 2\sin 6t + 6\cos 6t \\ 5\sin 6t \end{bmatrix} e^{-3t} = \begin{bmatrix} -20\sin 6t \\ 15\cos 6t - 5\sin 6t \end{bmatrix} e^{-3t}$$ 22. [M] $A = \begin{bmatrix} 0 & 2 \\ -4 & -.8 \end{bmatrix}$. Using a matrix program we find that an eigenvalue of A is -.4 + .8i with corresponding eigenvector $\mathbf{v} = \begin{bmatrix} -1 - 2i \\ 1 \end{bmatrix}$. The conjugates of these form the second eigenvalue- eigenvector pair. The general complex solution is $$\mathbf{x}(t) = c_1 \begin{bmatrix} -1 - 2i \\ 1 \end{bmatrix} e^{(-A + 8i)t} + c_2 \begin{bmatrix} -1 + 2i \\ 1 \end{bmatrix} e^{(-A - 8i)t}$$ where c_1 and c_2 are arbitrary complex numbers. Rewriting the first eigenfunction and taking its real and imaginary parts, we have $$\mathbf{v}e^{(-A+.8i)t} = \begin{bmatrix} -1-2i\\1 \end{bmatrix} e^{-At} (\cos .8t + i\sin .8t)$$ $$= \begin{bmatrix} -\cos .8t + 2\sin .8t\\\cos .8t \end{bmatrix} e^{-At} + i \begin{bmatrix} -\sin .8t - 2\cos .8t\\\sin .8t \end{bmatrix} e^{-At}$$ The general real solution has the form $$\mathbf{x}(t) = c_1 \begin{bmatrix} -\cos .8t + 2\sin .8t \\ \cos .8t \end{bmatrix} e^{-.4t} + c_2 \begin{bmatrix} -\sin .8t - 2\cos .8t \\ \sin .8t \end{bmatrix} e^{-.4t}$$